
OSLC Adapter for the Functional-Mockup-Interface

Hubertus Tummescheit Modelon

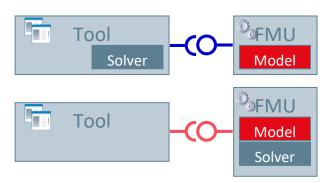
Overview

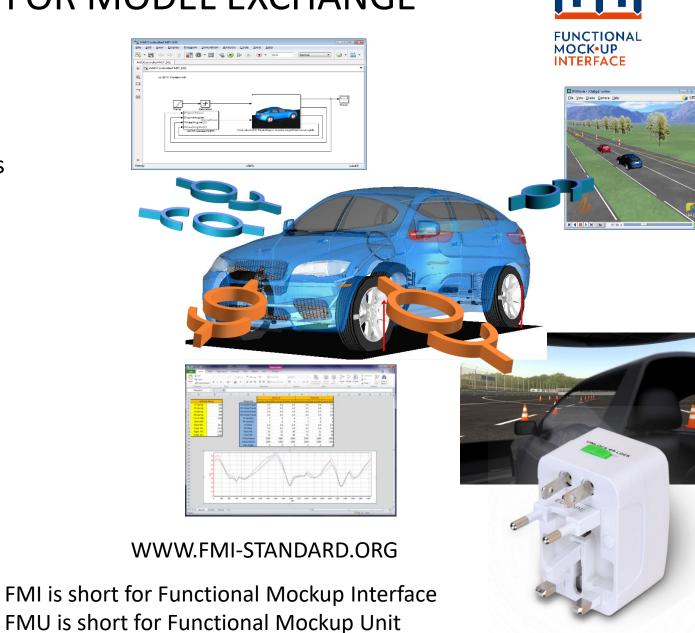
- Motivation
- FMI brief recapitulation
- FMI-OSLC adapter architecture
- What can be done?

Motivation: Automated Requirements Verification

Development of a customized workflow to allow rapid iterations of plant & software configuration

OSLC adapter to connect results to triple-store in RDF format


FMI: THE OPEN STANDARD FOR MODEL EXCHANGE

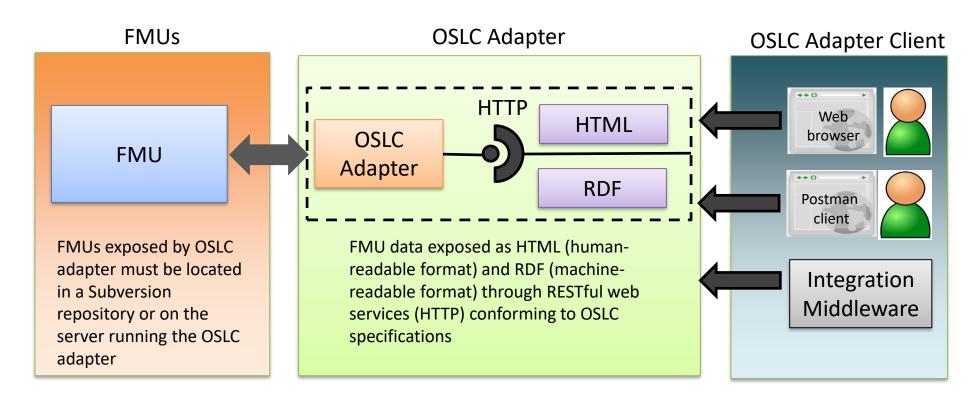

FMI® is:

- Tool independent standard for model exchange and co-simulation
- Currently supported by more than 95 tools
- Strong support from automotive industry

FMI® enables:

- Model-sharing and IP protection
- Deployment in different applications
- Streamlined tool connectivity

FMU: A MODEL WITH STANDARD INTERFACE


- A component which implements the FMI standard is called <u>Functional Mockup Unit (FMU)</u>
- Separation of
 - Description of interface data (XML file)
 - Functionality (C code or binary)
- A FMU is a zipped file (*.fmu) containing the XML description file and the implementation in source or binary form
- Additional data and functionality can be included
- Information & Interface specification: www.fmi-standard.org
- The OSLC adapter interacts with the xml part of the fmu.

FMU

fmu.dll: an executable model (or c-code)

model.xml: data and meta-data about the model

Architecture of FMI OSLC Adapter

The OSLC adapter can perform both GET (for everything) and UPDATE (where applicable) operations on the FMU

Main building blocks: FMI-Library by Modelon and OSLC4J by Koneksys

Example output from FMU ModelDescription in html

FMI2.0_ME_ControlledTemperatureIO.fmu

This document:

http://localhost:8686/oslc4jfmi/services/FMI2.0 ME ControlledTemperatureIO/ModelDescription

Nested OSLC resources

DefaultExperiment
ModelExchange
CoSimulation
ModelVariables
UnitDefinitions
TypeDefinitions
VendorAnnotations

Attributes

 FmuPath
 conf\fmi\fmu\FMI_2.0_CS_ControlledTemperatureIO.fmu

 TmpPath
 conf\fmi\temp\FMI_2.0_CS_ControlledTemperatureIO.fmu

FmiVersion 2.0

ModelName ControlledTemperatureIO

Guid {7f4e9e78-51f2-4363-9052-d5ab91a16b05}

Description Control temperature of a resistor

Author

Version

Copyright License

Kind ModelExchange

GenerationTool Dymola Version 2016 (32-bit), 2015-04-15

GenerationDateAndTime 2016-07-13T12:50:19Z

VariableNamingConvention null
NumberOfContinuousStates 1
NumberOfEventIndicators 6

List of FMI Resource shapes

FMI Resource Shapes

This document: http://localhost:8686/oslc4jfmi/services/resourceShapes

Adapter Publisher: modelon

Adapter Identity: com, modelon, oslc

Enumeration Resource Shape BaseUnitDefinition Resource Shape

Scalar Variable Resource Shape Vendor Tool Resource Shape

ScalarVariableType Resource Shape TypeDef Resource Shape

ModelStructure Resource Shape

InitialUnknown Resource Shape

CoSimulation Resource Shape ListingDirectDependency Resource Shape

ModelVariables Resource Shape Output Resource Shape

BaseUnit Resource Shape Derivative Resource Shape

Annotation Resource Shape ModelDescription Resource Shape

FMU Resource Shape SourceFile Resource Shape

DefaultExperiment Resource Shape

VendorAnnotation Resource Shape

TypeDefinition Resource Shape ModelExchange Resource Shape

ListingAlias Resource Shape
UnitDefinition Resource Shape

More information

- Code and documentation: https://github.com/ld4mbse/oslc-adapter-fmi
- Presentation from INCOSE IW 2017:
 http://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbs
 e:procter modelon trc incose iw 2017.pdf
- Short blog article about motivation:
 http://www.modelon.com/blog/articles/integrating executable-requirements-to-accelerate-design-iterations/