Integrating Finite Element Analysis with Systems Engineering Models

• KONEKSYS – Jerome Szarazi, Axel Reichwein July 26, 2016

This work was performed under the following financial assistance award NIST Grant 2014-NIST-MSE-01 from U.S. Department of Commerce, National Institute of Standards and Technology (U.S. NIST contact: Conrad Bock)

Outline

- Introduction and motivation
- Challenges in FEA standardization
- New proposed FE mathematics description
- Validation
- Next steps and summary

Outline

- Introduction and motivation
- Challenges in FEA standardization
- New proposed FE mathematics description
- Validation
- Next steps and summary

Integration between Systems Engineering and FEA

Motivation: Communication and archiving

Cross-disciplinary communication

Defining concepts

Are my requirements validated?

What do you want me to simulate?

Archiving and reuse

What has been simulated?

Can I reuse the simulation?

nafems.org/americas

Motivation: traceability and impact analysis

Requirement traceability

Impact analysis

CUSTOMIZATION PROCESS REQUEST CHANGE SYSTEM Manufacturing DESIGN ENGINEERING System Engineering Design properties Availability FEA Part Manufacturing (PA) Lifetime Safety PA – process step1 Safety margin performance PA – process step2 Mass PA - process step..... TRACEABILITY Material IMPACT ANALYSIS

e.g. Customization request

e.g. Cost reduction program...

Motivation: Tool interoperability

The challenge

Many Artifacts

Custom code

Multiphysics

FEA is complex

The requirement to success

SysML – Standard for Systems Engineering

- SysML: Systems Modeling Language
- Defined by the OMG as standard in 2007
- Widely adopted for Model-Based Systems Engineering (MBSE)
- Current version: 1.4 (2015)

Ko∩eksys

FEA-related Standards

AP209 (v2014)-based FEA model description

Ref: ISO 10303-209:2014(E) - Application protocol: Multidisciplinary analysis and design

Impact of missing FEA standard

- Interoperability is compromised
- Impact on reusability (custom code)
- communication between system and FEA engineers is not efficient
- No open-standard

nafems.org/americas

Outline

- Introduction and motivation
- Challenges in FEA standardization
- New proposed FE mathematics description
- Validation
- Next steps and summary

Challenge 1: Capturing model information

Structural Analysis Analysis Types Static	Non exhaustive list	FEA	Thermal Analysis Analysis Types Steady state Transient
Modal Buckling (linear) Buckling (nonlinear) Transient Spectrum	UNRT - 2-D Spin BLAM3 - 2-D Elartic Beam BEAM4 - 3-D Elartic Beam SOLIDS - 3-D Coupled -Reld Solid COMBN7 - Revolute Joint UNRE - 3-D Spin	library <u>Electromagnetic</u> AC conduction	Electromagnetics – Low Frequency Electrostatics AC conduction
Harmonic Random vibration Substructuring PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	UNION - Tension-only or Compression-only Spart PLANETS - 2-D Coupled-Hand Solid COMUNIA - Spring-Damper PDE In - Elastic Steaght Rige PDE In - Elastic Steaght Rige PDE In - Elastic Convet Rige (Elbow) PDE IN - Elastic Convet Rige (Elbow) PDE IN - Elastic Convet Rige (Elbow) PDE IN - Elastic Straight Rige MASSI - Structural Mass ELANDS - 2-D Plantic Beam BLANDS - 2-D Plantic Beam BLANDS - 2-D Plantic Beam PLANDS - 2-D Plantic Beam BLANDS - Shoal A Anymmetric - Harmonic Structural Solid SHELLE - Sheart Whitt Panel COMBH39 - Northane Shell	Fluid Dynamics Modeling Capabilities Variety of Inlet and out Steady-state flow Transient flow 2-D flow (dedicated sol 2-D flow (dedicated sol 3-D flow Time-dependent bounda Incompressible flow Compressible flow Compressible flow Natural convection Fan model	DC conduction DC insulator field Magnetostatics Adaptive field mesh AC harmonic magnetic AC harmonic electric Electric transient Ion optics Magnetic Transient Rigid motion visualization Translational motion
	PLANE42 - 2-0 Structural Solid BEAM44 - 3-0 Tapered Uncymmetric Beam SOLID45 - 3-0 Structural Solid		

Ref: Ansys capabilities overview

Problem of encoding one model

The method: decomposition and reuse

Start with the definition of finite element mathematics

Challenge 2: Describing finite element mathematics

Literature names are not descriptive

Difficult to create an ontology

Logg A. et Al., Automated solution of differential equation by the finite element method, 2012, Springer Logg A., Arnold D., periodic table of finite elements, 2014, Siam News

Removing ambiguity?

1 finite element

Many Names

Linear simplex Linear triangle Linear Lagrange element...

1 Reference

Outline

- Introduction and motivation
- Challenges in FEA standardization
- New proposed FE mathematics description
- Validation
- Next steps and summary

Ciarlet's definition of FE mathematics

New FE mathematics description: Assigning requirements to the geometry

Polynomial basis dictionary

A polynomial is composed of monomials

Monomials can be ordered in a dictionary

Graded Lexicographic ordering $1 < y < x < y^2 < xy < x^2 < y^3 < x^2y \dots$ 1 = 2 1 = 3

Encoding FE mathematics

Custom code

This specification provides non ambiguous information for code implementation

Reusing the new FE description for physics

•
$$C_0(\Omega) = [\{PE; 1\}]$$

• D1-0-1

• line

•
$$C_0(\Omega) = [\{PE; 1\}]$$

- D1-0-1
- Temperature
- Type: Scalar

- line
- $C_0(\Omega) = [\{PE; 1\}]$
- D1-0-1
- Displacement
- Type: Vector

Reusing the new FE specification for geometry description

•
$$C_1(\Omega) = [\{PE; 1\}]$$

•
$$C_0(\Omega) = [\{PE; 1\}]$$

• D1-1-2-3

REUSE

In a Cartesian coord. system

•
$$C_1(\Omega) = [\{PE; 1\}]$$

•
$$C_0(\Omega) = [\{PE; 1\}]$$

- D1-1-2-3
- **Dimension: 2** •
- **Type:** Cartesian

Merging information to describe parametric finite elements

MERGE

PHYSICS

- line
- $C_0(\Omega) = [\{PE; 1\}]$

e.g. temperature

- D1-0-1
- Temperature
- Type: Scalar

GEOMETRY

• Line

• $C_1(\Omega) = [\{PE; 1\}]$

geometry

- $C_0(\Omega) = [\{PE; 1\}]$
- D1-1-2-3
- Dimension: 2
- Type: Cartesian

Next step of our work: Specifying the FEA model

Use the same principle: Decomposition for reusability

Many physics use the same computational model...to be continued...

Ko∩eksys

Unifying assembly process

Numerical model description

Ref: M. S. Alnæs, A. Logg, K.-A. Mardal, O. Skavhaug, and H. P. Langtangen (2008) 'Unified Framework for Finite Element Assembly'.

Problem classification

Using SysML for model description: Example of domain sub-classing

Example domain sub-classing by material properties

Remove ambiguity of software specific vocabulary

Example of Dirichlet boundary conditions for axial elastostatic problems

Reconcile vocabulary of input deck files

1D problem – vector is a scalar

2 combinations

u=0 (fixed, pin, wall) or u=free

2D problem – vector has 2 components. 4 combinations ux=0 and uy=0 (*vocab: fixed, pin, wall...*) ux=free and uy=0 (*vocab: roller, guide...*)

ux=0 and uy=free (*vocab: roller, guide...*) ux=free and uy=free (*vocab: planar...*)

Model reuse and connectivity

Outline

- Introduction and motivation
- Challenges in FEA standardization
- New proposed FE mathematics description
- Validation
- Next steps and summary

Python code to validate FE mathematics spec

- Model FEA specification in SysML
- FEA code to test the new proposed FEA spec
- FEA implemented in Python using object oriented concepts
- Using symbolic equations for interoperability
- integration with open source FreeCAD
- Code available on GitHub: <u>https://github.com/koneksys/KFE/</u>

Translating FE description into SysML

New FE-description

nafems.org/americas

Code interoperability

Information aggregation

Aggregation of finite element information in a single python object

Name: T1 element

- triangle
- $C_1(\Omega) = [\emptyset]$
- $C_0(\Omega) = [\{PE; 1\}, \{FD; 1\}]$

- self = {Femesh} < __main__.Femesh object at 0x04B38090>
- - 0 = {Vertice} < __main_.Vertice object at 0x04B38030>
 - iii coordinates = {list} [0, 0]
 - Image: Section 12 and Section 12
 - ▶ 👌 index = {list} [0]
 - I = {Vertice} < __main__.Vertice object at 0x04B380B0>
 - ▶ 🔚 coordinates = {list} [0, 1]
 - funreq = {list} [<Doftype.pointevaluation: 1>, <Doftype.firstderivative: 2>]
 - ▶ 昌 index = {list} [1]
 - 2 = {Vertice} < __main_.Vertice object at 0x04B380D0>
 - ▶ 🗄 coordinates = {list} [1, 1]
 - iii funreq = {list} [<Doftype.pointevaluation: 1>, <Doftype.firstderivative: 2>]
 - ▶ 👌 index = {list} [2]

Outline

- Introduction and motivation
- Challenges in FEA standardization
- New proposed FEA description
- Validation
- Summary

Summary

- Benefits of new FE mathematics specification based on algebraic topology:
 - Covering FE mathematics
 - Understandable to engineers who are not mathematicians
 - Simple and precise definition of a finite element
 - Covering information for implementing FE mathematics in FEA code
 - Can describe more FE elements than with descriptions based on Ciarlet/periodic table
- New FE mathematics specification will benefit integration between systems engineering and FEA
 - Traceability
 - Consistency/Synchronization
 - Reuse

Thank You!

Koneksys

Jerome Szarazi

t: +44(0)7736732512

e: jerome.szarazi@koneksys.com