MBD for CMM

CMM Automation and Optimization using Model Based Definition

Takeaways: Model-Based CMM Measurement (© CAPVIDIA

Current CMM processes are manual and expensive

- Highly manual process, risking transcription and interpretation errors
- Resulting quality of CMM program depends on skill, experience, and practices of CMM programmer

Automation and optimization are possible with MBE

- Process can be automated, massively decreasing time spent to create the program
- Resulting program can be optimized for the job based on measurement resource availability and measurement uncertainty requirements

Technology is ready and already showing ROI

- Off-the-shelf software applications can carry out this workflow
- Workflow demonstration: how does it work?
- Workflow automation results: time saved

CMM Programming: Current State

Issues with current Computer Aided Inspection Process

- Manual transcription of GD&T / PMI into inspection software can lead to conflicts and inaccuracies
- High risk of CAD translation or interpretation errors with GD&T
- Requires a skilled CMM technician with expert knowledge of GD&T, CAD and measurement
- Personnel and machine dependent
- Labor intensive can take weeks to program a single part

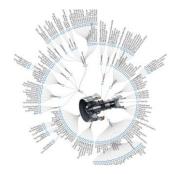
Enterprise measurement data is siloed:

- Multiple, proprietary data formats are used
- Not linked to "single source of truth" the design model and PLM

2D Paper Drawing

CMM Software Over-burdened Engineer!

What is QIF?

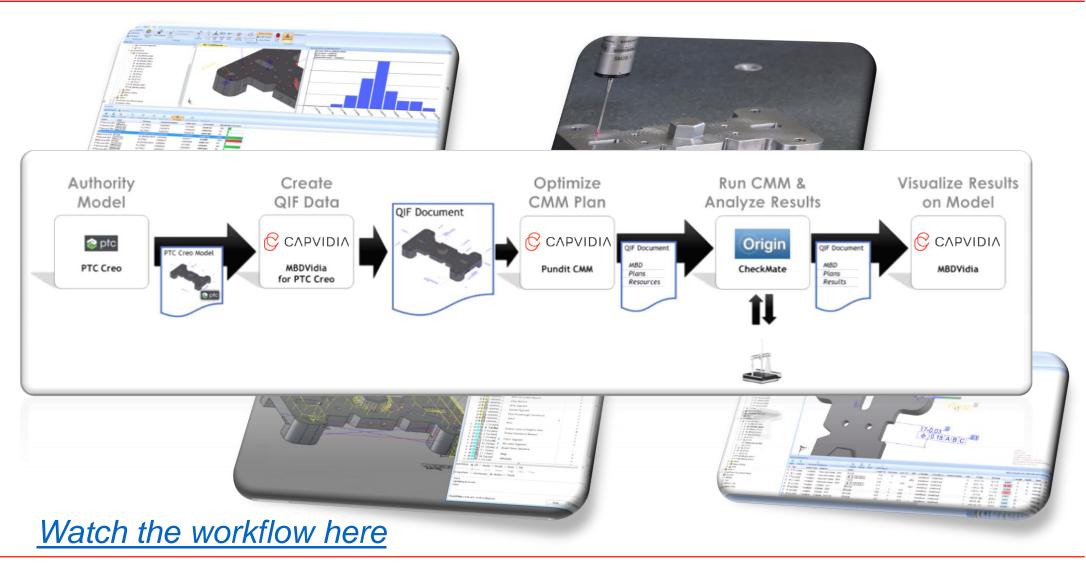


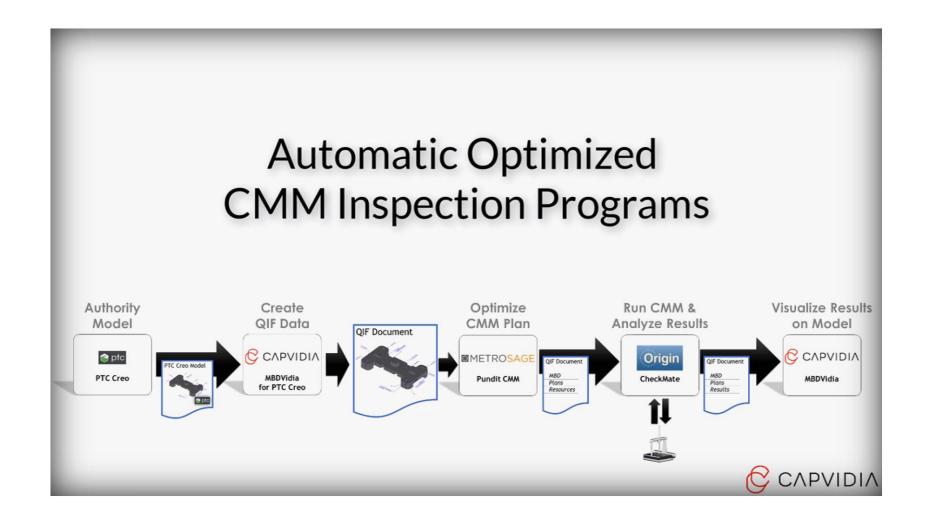
Feature-Based
Ontology of
Manufacturing Quality
Metadata

XML Technology: Simple Implementation and Built-In Code Validation

Data semantically linked to Model for full data traceability to CAD

QIF Application Areas




MBD-Based CMM Workflow

Video demonstration

Raytheon Pilot Workflow

Creo: MBDVidia for Creo Plugin

MBDVidia

CheckMate

Origin

CAPVIDIA

- Starting point: MBD model in Creo
- **Export to Quality** Information Framework (QIF) standard using "MBDVidia for Creo" plugin (Capvidia)

Less than 1 minute

CAPVIDIA

- Load the QIF MBD model
- Check and heal the PMI - make sure that it is machine readable

5 minutes (but can be automated)

- Import the machine-readable QIF MBD model
- 2. Enter essential information: probe configurations, CMM setup, etc.
- 3. Auto-generate the CMM program
- 4. Clean up and verify

Less than 3 hours - pilot processed can be drastically streamlined from this baseline effort

Simple ROI Analysis

Current Workflow

Total hours, existing manual workflow

16 Hours

New MBD Workflow

MBDVidia	5 Minutes
FormatWorks import of Creo file	5 Minutes
Checkmate Setup Parameters	5 Minutes
Checkmate Auto Programming	
Accessibility	15 Minutes
Sorting for dependencies	1 Minutes
Auto Coordinate Systems	1 Minutes
Probe moves/rotations	1 Minutes
Collision detection	20 Minutes
Manual editing (estimate)	120 Minutes
Post process program	5 Minutes
Total, New MBD Workflow	178 Minutes
Total, New MBD Workflow	2.97 Hours

81% Reduction in Time

Today's traditional, manual workflow for this part is estimated at about 16 hours.

The MBD pilot workflow took less than 3 hours.

ROI Analysis

Time reduction	
MBD Workflow time vs. Manual	
Workflow Time	19%
MBD Workflow decreases total	
time by:	81%

ROI Analysis

Total yearly labor reduction	1,042 hours
Number of parts programmed per year	80
Hours saved on MBD Workflow	13.03

Value of MBD Measurement

Reduce inspection costs

Faster time-to-inspection

Increase inspection quality

Bring measurement data into the digital thread Lower risk for transcription & interpretation

errors

Inspection planning is a laborious task involving skilled technicians – automation decreases its cost significantly Faster product delivery. Inspection is typically a bottleneck in production – this approach can streamline manufacturing processes Utilize measurement uncertainty simulation

 Implement organizational guidelines — rely on corporate process, not personnel Measurement data has immense value – don't use it for PASS/FAIL inspection and then discard. MBD traceable data is ready for analytics

Software automation lowers the risk of transcription or interpretation errors of data, and creates opportunities for validation of data

Thanks!

Any questions – contact us!

Margi Korch: margi@raytheon.com

Daniel Campbell: dc@capvidia.com

