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Outline 

  Thirty	Meter	Telescope	(TMT)		
 Project	overview	

 Why	MBSE?		
 TMT	applica;on	

  Telescope	Modeling	Challenge	Team		
 Organiza;on	and	goals	
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Complexity of TMT 

  The	Thirty	Meter	Telescope	(TMT)	is	no	different	than	
other	complex	systems	of	systems	

	

  We	s;ll	need	to	apply	core	SE	processes		
  Difference:	telescope	community	is	historically	unfamiliar	
with	formal	Systems	Engineering	
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TMT Key Science 

  Nature	and	composi;on	of	the	Universe	
  Forma;on	of	the	first	stars	and	galaxies	
  Evolu;on	of	galaxies	
  Rela;onship	between	black	holes	and	their	galaxies	
  Forma;on	of	stars	and	planets	
  Nature	of	extra-solar	planets	
  Poten;al	of	life	elsewhere	in	the	Universe	
  Unforeseen	discoveries…	
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TMT Project 

  TMT	Project	formed	in	2004	
  TMT	interna;onal	partnership	grew	

  US	(Caltech	&	UC),	Canada,	China,	
India,	Japan	

  2004	–	2008	site	studies	
  Chile,	Mexico,	Hawaii	

  Mauna	Kea,	Hawaii	selected	in	2009	

  2014	start	of	TMT	Construc;on	
Phase	
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TMT Site 

  Preferred	site:		
  Mauna	Kea	on	the	Big	Island	
of	Hawaii,	United	States	

  Alternate	site:	
  Observatorio	del	Roque	de	los	
Muchachos	(ORM)	on	La	Palma	
in	the	Canary	Islands,	Spain	
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TMT Enclosure 

  Calo`e	design	
  Azimuth	rota;on	on	fixed	
base	ring	

  Rota;on	of	cap	structure	on	
;lted	bearing	ring	

	

  Aerodynamic	design	minimizes	degrada;on	
image	quality	due	to	air	turbulence	and	
thermal	influences	
  Smooth	exterior	
  Minimal	size	aperture	
  Aperture	flaps	
  Ven;la;on	doors	
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TMT Structure 

  Eleva;on	structure	
  Moun;ng	support	for	op;cs	and	
laser	guide	star	facility	

  Azimuth	structure	
  Supports	eleva;on	structure	and	
2	large	Nasmyth	placorms	for	
instruments	and	AO	systems	

  Elevators,	stairs,	walkways,	and	
all	u;lity	lines	
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TMT Optics 

  3x	larger,	9x	more	powerful	
than	today’s	best	telescopes	

  Ritchey-Chré;en	design	
  Segmented	primary	mirror	(M1)	

  492	segments,	<	2	m	across	
  Collects/concentrates	light	

  Secondary	mirror	(M2)	
  Works	with	M1	to	form	well-
corrected	focus	

  Ter;ary	mirror	(M3)	
  Steers	light	to	adap;ve	op;cs	
system	and	science	instruments	
on	Nasmyth	placorms	
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Primary Mirror (M1) 

  Segmented	primary	mirror	
  492	hexagonal	segments	
  1.44	m	across	corners	
  2.5	mm	gaps	(0.1	in,	0.6%	lost	area)	
  Thin	glass	(~2	in)	reduces	mass	and	
thermal	iner;a	

  Reduces	difficul;es:	
  Fabrica;on	
  Tes;ng	
  Transporta;on	

  Reduces	risks:	
  Breakage	of	single	segment	is	less	
catastrophic	

  Moderate	cost	and	complexity	
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Secondary and Tertiary Mirrors  
(M2 and M3) 

  Secondary	Mirror	(M2)	
  3.1	m	convex	hyperboloid	mirror	
  Mounted	to	telescope	top	end	

  Ter;ary	Mirror	(M3)	
  2.5	m	x	3.5	m	flat	steerable	mirror	
  Rotates	and	;lts	to	deliver	image	to	
instruments	on	Nasmyth	placorms	

  China	(CIOMP)	is	responsible	for	
design	and	fabrica;on	
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Segmented Mirror Control 

  Segmented	M1	must	perform	like	a	single,	smooth	mirror	to	
provide	op;mal	image	quality	

Coaligning:	stacking	images	produced	by	each	segment	to	form	single	image	
Cofocusing:	focal	lengths	of	individual	segments	are	equal	
Cophasing:	no	discon;nui;es	between	edges	of	neighboring	segments	

  If	not	phased,	image	quality	=	that	of	individual	segment	

PSF	
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Alignment and Phasing System 
(APS) 

  Alignment	and	diagnos;c	
instrument	located	on	a	Nasmyth	
placorm		
  Modified	Shack-Hartmann	
wavefront	sensor	
  Responsible	for	pre-adap;ve	
op;cs	wavefront	quality	
  Uses	starlight	to	measure	
wavefront	errors	and	determine	
commands	to	send	for	aligning	
op;cs	
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TMT Controls/Software 

  Responsible	for	30,000	I/O	channels,	12,000	controlled	DOF	
  Telescope	Control	System	

  Synchroniza;on	of	subsystems	comprising	wavefront	control	capability	
  Sopware	architecture	with	5	func;onali;es	
  Communica;on	flow	by	events/commands	between	systems	
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Software Block Diagram 



17 TMT.SEN.PRE.17.022.DRF01 

Observing Mode Oriented Architecture 
(Control System Structure View) 
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TMT Adaptive Optics (AO) 

  Cancel	blurring	effects	of	atmosphere	
to	obtain	op;mal	image	quality	
Wavefront	sensing	and	correc;on	
  Measures	distor;ons	to	be	nulled	
  Requires	a	bright	“guide	star”	or	point	
source	near	science	target	

  Laser	system	to	generate	ar;ficial	
guide	stars	
  2	deformable	mirrors	correct	
wavefront	errors	

  Corrected	wavefront	is	directed	to	
science	instruments	

	

t
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TMT Instruments 

  Powerful	suite	of	8	instruments	to	solve	key	science	objec;ves	
by	exploring	wide	astronomical	terrain	

  3	first	light	instruments	
  Wide	Field	Op;cal	Spectrometer	(WFOS)	
InfraRed	Imaging	Spectrometer	(IRIS)	
InfraRed	Mul;-object	Spectrometer	(IRMS)	
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MBSE: TMT Application 

  Why	MBSE?		
  Emphasizes	rigor	and	precision,	best	prac;ces	
  Helps	manage	complexity	
  Horizontal	(life	cycle)	and	ver;cal	(mul;ple	domain)	integra;on		

  TMT	SysML	model	
  Created	to	be`er	understand	and	communicate	complex	system	behavior	
  Executable	SysML	model	to	capture	requirements,	use	cases,	system	
decomposi;on,	subsystem	rela;onships	
  Analyze	system	design	against	power,	mass,	dura;on	requirements	
  Produce	engineering	documents	(ICDs,	etc.)	
  Use	standard	language	and	techniques	(communica7on)	
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Solution: Hybrid Approach  

  Tradi;onal	SE	
  Clear,	defined	deliverables	
  Easily	accessible	
  Shallow	learning	curve	
  Simple	traceability	

  MBSE	
  Understanding	behaviors	of	
a	system	
  “Rich”	capability	to	
represent	complex	systems	

Exploit	the	advantages	of	each	approach	
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MBSE: TMT Application 

  TMT	SysML	Model	does	not	model	the	en;re	telescope	
  Main	objec;ve	is	to	model	opera;onal	scenarios	and	
demonstrate	that	requirements	are	sa;sfied	by	the	design	
  Mo;vator	for	TMT	MBSE	=	op;miza;on	
  Ex:	JPL	modeling	of	APS	subsystem	

  Use	Case:	Post	segment-exchange	alignment,	2h	requirement	
  Component	characteris;cs	(power,	mass)	
  Rela;onships	(TCS,	M1CS)	

  Ex:	Monte	Carlo	simula;ons	for	acquisi;on	and	slew	;me	
  To	minimize	loss	of	observing	;me,	TMT	should	be	able	to	move	from	
one	target	to	another	and	acquire	it	in	3	min	or	less	
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Telescope Modeling Challenge Team 

  Formalized	SE	prac;ces	are	“new”	to	the	telescope	community	
  Challenge	team	will	be	inves;ga;ng	applicability	of	MBSE	to	
specify,	design,	analyze,	and	verify	telescope	systems	
  New	revision	of	Cookbook	for	MBSE	with	SysML	

  Best	prac;ces	to	support	common	SE	tasks	
  Lessons	learned	

SEBoK	TMT	Case	Study	for	Fall	2017	publica;on	
  Collabora;on	in	telescope	community	

  MBSE	Telescope	Workshop	II,	April	2017	
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