
 1

1 01/20/2013 12:54 PM

Using the US Department of Defense Architecture
Framework (DoDAF) in Reengineering Product

Development Information

Henson Graves Chris O’Donnell Russ Campbell

Lockheed Martin Aeronautics

Company

BAE

Systems

Lockheed Martin Aeronautics

Company

Post Office Box 748 Post Office Box 748 Post Office Box 748

Fort Worth, TX 76101 Fort Worth, TX 76101 Fort Worth, TX 76101

817-777-1856 817-777-5763 817-763-3894

henson.graves@lmco.com chris.e.odonnell.itar

@jsfmail2.p.external.lmco.com

russell.c.campbell@lmco.com

ABSTRACT

The Department of Defense Architecture Framework (DoDAF) is an effective tool for re-

engineering product development information management. Our premise is that

technical performance in product development is highly correlated with information

management capability. System engineering principles can be applied to analyse

product development information management and DoDAF is a good methodology for

this analysis. DoDAF can be used to develop better operational requirements and used

for gap analysis between requirements and the collaborative environment that

implements the requirements. Developing the DoDAF products provides the information

needed to develop realistic operational and systems models of the development

enterprise. The models can be used to perform a gap analysis between the operational

requirements and the system implementation. The principles and methodology outlined

here can be used to develop predictive measures of technical performance.

.

 2

1 Introduction

This paper describes a technical approach to improve product development technical

performance based on system engineering principles. The approach begins from the premise

that an enterprise can work effectively only when complete, accurate, product information is

available. While there may be debate as to how to quantify the relationship between poor

technical performance and poor information management the relationship is well established.

The approach described in this paper focuses on developing forensic tools that can be used to

develop requirements for information technology needs, analyze gaps between requirements

and information technology infrastructure, and develop predictive metrics for program

technical success.

1.1 Applying System Engineering Principles

Our approach applies system engineering principles to the process of product development

and the enterprise systems that implement the development process. The approach makes use

of methodology and tools that have been developed and used primarily for products rather

than the operations and systems used to produce products. Applying engineering principles to

analyze and model a product and to model the process that produces the product have some

overlap. One could argue that system engineering for product development should naturally

include the broader analysis of processes and operations, as well as analysis of the

information technology infrastructure. In any case applying system engineering principles to

the product development enterprise is critical to program success. To the credit of the

principles and tools discussed here we have found that they are equally applicable for product

development analysis and design as they are for product analysis and design.

1.2 Enterprise Modelling

Our approach relies on enterprise modeling of product development operations and comparing

the operational model with its physical realization in the tools and information technology

infrastructure. The operational modeling provides the material needed for information

technology requirements analysis. Analysis of how well the system (physical) implements

the operations model makes gaps and disconnects visible. The analysis and work products

produced in this enterprise engineering effort are the basis for good predictive metrics for

program success.

A major difficulty with developing enterprise models is that accurate information about

enterprise and the way that it operates is difficult to obtain. Modeling is useful only when it

reflects the enterprise being modeled. Enterprise operations documentation often does not

have sufficient detail to provide good information technology requirements. The information

technology fielded is then insufficient and this fact is often realized only late in the game after

the requirements have been understood. Remedying the requirements problem requires a

disciplined way to develop requirements and perform gap analysis between requirements and

information technology infrastructure.

We have found that the US Department of Defense Architecture Framework (DoDAF) is a

good methodological starting point for enterprise modeling and that enterprise modeling is

needed to develop and field effective information technology solutions.

 3

1.3 Translating Enterprise Modeling into Action

Our approach, as noted, relies on product development enterprise modeling. Many enterprise

modeling exercises do not translate directly into concrete action that improves the enterprise

processes. The enterprise models that we develop represent information that management

must have to operate effectively; the models identify information technology requirements

which if not met lead to cost and schedule overrun. Enterprise modeling can be taken a step

further; it can be used to directly configure a Web-based information system. This method of

implementation of information management requirements has the advantage of reducing

programming costs for information technology infrastructure development and maintenance.

1.4 Look Ahead

Section 2 gives background on how our system engineering approach to product development

information management was developed and how we were led to use DoDAF and other

system engineering enablers. Section 3 outlines the approach to analyzing a product

development enterprise using DoDAF. Section 4 summarizes how DoDAF products translate

into metrics for judging product development enterprise maturity with respect to information

technology.

2 Applying System Engineering principles to Product

Development Information Management

A primary goal for product information management is to establish accurate product baseline

representations that can be shared between team members and to make this representation

available through a Web-based access system. Further goals are to:

 Provide timely inputs for modeling, simulation, and analysis, resulting in

shorter decision cycles.

 Improve the traceability (i.e., validation) of product representations used in

program activities.

 Increase information coherency, resulting in the reduction of potential

misunderstandings across the product team.

 Reduce manual data translations yielding lower translation costs and

increased productivity.

 Provide a common repository of accessible and relevant information

throughout the product life cycle, saving resources and facilitating better-

informed decisions/actions.

2.1 Correlation between Information Management Capability and Technical

Performance

While it may be difficult to establish an exact quantifiable relationship between program

performance and technical information management, cost and schedule overrun and product

quality are often traceable directly to information loss and corruption within the product

development process. Information loss and corruption result from not understanding the

information exchange requirements between development teams with a resulting inability to

 4

supply the required information when it is needed, in the form that is needed. The inability to

supply information in the form needed when needed and resulting latency and rework in the

product development process results less from electronic connectivity, than from the inability

to locate the information and have it in a usable form. The information needed may well be

electronically reachable if only one knew where it was located. The ability to use information

successfully depends on using the right information, i.e., from the authoritative source and

knowing limitations on its validity and use. Figure 1, adapted from a Gartner Group

presentation, illustrates that the loss and corruption of information can be an unfortunate side-

effect in the product development process.

Requirements Design
Test &

Integration

Implement-

ation

Figure 1: Information Loss and Corruption in Product Development

2.2 Common Causes Affecting Information Management

There are many reasons why it is difficult to establish and maintain product design baselines.

Within product development each subject domain such as requirements analysis or design

synthesis often uses different tools to produce data and each tool may have its own format.

The data produced by these tools overlaps in content, but insufficient checking is performed

to ensure consistency. Often insufficient tool-to-tool integration means each user must login

to each tool separately and transfer data manually. As a result of insufficient tool integration

there is insufficient ability to search across multiple databases. Figure 2 illustrates some of

the kinds of product data that need to be managed for aircraft development. This data is often

stored in separate databases. The lines in Figure 2 connecting the databases indicate

dependences of one kind of data on another kind of data. When changes occur in one

database the dependent databases must also be changed to maintain data coherency.

 5

Product Data to be Managed

PDM Tool

Parametric

Data

Mass

Properties
Material

 and
 Processes

Specs

Materials

Testing Data

Build To

Package

Release

Requirements
Management

Software

Version

Control

Signal

Interface

Management

Analysis

Process Data

Flight Test

Data
Prognostics

Health

Management

Knowledge

Systems

Finite Element

Models

Tubing

Database

Cad Data

ManagementStandard Parts

Analysis

Development

Data

data dependences

Figure 2: Dependencies within Product Data

2.3 Product Information Management Concepts

Product information management includes many concepts. Some of these concepts are

summarized below.

Visibility and awareness: Can users find the information they need and are they aware

when the information changes.

Accessibility: Can the information, if found, be accessed.

Understandability: Is the information in an understandable and usable form.

System Interoperability: Can the information be used across different tools and

databases.

Integrity: Is the information coherent and can its source can be traced to primary

engineering data with any limitations on its valid use identified.

Security and Authentication: Is information access controlled so that only

authenticated users that have access permission have access.

Figure 3 illustrates these information concepts.

 6

Information

Management

Concepts

Visibility and Awareness

Accessibility

Understandability

System Interoperability

Integrity

Security and Authentication

Figure 3: Information Management Concepts

2.4 Technical Approach to providing access to authoritative product data

The goal of an information management system that provides access to authoritative

information characterizing a product is easier said than done. First one must define the scope

and characterize the data to be managed. The starting point for scoping the data is inclusion

of design representations of the product produced by the design teams. Data could be

attached to, or referenced by, components of a product decomposition. However, a design

effort produces multiple design decompositions, e.g., functional, logical, and physical

decompositions, often using different tools that produce data in different formats with

different semantics. The information used in product development and evaluation is often

system performance data. However, performance data needs to be traceable through

intermediate steps to primary engineering and measurement data. While product

representations can be configuration managed, understanding the relationships between these

different representations is not easily represented within traditional Product Data Management

(PDM) Systems as they usually manage data at such a high level of granularity that the

detailed relationships are not captured within PDM organizational structure.

2.4.1 Developing Information Management Requirements

Figure 4 illustrates the use of a traditional system engineering approach to analyse

requirements for the product development operation, synthesize a system design for product

development, and integrated commercial tools to produce the required system.

 7

Figure 4: The Engineering Process to Produce an Information Model and a System to

Access Product Data

2.4.2 Collaborative Infrastructure Requirements

Many product development efforts have intentionally taken an incremental approach to

determining requirements for the collaborative environment, i.e., tools, applications, and

network interconnections, and to evolving its implementation. Major programs almost always

have legacy information systems; there are prior commitments to specific tools and processes,

often without complete understanding of how requirements have changed. Modification to

legacy systems often does not come cheap. Any solution to gaps between what legacy systems

provides and information management requirements must be solved without major disruptions

and must provide low cost means of bridging the gaps and disconnects. To identify gaps in

the collaborative environment infrastructure, models can be used to identify network

connectivity, security and access services, tools, and databases, and most importantly the

capability to interchange data between tools and databases. For example, does a user that

needs to access data from multiple databases have to log on to each of the databases; if so

then productivity inefficiency occurs. At its most fundamental level our approach consists in

separating what is needed from what exists to get a better understanding of the pinpoint issues

that need to be addressed.

2.5 Using System Engineering Enablers

To apply system engineering methodology to a product development enterprise we looked for

tools, processes, methodologies, architecture frameworks, and any other enablers that could

assist with the collaborative infrastructure gap analysis and help fill the gaps.

 8

2.5.1 Architecture Frameworks

Our approach to product development is model centric. DoDAF provides a good

methodology to perform a systematic analysis of information needs for specific product

development processes. The result of the analysis has been used to produce an operations

model that can be mapped onto the information infrastructure used in implementation of the

development processes. DoDAF has proven extremely useful in helping frame the problem

and collect the data needed to develop enterprise models. DoDAF originated as an

architecture framework to analyze defense system-of-systems. Product development is a

system of systems in the same sense and has similar problems with integration that occur with

weapons systems integration. Not only is product development a systems of systems

endeavor, but the fog of product development often rivals the fog of war. Graves, Hollenbach

& Barnhart (2003) initiated the use of DoDAF for describing and analyzing product

development and information systems.

2.5.2 Modeling Tools

UML and more recently SysML are system engineering enablers in that these modeling

languages can be used to model the product development enterprise operation as well as

model the product under development. The precision of a formal modeling language and

tools enables identification of issues in the enterprise model that would otherwise not be

found. We make extensive use of UML for product development enterprise modeling. UML

with its formal syntax checking enables a precision not possible with text and view graphs.

While UML is an effective modeling tool for product development which we use extensively,

it doesn’t provide a methodology for collecting the information needed to develop enterprise

models. DoDAF provides a methodology to collect the information needed to build models.

2.5.3 Standards for Data Models and Data Interchange

A tool produces data in one format and other tools consume data in their own formats. In

many cases data transfer between tools is achieved through specific point-to-point

translations. The issue for implementation of the collaborative environment is where and

when more general solutions are needed or are more cost effective. System Engineering Data

Representation and Exchange (SEDRES 2) and now ISO 10303 AP233 has the objective of

integrating systems engineering data into an overall product data management schema that

achieves interoperability through the development of interchange standards for overlapping

data between different classes of tools. The AP233 objective of integration of system

engineering data into an overall data management schema is exactly what is needed. Tool

vendors have been reluctant to adopt AP233 standards. However, recently AP233 are being

translated into XML schemas and tools are providing XML output. These results make it

easier to provide translations and mappings between tool formats and so AP233 is expected to

play a more significant role in the future.

2.5.4 Appropriate use of enablers

No tool is a silver bullet and any tool can be used ineffectively and inappropriately. If, for

example, DoDAF is seen primarily as a tool to engineer workflows then the tool use is at best

misguided and at worst damaging. DoDAF does not in itself push architects toward viewing

architecture as a static goal. Of course, once people get some new concept or tool, they are

often unable to use it well and their brain hardens in some particular way. However, the way

 9

that we have used DoDAF is as a tool for information collection and analysis. Of course the

requirements may change and if so the analysis changes. The fact that things change doesn’t

preclude trying to understand what is going on at a given time.

3 Product Development Architecture Views

A premise of this paper is that many causes of schedule slippage, loss of productivity and

technical integrity in product development center on impedance mismatches between the

operational requirements and collaborative information technology infrastructure that realizes

the requirements. The mismatches are due to insufficiently detailed analysis of product

development operational requirements, specifically analysis of the information required by

each process activity to work effectively. The result of the incompleteness of the operational

description is incomplete requirements for information technology. Consequently, the role of

the information technology in providing an effective process implementation is often under

appreciated. Good design decisions depend on good data and making decisions with poor

data integrity leads to rework. Yet, the belief persists that tools will take care of the

productivity problem. It is sometimes thought that baselineing product data in a configuration

management system and requiring approval to change the baseline is sufficient strategy for

data management. However, no coherent baseline can be established unless detailed

descriptive information about the data is available to determine if the configuration managed

data is consistent and coherent.

3.1 Three Architecture Views

Analysis of product development enterprise operations suggests the need for distinguishing

between an operational model of product development and the people, tools, and information

technology used to implement the development process. We refer to the people, tools, and

information technology as the collaborative environment. The data interchange standards and

communication protocols are a critical link between the operational model and the physical

infrastructure. The availability of data interchange standards and tools that produce and

consume data in standard formats affect the system architecture solutions that are potentially

available.

The analysis of the product development suggests that an operations, or logical, model, a

system, or physical, model, and the mappings between these models are needed to develop the

operational requirements, and perform the gap analysis of the collaborative environment

infrastructure’s ability to support information requirements. Figure 5 is an adaptation of a

figure used in the ISO/STEP AP233 literature to describe the relationship between the

systems engineering process, the supporting environment, and the systems engineering data

model. This figure illustrates an operations view, a system view, and technical view that

provide the basis for mapping between the operations and system view.

 10

Figure 5: Three Architecture Views

3.2 DoDAF

The DoDAF uses three views to represent the architecture of a system: an Operations View

(OV), a System View (SV), and a Technical View (TV). Each architecture view has a

number of products to describe the view. For product development the Operations View is the

concept of operations. The Systems View is the collaborative environment used to realize the

concept of operations, including network infrastructure, tools, and databases. The Technical

View is the collection of standards for information exchange, including communications

protocols and data exchange formats. Figure 6 illustrates the three DoDAF views and their

interrelationships as applied to product development. The Operational View is realized by the

System View using the Technical Standards view. The flow is bidirectional in that systems

technology and technical standards can affect the operational architecture and conversely. The

System View requirements are derived primarily from the Operations View.

Figure 6: The DoDAF Architecture Views

 11

The DoDAF diagram illustrates how these views affect each other. The effectiveness of a

program is defined in terms of the effectiveness of its operations. The effectiveness of

development operations depends on the collaborative environment (system) that realizes the

operations.

3.3 Operations Architecture

Most aerospace programs produce a concept of operations, a system engineering master plan,

other program plans and directives, and instructions to guide operation of the program. These

documents constitute an operations architecture view in the DoDAF sense. However, these

constituent operations documents often do not contain sufficient detail in their activity

models, information exchange requirements, and data model to determine the collaborative

environment (system architecture) requirements. In this section we describe how DoDAF

operations architecture component views can be used to obtain the level of detail needed to

establish system architecture (collaborative environment) and technical architecture

requirements.

A product development program’s policies, procedures, and concepts of operations

documents are a natural starting point to construct a number of the DoDAF operational

architecture products. These products help identify sufficient detail to identify the data

producers, and to match consumers and producers with need lines and use this information to

construct a logical data model that provides requirements for the collaborative environment

implementation.

3.3.1 Context diagram for product data

The top level system engineering process that serves as the context diagram for the

application of DoDAF to product development is represented in Figure 7 as a “V” diagram

with two dimensions. Time proceeds horizontally from left to right. The vertical dimension

gives a stratification of tiers of organization and product decomposition. A “V” diagram, as is

well understood, is a fiction; it does not show feedback cycles within the “V,” and does not

show that each major design cycle is its own “V.” The diagram does show horizontal swim

lanes that reflect organizational and product decomposition hierarchies. Information at a

given level of detail flows within the swim lanes. Specifications flow down across the swim

lanes and with test and integration results flow up across the lanes. The dotted lines

correspond to milestone events. The transparent ovals are three areas where modeling and

simulation plays a large role and which will be used for illustration in this paper. Simulation

for requirements analysis uses a characterization of the product. Over time the requirements

characterization evolves into a high fidelity product representation that mirrors the physical

product as it is built. Verification requires a high fidelity product representation as a baseline

product description.. Even after the air system is built, simulation plays a major role in

product verification. The critical issue for the Verification is the ability to trace the linage of

the component representations to the integration and test process. For this reason we focus on

how model information flows up from Integration and Test to System Verification and Test.

 12

Time

Implementation

Requirements

Analysis

Synthesis

Design Development

System

V & T

Unit

Test

Integration

Test

Figure 7: Top Level System Engineering Process

While emblematically we have used a “V” diagram to describe the product development

operations much more detailed information is needed. Most ConOps recognize that teams

need to exchange data and may even identify handoff agreements between teams. Program

plans identify activities that take place to accomplish tasks, the performing organization, need

lines, and time required to accomplish tasks. What is often missing in the ConOps is adequate

provision for synchronizing data produced by concurrent activity and keeping the project

information coherent. Design teams do not work in a vacuum. One team’s results depend on

results from other teams. Effective horizontal integration of a product development enterprise

requires not only the configuration management of final releases of design data to

manufacturing, but the sharing of data between product teams before final release. All of this

data must be related and combined to achieve horizontal integration and enable collaborative

product engineering. Evidence of non-recognition and inability to address concurrence can

often be found in the approach to work flows. The work flows express a linear mentality;

data can not be released until a chain of signoffs have been made, yet no provision has been

made for the fact that data is dependent on access to other data. When such work flows are

rigidly enforced one often finds that signoffs do not correspond to any completeness,

usability, or quality metrics for the data being signed off on.

3.3.2 DoDAF Operations View

Figure 8 illustrates some of the DoDAF operational architecture view products and their

interrelationships. Many of these components are identifiable as standard products produced

by a program. At the top of Figure 8 is a high level operational graphic (OV-1). We have

used a Simulation Based Acquisition (SBA) diagram as a notional top level operations

 13

concept that determines organizations and roles. OV-5 is used to determine activities of

organizations and their time lines. We have used a traditional “V-diagram” as emblematic of

the operational activity model (OV-5). The Operational Node Connectivity Description (OV-

2) describes exchange information needs of specific organizations within the enterprise. The

Operational Information Exchange Matrix (OV-3) is used to describe the information

exchanges between organizational nodes. The logical data model (OV-7) is a model of the

kinds of product data required to accomplish development tasks. As we will see the DoDAF

Logical Data Model corresponds to our information model. Figure 8 illustrates the logical

data model (OV-7) as a collection of data categories that include requirements, analysis,

manufacture, integration test and verification and a number of product representations.

Figure 8: Operational Architecture Products

Figure 8 shows an information flow relationship between the five operations view products in

the diagram. While work to produce the products may be done concurrently the information

flow gives a precedence relationship leading to the logical data model.

3.3.3 Operational Activity Model (OV-5)

The Operational Activity Model (OV-5) describes the operational activities normally

conducted in the course of performing the tasks of the organizational nodes and the

information exchanged between operational nodes. We developed a number of activity

models (OV-5) by interviewing participants to understand how consumers obtained their data.

Figure 9 is an example of an OV-5 Operational Activity Model represented as a UML

activity diagram. The diagram shows “swim lanes” corresponding to component suppliers,

data producers, system integrators, data consumers, and IPT leads. The model was

 14

constructed by interviewing participants about how they did work and how they wanted to

work. Figure 9 does not include all of the messages that flow between the participants, but it

does identify the product data that flows between the groups and identifies who needs to

signoff to certify authenticity of data.

•EXCEL

•Spreadsheet

•Metadata

•Aggregation of

•Component DSMs

•Metadata
•Tool Specific

•Inputs

•Tool Specific

•Inputs

•Metadata

•EXCEL

•Spreadsheet

Component Supplier Data Producer SE Integration Data Consumer IPT-Lead

Deliver
Data Set

Receive
Data Set

Modify Set of
Data

Register
Data

Register requires two steps:

1. Fill out metadata form

2. Upload document

Request Specific Data
(by downloading from RAS)

Register Data

Test Data

OK?

Local update
of data

Data

modified?

Request
Specific

Tool Data (by
downloading

from RAS)

Modify Set of
Data
(by

downloading
from RAS)

Use Simulator

Initial
State

Final State

Register requires two steps:

1. Fill out metadata form

2. Upload document
LEGEND

Process

RAS
Operation

no

no

yes

Review Set of Data and Approve

yes

Figure 9: Activity Model (OV-5) for Exchange between Producers and
Consumers

A critical result of the activity analysis is determination of the interfaces between

organizations. An interface description for an organization specifies what work products

(data) flow between organizations.

3.3.4 Operational Node Connectivity Description (OV-2)

The Operational Node Connectivity Description (OV-2) tracks the need to exchange

information between specific organizations within the enterprise to meet need lines. OV-2 is

a model of the organizations and the information they exchange depicted as “need lines” with

identifiers showing type of info and direction of flow. OV-2 is not a network diagram and

does not show communication means. For product development the major milestones

identify need lines and OV-2 serves the critical role for product planning in identifying data

need lines for major milestone events. The data needed is determined by the success criteria

for the event. The critical issue for program planning and assessment is to have the data

required for a milestone event is sufficient detail to determine the risk of its availability.

After identifying organizations, organizational interfaces, and information flow (producing

activity diagrams (OV-5) the next level of detail is to determine what specific data is required

 15

for a specific event. The example, used here for describing the role of OV-2 is analysis of the

success criteria for the first manufactured Air Vehicle’s first flight. Figure 10 illustrates the

integration and test flow leading to first flight. The lines in Figure 10 do not distinguish

between data flow, simulation connections, or hardware transfer from one organization to

another. Of course for system analysis these distinctions have to be made very carefully.

Figure 10: Information Flow Diagram that identifies M&S Need Lines for First

Flight

The entrance criterion for first flight is a certification document that describes a specific flight

profile. Certification requires that the aircraft and its subsystems and components have been

qualified to meet the constraints imposed by the flight certification. Analysis of the

requirements for component and system qualification can be used to determine the test

activities needed for the first flight. Each activity has an entrance and exit criteria.

The result of this effort which identified the air system models needed for first flight is an

Operational Node Connectivity Description (OV-2). The basis for constructing the models

needed for first flight diagram (Figure 10) is work backward from first flight. For first flight

all equipment on the air vehicle must be certified for flight. Models of the operating

environment are used in ground test for certification and must be available at the ground test

need line. Before ground test, integration models are used in labs for vehicle control systems

and avionics which in turn require models from product developers.

 16

3.3.5 Operational Information Exchange Matrix (OV-3)

The Operational Information Exchange Matrix (OV-3) details information exchanges that

identify “who exchanges what information, with whom, why the information is necessary,

how the information exchanges must occur, and when it occurs. The purpose of an OV-3

diagram is to document the relationship across three basic elements of the Operational View:

operational activities, operational nodes, and information flow. The operational activity

model (OV-5) and the operational node connectivity model (OV-2) lead directly to

identification of the operational information exchange matrix (OV-3). The focus is on

specific aspects of the information flow. Each Information Exchange is related to an

operational activity from OV-5 that produces or consumes it. We have found several kinds of

diagrams useful for representing OV-3 information.

Constructing an accurate and complete OV-3 is likely too difficult and time consuming a task

for an entire product development program. We have used OV-3 diagrams to determine what

data was required for specific events and tasks. To construct an OV-3 we have used

questionnaires that were filled out by data producers and consumers. The questionnaires for

data producers are used to determine what product data they are producing, in what form, and

who their customers were and where it is stored. From data consumers we use spread sheets

to determine what data they need for specific design, integration and test, and verification

tasks. The resulting OV-3 diagrams can be represented using spreadsheets using column

headings for information producer, consumer, content, task it supports, triggering event,

communication medium, format (include any standard being followed), periodicity, time to

transform information into consuming tool’s format, and classification or confidentially.

3.3.5.1 Information Exchange for Performance Models

Figure 11 is an example of an Information Exchange Matrix for Models (OV-3) that we have

constructed for product modeling and simulation. The matrix identifies the consumers of

these models and the producer of each model. This diagram is organized by a functional

decomposition hierarchy. At each node in the functional decomposition we define a

performance model by a collection of parameters. As each of these models must trace to

engineering and test data we need to identify the model producers. Figure 11 OV-3 diagram

describes this representation together with the sources for each component model. The first

three columns identify the levels in a product decomposition used to identify the models.

Column four identifies the model producer. Columns to the right identify the labs that use the

models and their need lines.

 17

AIR SYSTEM ANALYSIS

(MODELING &

SIMULATION) VIF VSIF

Functional Decomposition TIER 2/3 TIER 4/5 JSF Performance Model

SIGNATURE

Aircraft IR Characteristics

IR Temperature Data

Temperature Table (Array)

Engine data

Emissivity

Illumination

IR Source Radiant Intensity

Aircraft RF Data

Radar Cross Section Array

Acoustic Movement Signature

AIR VEHICLE PERFORMANCE

Aircraft Performance Charact.

Aerodynamic Maneuvre

Angle of Attack Table

Lift

Drag

Pitch/Roll/Yaw

Velocity

'G' capabilities

Engine

Aircraft Physical Characteristics

Aircraft Physical Characteristics

Mass

Engine Compressor

Detection Angles

Presented Visual Area

Cockpit Masking Angles

MISSION SYSTEM CAPABILITIES

CNI (Comms/Nav. Integration)

PRODUCERS of MODELING & SIMULATION DATA CONSUMERS of MODELING & SIMULATION DATA

Figure 11: Information Exchange Matrix (OV-3) Organized by Models,

Producers, & Consumers

3.3.5.2 Verification Information Exchange Matrix

When any verification, assessment, or integration process can trace its results to a digital

representation of the product, the product representation is complete for that stage of

development. To determine completeness criteria we are developing Information Exchange

Matrices (OV-3) tailored for verification. Figure 12 is an example a verification Information

Exchange matrix. The matrix is to determine how models are used in verification, when they

are needed, what level of detail and fidelity is required, and what is the authoritative source of

the models. The verification information exchange matrix (OV-3) can be used to identify

risks associated with modelling and simulation. Figure 12 organizes information by

requirement. The top grey row identifies the requirement by name, description, owner of the

requirement and the owner of the verification responsibility.

 18

Customer contact

for this

requirement.

IPT responsible for

ensuring that this

requirement is

verified.

IPT responsible for

ensuring that this

requirement is

tracked.

The text of the

requirement.

When does this

requirement need to be

completed (for the first

applicable Variant)?

How will the customer

know that the results will

be valid?

Of the known Issues with

using the stated Methods,

how were these Issues

addressed?

Requirement

number.

(e.g. 3.2.1.2.3.1)

Describe the

methods used to

resolve the Critical

IssuesProduct Variant

Methods used to

resolve Critical

IssuesCritical Issues

Data sources for

M&S methods

Assurance that these

Critical Issues have

been resolved

Critical Factors for

each Perceived

Issue

Perceived Issues

with effort to resolve

the Critical Issues

Event timeframe

to meet

RequirementCustomer

Verification

owner

Requirement

ownerDescriptionRequirement

Which product variants

does this requirement

apply?

How do you convince the

customer that you can

verify the Requirement

and establish credibility

for the methods used?

The Methods used to

resolve the Critical Issue

related to meeting the JCS

requirement. (e.g. virtual

simulation)

A short description of

how the Method is used

to obtain a result.

Perceived Issues

describe the problems

that could be

encountered when using

the stated Methods to

resolve a Critical Issue.

The particular aspects

that, in total, characterize

the perceived Issues.

Where are the data

sources that are used

to supply data for the

simulation analysis

methods?

Figure 12: Vérification Information Exchange Matrix (OV-3)

The diagram is organized by (the activity of) verification for top level requirements. The

operational nodes, i.e., organizations are first the organization that owns the requirement and

the organization that owns the verification of the requirement, the customer. The when is

covered by the Event timeframe column heading. The information flow that is of interest in

this diagram is information required by the verifying agent of the requirement; not all

information, but the information relevant for critical issues regarding the verification.

 What - information relevant to critical issues regarding a req. verification

 Whom - primary organizational nodes and info suppliers to verifier

 Why - required to support critical issues in verification

 How - not explicitly stated on this form

 When - event timeframe

There are even other similarities with the DoDAF OV-3 template. For example, performance

attributes and information assurance correspond to our column head “issues or risk with effort

to resolve critical issues”. Again let me repeat that much of our work is in designing forms to

get the information needed to build a complete OV-3 or any other picture. When we get all of

the information that we would like to have, then we could put it in a more standard template

form.

 19

3.3.6 Logical Data Model (OV-7)

The information management objective for product development is to (1) provide

authoritative, accurate data for exchange between operational nodes, (2) to characterize

product variants and configurations, and (3) to ensure integrity throughout the chains of data

production from primary engineering data sources. Achieving the management objective

requires identifying exactly what kinds of data need to be exchanged between the

organizational nodes, including the data form, content, and how data depends on and is related

to other data. The kinds of data, the data interrelationships, the form and content, and how the

data relates to the product variants and configurations constitute a model of the data, the

product, and the organizations and processes that produce the data. The DoDAF Logical Data

Model (OV-7) represents the kinds of data exchanged in the system operations.

3.3.6.1 The Role of the Logical Data Model for product development

The purpose of OV-7 in product development is to define the scope and content of the

information to be managed, insure that the data is managed, and that there are standards for

data display and interchange. OV-7 is at the interface between the DoDAF Technical

Architecture View and the System Architecture View. OV-7 places requirements and

constraints on the data authoring and management tools. The logical data model defines what

information is needed to manage and perform technical tasks on a program. If the

information management system can not manage this information then the program will

surely be in trouble. The existence of a good data model and the ability of the information

management system to implement the data model is a good predictive measure of program

effectiveness.

For the operational architecture to be implemented by the system architecture there must be

tools that produce and manage this collection of data. The choice of tools and data

management systems is often made before a program begins and the program’s data

interchange requirement are well understood. The result is that tool’s import and export

formats influence the choice of interchange formats in the Technical Architecture.

3.3.6.2 The scope of the data model

In product development the scope of information to be managed includes work products

produced by requirements analysis, design synthesis, manufacturing, integration and test,

verification, and support activities. The scope is bounded by what information might be

needed to provide traceability for verification, and to understand consequences of design

changes and modifications. Figure 13 illustrates some of the kinds of data exchanged by

product teams during the development process. The kinds of data, or classes of data, include

requirements, use cases, test cases, component designs, and test results. Members of these

classes of data are both produced and consumed by organizational nodes such as Integrated

Product Teams (IPTs). An organizational node responsible for development of a product

component takes as input data about the component and outputs data about the component to

higher level IPT nodes and outputs data about subcomponents to lower level IPTs. An OV-7

for product development includes organizational structures and data associated with nodes in

organizational structures as well as product representations, templates for data produced by

the development process such as requirements analysis, systems analysis, design,

manufacture, integration results, and verification and test results, and data signifying that

program milestone events are completed.

 20

A significant part of the data required for technical management is metadata about work

products such as descriptions of who produced the data and how it was produced. This

metadata is required to establish the authority and integrity of the data. Product data needs to

be identified not only by class, but also by applicability conditions. An applicability

condition identifies which classes of products, or individual products, the data item is

applicable to. For example, the organizational node responsible for the fuel system identifies

which variants of the vehicle specific design components are valid for. Note that the

applicability references of data items are implicit in Figure 13 which identifies what data is

exchanged between nodes. The kind of analysis illustrated in Figure 13 can be used to

produce a data dictionary, and a model that shows containment, uses relationships, and other

dependences between classes of data. Defining the content of the data classes requires

analysis of the activities that produce and consume the work products.

Figure 13: Information Flow in and out of an Integrated Product Team

3.3.6.3 A Product Development Logical Data Model

The construction of such a model is greatly facilitated by the development of the DoDAF

operational view products. The operational information exchange matrix (OV-3) and the

Operational Node Connectivity Description (OV-2) drive the construction of the logical data

model (OV-7). Operational informational exchange matrix (OV-3) establishes the need to

exchange information between different tools used in support of system engineering activities.

 21

3.3.6.4 Representation of the Logical Data Model in a modeling language

OV-7 represents the kinds of data exchanged in systems operations. Many modeling

languages can represent system engineering data concepts such as products, processes, work

breakdown structures, events, and organizations as objects. We have used UML class models

to represent product development logical data models. The UML class model is a good

representation for communication between stakeholders. UML represent objects and classes.

UML objects have attributes, and relationships between objects. Classes describe the

collection of objects that have the same attributes. Each class defines a collection of instances

which are members of the class. Subclasses of a class are defined by constraining attribute

values to be more restrictive. As will be noted in the Technical Architecture section the UML

diagrams are generated from XML schemas. The XML schemas are the master representation

and define the data interchange formats and can be used by a Web-based access system. A

fuller discussion of these topics may be found in Graves, H. & Johnson, C. et al (2004).

In developing a class model for a product development logical data model we have used the

concept of an information resource to describe individual configuration-managed items. For

data management the critical question is what product entity the information resource applies

to. We associate information resource classes with product decomposition classes. An

information resource is associated with the product decomposition objects to which it applies.

The Product Decomposition class is shown as having associated information resources. Each

information resource further has attributes that identify the source of the item and context of

use. Figure 14 is a top level representation of a UML class model for product development.

The diagram shows a top level class, entity, and two classes inheriting from entity, navigation

node and information resource.

Figure 14: A Top Level Product Development Metamodel

 22

Figure 15 is an elaboration of the class structure for a product. A product is described by

decompositions such as the requirements, functional, logical, and physical decompositions in

figure 15. The product class is shown as having associated decompositions. Product

decomposition is a hierarchy of product decomposition objects. Thus, the product

decomposition class is shown as having a child relation. Two product decompositions may

share some objects and not others. For example, radar may occur in both a functional and a

logical decomposition, but there may be no explicit radar object in the physical

decomposition. Product decomposition classes are related by an identification relationship.

Other relationships such as allocation and implementation connect objects of the different

decomposition classes.

Product Decomposition

Functional

Decomposition
Physical

Decomposition

Requirements

Decomposition

Requirements

Decomposition

specialization

Logical

Decomposition

Information

Resource

association

containment

identity identity identity

allocates allocates implements

Figure 15: A Class Model for Product Decompositions

3.4 Systems Architecture

The success criteria for a product development system in its most simple form is that

developers have access to the data that they need, when they need it, in the form that they

need it, and have assurance that the data is accurate. In addition privacy and security criteria

dictate that data is only available to individuals with authorized access. For product

development the adverse impact of the information technology part of the collaborative

environment failing to meet the success criteria is often underestimated. Product developers

reason that they can do their jobs and disconnects in the information technology infrastructure

will only impact their work with minor inefficiencies. “If I need data that I don’t have, I can

simply call or email the right person and get it.” The real situation is often more like a pilot

flying on instruments where the instruments are giving incomplete and perhaps even

 23

inaccurate data. Product development for complex systems has no alternative to instrument

flying. While one may know the person who owns the data required finding the right

individual is not always easy. Even more serious is that since data is generally dependent on

someone else’s data and often the owner may not know that the sources his data depends on

may have changed, the result is that there is no accurate, coherent baseline for product data.

How does this situation arise and what can be done about it? At the heart the problem is

caused by an ill defined logical data model which then has an ill defined physical realization.

The physical realization of the logical model does not account for the fact that data is

produced by multiple tools in inconsistent formats with overlapping content. Consistency

checking is primarily a manual operation. Requiring data to be centrally configuration

managed does not in itself guarantee that the data is consistent. A good operations model

should determine access and query requirements for the system model. Often the issue with

satisfying data model requirements stems from not adequately capturing the requirements.

The DoDAF Systems Architecture describes the networks, facilities, tools, and functions that

perform the information exchange and processing which implement the Operations Views.

The primary reason for analysis and modeling of the collaborative environment is to

determine if it can be used to implement the operations architecture in an effective way. The

Systems Architecture can be used to collect the information needed to construct the product

development system model (collaborative environment). The Systems View differs from the

Operations View in the systems products focus on specific, physical systems. DoDAF

specifies a number of products for the Systems View. For product development the Systems

Architecture is the program’s collaborative environment.

3.4.1 The information stack

The areas of concern for system architecture are naturally layered: with network connectivity

on the bottom, then data transfer and transaction protocols, and finally semantic

interoperability on top. Figure 16 illustrates this stack. The most difficult and unique

interoperability issues for product development are semantic interoperability and our

examples will focus on this. The semantic interoperability issues are the ability to implement

a data model sufficient to support the operational information needs of the organizational

nodes. For the most part mature organizations have the network connectivity and ability to

share data between nodes. The one place where this capability is sometimes problematic is in

providing controlled access where security and control of access privileges make data sharing

difficult.

 24

Figure 16: The System Information Stack

3.4.2 Integration Testing Examples

The examples on System Architecture in this paper focus mainly on labs used for integration

testing. Integration testing spans the product development process after design and

manufacture and before verification. System components are tested as units, integrated into

larger assemblies which are tested, leading to integration and testing of the end product. In

modern product development modelling and simulation play a significant role in this phase of

product development. System components are often designed and developed as a series of

models before the components are physically constructed. As a component is modelled and

then constructed it is tested in integration labs through operation within simulated

environments. A simulated environment contains models of other product components and

models of the component under test’s operating environment.

The systems view for Integration testing describes the equipment, network interconnections,

and the functionality used for integration testing. The DoDAF System views help in

analysing the maturity of the integration and test facilities to perform their job and help with

measuring progress toward completion of integration testing activities. Figure 17 illustrates a

systems view of the labs involved in integration and testing and verification for an air system.

 25

Figure 17: Labs Used For Integration Testing

The Systems View of the labs describes the equipment, network interconnections, and the

functionality used for simulation tasks. Figure 17 illustrates the collection of labs used for

integration testing as partitioned into mechanical, mission, operational, and support concerns

that reflect basic product requirements.

3.4.2.1 Success Criteria vs. Lab Maturity

Integration testing maturity success criteria for an air system can be defined in terms of

certification for flight. Certification for flight depends on qualification of components and

integration and qualification of components into subsystems. Progress toward certification

can be measured as a function of completion of qualifications leading to certification for

flight. Qualifications are dependent on other qualifications and precedence relations can be

used to define critical paths among the integration activities. The maturity of labs can be

assessed in terms of their readiness to perform qualifications.

3.4.3 Systems Interface Description (SV-1)

The Systems Interface Description (SV-1) identifies systems nodes and the interfaces between

the nodes. For product integration testing the nodes are the labs. There are several kinds of

interfaces between the labs. Both data to initialize models, models and hardware are

transferred or shared between labs and there may be distributed simulation interconnection.

Figure 18 is a schematic illustration of the nodes (labs) and interfaces between nodes required

for the test and integration phase of product development.

 26

Figure 18: Identification of Labs and interfaces between the Labs

The sequence of overlapping arrows at the bottom of the diagram illustrate critical milestones

(need lines) starting with prototyping and trade studies and ending with flight test support.

The block arrows above form a tree with root at flight test support. The activities of multiple

labs flow through interfaces to support flight test. In Figure 18 the yellow arrows connecting

the block arrows represent both network connections for data flow and in some cases,

interconnections between simulation systems.

3.4.4 Systems Functionality Description (SV-4)

Collaborative environment functionality focuses on the availability of product data to support

design, assessment, and to provide traceability of results. The Systems Functionality

Description (SV-4) product documents systems function hierarchies, and the data flows

between them. The primary purpose of the Systems Functionality Description product is to (a)

develop a description of the necessary information flows that are required by and output from

each system, (b) ensure that the functional connectivity is complete, and (c) ensure that the

functional decomposition is to an appropriate level of detail. The SV-4 product focuses on

describing the flow of data among system functions and is the system view counterpart to the

OV-5 Operational Activity Description.

Producing the data that a developer requires often involves accessing and combining data

from multiple sources. Figure 19 illustrates four organizational roles: administrator,

 27

producer, consumer, and examiner and some of the functions required for interaction with the

collaborative environment.

Review data &
metadata

Register data

Author metadata

View data & metadata

Assess & mark (in
metadata)

Consumers : Enterprise,
others

Analyses and
testing

Analyses and
testing

Technology
development

Technology
development

Product

Information

Management

System

External
references
(e.g., Intel
Centers)

External
references
(e.g., Intel
Centers)

View data & metadata

Download & use data

Implement privileges

Provide training and
technical support

Administrator: Enterprise,
IPTs, others

Examiners : VV&A Action
Team, others

Producers : Designers,
analysts, testers

Figure 19: System functionality for modelling and simulation data access and

registration

The designer of a product subsystem needs visibility and access to all technical documents

(test reports, analysis documents, specs…) relating to the system that the designer is working

on. The full view of a particular subsystem is needed to determine potential impacts, when

any of information changes. In addition, the designer needs visibility into requirements,

design, build, and qualification documentation for each product configuration. At a program

level a Critical Design Review (CDR) event the success criteria might be to have all of the

build-to-packages and supplier produced component integration models complete. Later this

information is used to status design and certification at key points in time, e.g. first flight. In

addition to the producers, managers and control boards need to review and signoff on design

and analysis results. The engineer charged with signing off on a result wants to know how it

was produced, who produced it, what tools and processes were used to produce the result.

The engineer may want to trace the linage of a result back to detailed engineering data. Data

is authoritative if its context of applicability is identified and its source is identified as coming

from the responsible organization. These are all requirements that the system architecture

implementation must address.

 28

3.5 Technical Architecture

The DoDAF Technical Architecture is the collection of technical standards used for

interoperability at each of the different levels of the system interoperability stack (see Figure

16). The Technical Architecture provides the bridge between the Operations Model and the

System Model in that the technical architecture provides a syntax that implements the data

operations in the system model. For product development technical standards encompass

interoperability at the transport level, the transaction level (authentication, registration of

data), and at the application level for searching and formatting data. In our experience we

have found transport standards are usually in place. As collaborative environments evolves to

meet operational requirements for user authentication and single sign on for network and

database access emerging standards will be adopted for these protocols. Much of our current

work is focused on data interchange standards. Data interchange standards is the area

addressed by AP233. Their approach has been to produce interchange standards and

encourage tool vendors to support these standards. The success of this effort has been mixed

and so the use of AP233 standards is limited by tool support.

3.5.1 Data Interchange Standards

Each tool used in the physical model produces or consumes data that is part of the logical data

model. The existence of a well defined translation between data formats and semantics of

data producing and consuming tools is evidence of maturity. For a translation to be well

defined does not require that the translation be automated to be repeatable. According to the

general system complexity argument point-to-point translations are more complex and hence

costly to maintain than translation into a universal format with a translator from-to each

specific tool format. In practice where point-to-point translations exist there may be no

compelling business case to change to a universal format.

The data model illustrated in Figure 13 specifies the scope of product information that is

needed for interchange between tools and individual developers. The model is influenced by

AP233; however, its primary concern is to reflect the actual products being developed on the

particular program. As we have indicted much of the data to be managed that needs to be

managed is metadata about authoring tool produced data files and documents such as release

authorization notices that signify conclusion of events. Currently there are no standards for

metadata or program technical documents. The data model described in Figure 14 can be

converted into XML schemas to provide data interchange standards. By making proper

correspondences between UML class constructions and XML schema constructions modeling

tools can automatically translate between UML class diagrams and XML schemas. Further,

the UML data model is generated from XML schemas. Each class of the data model is

represented by an XML schema. The class schema defines a collection of named class

attributes and each class attribute has a value type. An XML file that is validated by the

schema is an instance of the class. New classes can be defined by inheriting properties from

other classes.

3.5.2 Web-based Standards

Our group has been a strong advocate of using Web-based standards for transaction protocols

and data interchange standards. Where Web-based standards exist they satisfy the criteria for

openness and Web technology lends itself to extensibility and flexibility. Web standards

developed by industry and academics enable machine-to-machine communication, enabling a

 29

new level of computer-mediated automation. Web standards permit the evolution of the

technical architecture while minimizing programming costs. Web standards use XML as the

underlying machine-readable format. XML is a text-based language tailored for data

representation that has extensive commercial support. XML works well for expressing data

interchange standards. The emerging web service protocol standards work well for

communication between system nodes. Web services use HTTP transport protocol and the

Simple Object Access Protocol (SOAP) for transactions. SOAP provides a standard format

for transaction requests. Other standards such as the Security Assertion Markup Language

(SAML) are embeddable inside SOAP messages to represent specific kinds of transactions.

3.5.3 An Information Management Architecture

Commercial off the shelf (COTS) tools can be integrated to produce product development

information management systems that make use of enterprise models. Web-technology

provides the capability to integrate component product data management systems to satisfy

information management requirements. An architecture for authoritative information system

is described in Graves, Hollenbach & Barnhart (2003). Figure 20 shows a Web-portal that is

intermediary between the database systems where data is stored and the desktop web-

browsers that host a Graphical User Interface (GUI). This architecture is configured with the

Information Model shown in the light blue. Users register, access, and update data in the

databases using the GUI. Figure 20 shows the top level architecture of a Web-based system

to register and access product data. The architecture uses a model to organize product data.

The model is used to configure the system and provide a mechanism to locate and access

product data. The configuration of the information access system includes not only the model

that provides the organization for the data, but where the data is actually located and how to

access the data from a specific repository. The model contains entities that represent products

and product components as well as organizations, tools, and processes. Data is associated

with the entities in the model. Product data is updated on a daily basis. The model is updated

less frequently, but it is updated as the design structure changes and requirements for data

management change. The approach of configuring an information access system with a

model allows rapid, cost-effective evolution of system capabilities. The approach of

configuring an information access system with an information model allows rapid, cost-

effective evolution of system capabilities.

 30

4 Measuring Enterprise Maturity

The premise of this paper is that the maturity of product development effort can be correlated

with the capability to provide accurate, authoritative data in the form needed when required.

To satisfying the information requirements they must be well understood, explicitly stated,

and then implemented by the collaborative environment. Enterprise maturity can be gauged

in terms of the development and analysis of the product development operations architecture.

Further, constructing operational models is the best way to capture operational requirements.

Constructing a realistic operational model is a difficult task as it is difficult to collect the

information needed to construct a good model. The DoDAF work products are particularly

useful in collecting the information needed to construct operational models. If an

organization has gone to the trouble to develop such work products it is in a much better

position to understand the operational requirements and provide a roadmap to satisfy the

requirements.

Modeling product development operations, using the model to derive information technology

requirements, and mapping the requirements on the system (physical) implementation is an

indicator of enterprise maturity. The work products produced as part of this analysis process

can be used to establish metrics to measure product development maturity and predict

success. Our overall conclusion is that DoDAF is an extremely effective tool for product

development analysis. The DoDAF products have been used to develop information models,

determine who produces what data, where data comes from, and need dates. Developing the

Figure 20: A Web-based System for Product Information

 31

DoDAF architecture view products allowed us to pinpoint deficiencies and gaps that

otherwise would have been hard to understand.

4.1 DoDAF products can be used to measure capability maturity

As is well known, obtaining quantifiable measures that accurately predict risk of cost and

schedule slippage, and technical integrity issues is difficult. The use by a program of DoDAF

to analyse product development is in itself a measure of program technical maturity. Ideally

the analysis described here should be performed before a program starts. Acquisition

agencies could request the DoDAF products, e.g., the enterprise models, analysis and plans

for infrastructure as a precondition for program award. The DoDAF products serve as

evidence that the product development system has been adequately thought out and plans are

in place to bring the system in compliance with requirements. The most critical questions

concerning program maturity assessment can be answered by reviewing the logical data

model, the activity model, and the mapping of the logical model onto the physical model.

4.2 Lessons Learned

The gaps and discrepancies that we have encountered result primarily because incompleteness

of the operational model leads to incompleteness in the physical collaborative infrastructure

required to realize the operational model. Many organizations do not have a collaborative

information technology environment; rather they have network connectivity and a collection

of unintegrated tools and processes. In fact many organizations do not explicitly recognize

the need for collaborative infrastructure beyond tools and processes. Operational View use

cases identify network connectivity requirements, as well as, access control and the need for

mechanisms to segregate data for privacy and security. Use cases also identify needs to

combine data from multiple sources. The result is that with only a manual ability to access

and combine data from multiple databases an immense amount of time can be spent finding

and reformatting data produced by one tool for use in another tool. The analysis of why such

situations occur gives insight into how to fix the problems. Not all of the causes are related

the collaborative environment deficiencies. Some of the causes result from insufficient

planning to produce data, unclear roles and responsibilities, and unclear policies.

4.3 Conclusion

In the course of performing the kind of analysis described in the paper it has become clear that

product development enterprise modeling can be integrated into the enterprise information

management system and serve as a tool for managing technical progress and hence controlling

the development process. For example, development activities can be represented with their

input and output conditions with state descriptions of progress. The activity state descriptions

are directly interpreted within the system by the existence of documentation of exit criteria

having been met.

5 References
Department of Defense Architecture Framework Working Group, Department of

Defense Architecture Framework, Volume 1, February 2004.

Graves, H., Hollenbach, J. & Barnhart M., (2003) JSF Authoritative Modelling

Information System (JAMIS) Architecture (03S-SIW-040) Simulation Interoperability

Workshop, September 2003.

 32

Graves, H. & Johnson, C.., et al (2004) Managing Product Development Information

to Ensure Data Integrity, Simulation Interoperability Workshop, September 2004.

Hollenbach, J. & Hartnett, R. (2000) The Joint Strike Fighter (JSF) Distributed

Product Description (00F-SIW-077), Simulation Interoperability Workshop,

September 2000.

Hollenbach, J. Bishop, S. & Graves, H. (2002), JSF Modelling Information

Management, (02F-SIW-080). Simulation Interoperability Workshop, September

2002.

Scrudder, R. & Graves, H., et al (2003) The Critical Role of Metadata in JSF

Development, (03F-SIW-097) Simulation Interoperability Workshop, April 2003.

