

What Is the Smallest Model of a System?
William D. Schindel

ICTT System Sciences
schindel@ictt.com

Copyright © 2011 by William D. Schindel. Published and used by INCOSE with permission.

Abstract. How we represent systems is fundamental to the history of mathematics, science,
and engineering. Model-based engineering methods shift the nature of representation of
systems from historical prose forms to explicit data structures more directly comparable to
those of science and mathematics. However, using models does not guarantee simpler
representation--indeed a typical fear voiced about models is that they may be too complex.

Minimality of system representations is of both theoretical and practical interest. The
mathematical and scientific interest is that the size of a system’s “minimal representation” is
one definition of its complexity. The practical engineering interest is that the size and
redundancy of engineering specifications challenge the effectiveness of systems engineering
processes. INCOSE thought leaders have asked how systems work can be made 10:1 simpler
to attract a 10:1 larger global community of practitioners. And so, we ask: What is the smallest
model of a system?

Introduction and Background: Size Matters!

Representation Size, Purpose, Traditions. This paper discusses possible (and potentially
least) upper bounds on the sizes of effective representations of systems, for the purposes of
systems engineering. Compared to traditional systems engineering approaches, it draws more
directly on scientific traditions for representing behavior as physical interaction. Systems
engineering is still young, and its connections to supporting sciences is still evolving rapidly.

Language and Compression. This subject may appear to be related to the language used to
describe systems, and an interesting thread in the mathematical study of description length is
whether minimality is in a sense independent of language (Chaitin, Grunwald, Li and Vitany).
In any case, systems modeling languages such as SysML® and its predecessors provide
valuable assets for the movement to model-based methods (SysML Partners). Our subject here
is not the machinery of these specific modeling languages, but the systems ideas that minimal
models must address. When used for system families (product lines, ensembles), the
representation described here is subject to significant compression by the use of patterns. This
turns out to provide powerful insights about approaches to major practical reductions in the
size of SE descriptions and processes, and about ongoing future evolution of domain languages
over time. These dynamics also suggest that such patterns can be understood as emergent when
the interaction rules of the systems engineering process are properly arranged.

Practical representation challenges of traditional systems engineering. Traditional system
documentation of concept of operations (CONOPS), system requirements, design
specifications, failure mode and effects analysis (FMEA), test plans, operations and
maintenance procedures, and other task-specific system representations over the life cycle of a
system can exceed thousands of pages. This does not encourage the engagement of a 10:1

larger global community of systems practitioners. Systems engineers may argue that system
risks justify these extensive descriptions, but the effectiveness of these representations may be
questioned in light of the following typical experiences: A requirements document, read by
three systems engineers, produces three interpretations of its meaning--quite a different
experience from three electrical engineers interpreting a properly constructed electrical
schematic diagram. Whereas the discovery of an ambiguity in a schematic “blueprint” is
considered exceptional (or even machine-checkable in some cases) ambiguities in “system”
requirements documents are commonplace and frequently tolerated as the state of the systems
art. Determining completeness and consistency of (or otherwise interpreting) a specification
document is frequently a highly subjective assignment, requiring very experienced human
reviewers. Model-based representations are a hoped-for way to address this challenge, but it is
not yet obvious whether these are sufficient for an order-of-magnitude positive benefit to the
overall systems process.

SE process versus SE data. This paper’s perspective will shift between the systems
engineering process (a system in itself), versus information about the target system (which
flows through the SE process system), and how the two are related. The systems engineering
process is frequently described [ANSI/EIA-632-1998, ISO/IEC 15288 2002, Haskins 2010],
but the system representations it produces and consumes (our main subject here) remain a key
challenge. We argue that the target systems information is the more fundamental issue to solve,
after which the resulting implications for the SE process can be addressed in a new light.

Complexity science. Complexity, a seemingly intuitive idea, has become the subject of
formalization and study, including both the natural and human-engineered world. Initial
efforts sought a theoretical basis for expressing complexity measures or otherwise
understanding complexity, including the size of minimum system descriptions [Li and Vitany
1997, Chaiten 2005, Kauffman 2000]. They have more recently turned to the practical
implications of emergent complexity science for engineering processes [Bar-Yam 2003b,
2005, Braha et al 2006, Kuras and White 2005, Schindel 1996]. Some efforts have studied
minimal information required to describe a system, as a measure of its complexity. Others have
introduced “complex systems engineering” (CSE) terminology in connection with
understanding engineering problems or classifying systems, in situations such as highly
interconnected systems (networks), adaptive systems, systems embedding humans, issues of
scale and scope, ideas about types of emergence, or engineering project failures [Braha et al
2006, Bar-Yam 2003b]. Some studies have focused from the outset on the problems of human
engineering or other organic intentional processes in connection with complex engineered
systems [Ashby 1957, INCOSE HSIG]. There is a growing awareness of connections between
systems engineering and systems science. INCOSE formed the System Science Enabling
Group, and later the Systems Science Working Group [INCOSE SSWG], in recognition of the
connection between systems science and systems engineering.

System patterns. Ideas of “patterns” have a number of connected roots in science and
engineering. Pattern recognition and classification have a mathematical theory and
engineering practices [Duda 2001]. Patterns in engineered systems were recognized in building
architecture, later inspiring software engineers, and more recently systems engineers.
[Alexander 1977, Gamma et al 1995, Haskins 2005, Cloutier and Verma 2007, Schindel
2005b]. Initially expressed using traditional engineering structures (e.g., prose templates),
patterns were later combined with model-based systems engineering (MBSE) to lead to
pattern-based systems engineering (PBSE) [Schindel and Smith, 2002, Schindel 2005b].

Constructing Effective and Efficient Representations

Using Models. Model-based representations have a traditional engineering role in verifying
that designs will satisfy requirements, or otherwise representing system behavior [Karayanakis
1993]. More recently, model-based representations have been used to represent system
requirements [Mellor 2002, INCOSE MBSE, Schindel 2005a, SysML Partners, Estafan]. In the
earlier and more established design verification case, “model” frequently refers to
mathematical descriptions of system physical make-up, often modeling from first principles to
create mathematical descriptions that can be analyzed or simulated. In the more recent system
requirements case, “model” extends this idea to describe desired functional behavior.

In both cases, the term “model” means a formal (according to agreed upon rules), explicit (core
content not implicitly depending on other assumed knowledge), and unambiguous (not subject
to multiple interpretations) description. As shown in Figure 1, there are three components in a
model-based engineering setting: The model, the system modeled, and the model interpreter(s).
We want the model to be interpreted with desired process outcomes (e.g., easy, consistent, and
unambiguous interpretation, optimality of design, etc.). Global efforts [ISO 10303 AP233;
Mellor 2002] are working toward the exchange and interpretation of model data by machines
and people, for purposes of simulation, procurement, fabrication, code generation, etc.

Figure 1: The setting for model-based systems engineering

The “third role” (Model Interpreter) in Figure 1 has vital significance here. The effectiveness of
a model means how well it serves the purposes of the Model Interpreter. If we expect to engage
a 10:1 larger community of systems practitioners, and make the systems process 10:1 easier,
then we must learn how to make the Model Interpreter’s tasks easier and more appealing, and
for a much larger global population. If we only develop automated approaches to deluge the
human Model Interpreter with information, we won’t have the outcome needed.

A metamodel. A metamodel is a model of other models—a framework or plan governing the
models that it describes. We utilize the S*-metamodel (summarized by Figure 2), a relational /
object information model used in the Systematica™ methodology to describe requirements,
designs, and other (verification, failure analysis, etc.) information in S*-models. These may be
represented in SysML™, database tables, or other languages. We have applied these to systems
engineering in mil/aero, transportation, communication, medical and health care, consumer
products, construction, manufacturing, and as a framework for educating new engineers
[Gunyon et al 2010, Bradley et al 2010, Schindel and Smith 2002, Schindel 2002, 2005b,
Ahmed et al 2011].

Figure 2: A summary view of the S* metamodel

S*-models describe the external (black box) behavior of target systems twice—once in the
subjective (stakeholder) language of stakeholder-valued behavior, and again as more
objectively-described technical behaviors.

Stakeholders Features. S*-models represent system stakeholder features as explicit objects.
For example, some of the features of an Oil Filter are represented in Figure 3:

Figure 3: Features of an Oil Filter

We could simply claim that a minimal model of an engineered system must include a (feature)
model of all the things valued by all the system’s stakeholders. However, there is more to this
than meets the eye. Features have a way of creeping into many different engineering
conversations and artifacts, not always recognized for their redundancy. Note that every design
decision, every trade-off, every value engineering or project argument should ultimately
depend upon no less than, but also no more than, the Feature model. (This is based upon the
practice of including all significant stakeholders and their features in the Feature model.) If we
find a compelling argument for why technology X or architecture Y is the right (or wrong)
choice, the reason why can only be to better accommodate the Stakeholder Features—trade
space is exclusively “scored” in the metrics of these features. A common mistake is to defend
choices in technical trade-off spaces that are short of the actual Stakeholder Feature space.

Suppose further that we are performing an FMEA. It turns out that the only “effects” (the E
part) that can appear in an FMEA are failures to deliver on the promise of a stakeholder
feature. As soon as we know the feature space of system, before a design has been synthesized,
we can already fill out the “effects” column of the FMEA analysis. (Schindel, 2010) However,
it is not universal practice to align or audit FMEA and stakeholder feature models.

Feature space is integrated with technical requirements space by the negotiation of the
Features-Interactions relationships—to begin with, a two-column table negotiated jointly by
representatives of the stakeholders and the technical community. Feature space is typically of
lower dimension than the more technical spaces of system requirements or design. This means
that once we have constructed an integrated Feature-Interactions-Roles-Requirements model
(traced by Figure 2), we can “configure” (automatically populate) good starting point draft
requirements configurations: populating lower dimension features can “automatically”
populate higher dimension requirements through the constraints of the model.

We have repeatedly seen the use of Feature models dramatically improve alignment and
facilitate constructive discussion of cross-functional teams. For example, a powerful use of
Feature space is to express impact assessments on the introduction of new technologies into
operations environments, or to express system long range or facility master plans first in terms
of features (stakeholder capabilities) planned and only second in terms of the equipment,
technologies, or projects that will implement them. Likewise, risk to stakeholders (whether
financial risk, schedule risk, technical risk, or otherwise) is represented by Features.

All this suggests that Feature models are often under-utilized in the rush to technical
requirements. Note that Feature models are formal even though they are in the (subjective)
language of stakeholders. There is a difference between informally stated stakeholder “needs”
(in the original voice of the customer) and formally translated (but still stakeholder language
and concept) Features. A quick pass through “stakeholder needs” on the way to technical
requirements is less than the minimal Features model we are suggesting here.

Feature space is an interesting place. It is the gateway to other communities beyond our
engineering organizations, and for that reason may be seen as a strange or unfamiliar language
and environment. But, it represents improved connection to those who pay the bills, buy the
products, or whose lives depend on the engineered system. Bridging this cultural gap may be
challenging, but is the reason that S* Models are dual-rooted in both of the “two cultures”.
(C.P. Snow, S. J. Gould). When INCOSE thought leaders advocate that we look for ways to
engage order-of-magnitude larger segments of the global community in systems work,
modeled Feature Space, in model views appropriate to the viewers, are a related enabler.

Interactions. S*-models represent physical interactions as explicit objects at the very core of
systems engineering. For example, Figure 4 shows Interaction objects for an oil filter—these
summarize the physical interactions of an oil filter with its environment, over its life cycle.

Figure 4: Interactions of an Oil Filter

Interaction models exist at two levels of detail. The High Level Interaction Model simply
consists of the name and definition of the interaction, a list of the parties that participate (play
roles) in the interaction, and the major attributes of the interaction. These named Interactions
also appear within the system’s State Model, and that combination very compactly expresses
the overall moding of the system’s behavior with its environment, over its life cycle. The Detail
Level Interaction Model includes an Interaction Diagram (of which there are many specific
forms in SysML or other modeling languages) for each interaction, showing the input-outputs
exchanged between the interacting actors, and including the requirements statements that
describe the roles in the form of “non linear transfer function” relationships between the inputs
and outputs (Schindel, 2005). Refer to Figure 5:

Figure 5: Interaction Diagram

Interaction models go to the heart of what we mean by “system” in the engineering and
scientific world, and expresses ideas of emergence. By “system”, we mean a collection of
interacting components. By “interact”, we mean that one component impacts the state of
another component. By “state”, we mean a property of a component that impacts its current or
future behavior. By “behavior”, we mean a component’s interactions with other components.
This is the intentionally circular, relational perspective of the trained scientist, engineer, or
mathematician that has helped describe the natural world since Newton. In this perspective, an
interaction is holistic, with two or more components playing logical roles. The “emergent”
properties of the interaction are associated with the whole, not any single component.
Behaviors of individual components are described by requirements statements as input-output
characteristics of their roles [Schindel 2005a]. Notice the difference in perspective of Figure 6:

Figure 6: Two Different Starting Points:

Systems As Interacting Components versus A SIPOC Perspective

By now it is well-known that simple behaviors by individual components (or “agents”, in the
popular parlance), when they interact with each other, may lead to “emergence” of surprisingly
more complex behavior by the combined system (e.g., the three body problem, cellular
automata, swarms, traffic, etc.). The difference between the simple “rules” (behavior of the
actors) and the more complex emergent system behavior is nothing more and nothing less than
the difference between describing a functional role in an interaction and the interaction as a
whole—it is a difference of night and day.

We have repeatedly observed a profound practical difference between systems engineering
modeling interactions as illustrated by Figures 5 and 6 (left) above, versus modeling of SIPOC
required behavior as in Figure 6 (right) above. We have seen this difference have major
practical impact in numerous SE projects, in which the modeler either did or did not model the
whole interaction, including “what the operator did” (Schindel 2006), “what the material did”
(Schindel 2011), or other actor behaviors.

Minimality of representation. The S* metamodel arose over time from the research question,
“What is the smallest amount of information required to describe system level requirements
and design?”, combined with practice application. We won’t reproduce here the formal
argument for minimality of S* models--interested readers may contact the author. However, a
summary of that argument is:

• The sufficiency of S* models of requirements and designs is argued, with respect to
intended use of the information. Here the uses of systems engineering information
enter, including considerations of risk and opportunity.

• The minimality of S* models is established by showing that no metaclass (see Figure 2)
of information in an S* model is redundant with information in another metaclass, and
showing that omission of any component results in loss of sufficiency—including
classes versus instances.

This argument makes use of a mapping of which S* model components (grouped across the top
of Table 1) are needed for the different SE process areas (summarize by the Table 1 rows):

Table 1: SE Process Areas vs. Metamodel Information Areas

This table can be constructed for the various SE process areas of ISO15288 or the INCOSE SE
Handbook. However, later in this paper we will also discuss an alternate way to view SE
process areas. (Why would we want to do that? The answer depends on whether we expect a
much larger global population to become traditional systems engineers and take up the
traditional SE processes.)

SE Area Grp1 Grp 2 Grp 3 Grp 4 Grp 5

HLR X

DLR/BB X X

DLR/WB X X

HLD X X X

FMEA X X X X

TST X X X X X

The above minimality argument is “constructive”: Rather than arguing that a minimal model
exists, we actually construct it--not the case in most algorithmic information theory. However,
this argument does not assert uniqueness: There may be other models no larger that also
represent the same system.

Model view; useful redundancy.

A familiar challenge is that different “SE Documents” may be inconsistent with (contradict)
each other: This is because they contain redundant information. As documents evolve, that
consistency must be maintained to be consistent across the documents. Refer to Figure 7. This
issue also occurs within single documents (self-consistency). There are good (task-oriented)
reasons why these documents should be redundant—but not why they should be inconsistent.

Figure 7: Redundant Documents—Consistent or Inconsistent?

This is one reason why database tools are powerful in systems engineering. Properly used, they
can generate different “views” (documents, etc.) from the common underlying data model,
thereby improving their consistency:

Figure 8: Generation of (Redundant) Views from a Non-redundant Database

The S* Model goes farther, by pointing out redundancies not always recognized; e.g.:

• FMEA Functional Failures vs. Requirements (Counter-Requirements) [Schindel 2010]

• FMEA Failure Effects vs. Stakeholder Features (noted earlier above)

• ICDs vs. System Requirements

• CONOPS and Use Cases vs. System Requirements, Features

Such “redundancies” are really deep insights that make model construction easier &
reinforcing: We can still produce all these views, but with less effort and greater consistency.

Measures of model complexity. Models communicate information, as quantified in
communication theory [Shannon 1963]. More recently, complexity of objects has been
quantified in algorithmic information theory (AIT or Kolmogorov complexity) using the
“smallest program” capable of constructing the object or its behavior [Li and Vitany 1997,
Chaiten 2005]. The minimality of S* models (measured in bits) also has several practical sides:

• Clarifying “too small” versus “big enough” models: The S* metamodel reminds us of
types of systems engineering information that, if omitted, will leave us with an
incomplete description of a subject system’s requirements, design, or connecting
relationships. A practical example is the use of states in a requirements model,
reminding us that for any requirement statement, “when does this requirement apply?”
is a fair (and often not explicitly answered) question. We may omit this information for
pragmatic reasons, but are reminded of what we have not communicated.

• Reducing redundancy and associated inconsistency: Although documents or other
task-oriented views generated from an S* model may be redundant, the information in
an S* model is not. The consistency of a large number of redundant derived documents
and views is easier to maintain or check against a single minimal model.

So, how big? How does an S*model-based compare in size to a traditional systems
engineering prose-based description? A practical discovery is that a typical S* model of
technical requirements is more complete than a corresponding traditional technical
requirements document. Being more complete, it is bigger, not smaller! Figure 9 illustrates
some typical sizes. Keep in mind the original question was: What information is essential?

Figure 9: Typical sizes for models and traditional systems engineering documents

Using Patterns to Compress Models
The “starting from scratch” SE process delusion. One of the most significant causes of
perceived complexity of the systems engineering process is the fact that most descriptions of
the process seem to (implicitly) involve an assumption (judging from the steps they describe)

that is nearly always false for real projects--that the project is “starting from scratch” in a
“clean sheet” engineering project on a system for which there are no significant historical
precedents. Accordingly, the process systematically seeks out the needed information and
processes it into a form usable by the project [ISO/IEC 15288, INCOSE SE Handbook].

On the contrary, real projects are most often concerned with engineering similar (but different)
systems across different product generations, applications, configurations, or market segments.
At the very least, we are typically engineering whiz-bang product X as the latest improvement
in a long line of previous products in the same domain—but with some new differences, big or
small. In some cases, we are even planning a product line of related products as a whole:

Figure 10: Families of Systems—Whether Generations or Product Lines

In spite of this reality, very little of the descriptions of the SE process is typically about more
efficiently leveraging what we already know about the target systems. Typically these
descriptions make some mention of consulting documents or lessons learned about similar
projects, but very rarely is there a procedural discipline focused specifically on engineering of
what we could call “variable sameness”. Something more than a database of useful past
requirements, or cloning the last project document from the engineer’s desk drawer (a
dominant paradigm) is suggested here—an equivalent to perturbation theory in mathematics.

Pattern-Based Systems Engineering (PBSE). Over several decades, we have developed and
practiced what we call Pattern-Based Systems Engineering (PBSE) across a range of domains,
including carrier grade telecommunications, engines and power systems, automotive and off
road heavy equipment, telecommunications, military and aerospace, medical devices,
pharmaceutical manufacturing, consumer products, and advanced manufacturing systems
[Schindel and Smith, 2002; Schindel, 2005b, Bradley et al 2010]. Engineers in all of these and
many other domains spend most of their company’s engineering resources developing or
supporting systems that virtually always include major content from repeating system
paradigms at the heart of their business (e.g., core ideas about airplanes, engines, switching
systems, etc.). In spite of this, the main paradigm apparent in most enterprises to leverage
“what we know” is to build and maintain a staff of experienced technologists, designers,
application engineers, or other human repositories of knowledge. There is typically little
evidence of a “Maxwell’s Equations” of first principle-based discipline of “variable sameness”
in the engineering of these systems.

Although engineering “patterns” already have precedent in systems and software engineering
(Gamma, 1995; Alexander, 1977; Haskins, 2005; Cloutier and Verma, 2007), these are often

relatively informal approaches to capturing and re-applying certain general ideas, supporting
by templates of one sort or another. By contrast, in PBSE what we are doing is to extend MBSE
through the use of formally configurable and re-usable SE models. Specifically, an S* Pattern
is a re-usable, configurable S* Model of a family (product line, set, ensemble) of systems:

Figure 11: An S* Pattern Is A Configurable, Re-usable S* Model

Pattern Configurations. Such Patterns are ready to be configured to serve as Models of
individual systems in projects. “Configured” here is specifically limited to mean that pattern
model components are populated / de-populated, and that pattern model attribute (parameter)
values are set--both based on configuration rules that are part of the Pattern. Patterns are based
on the same Metamodel as “ordinary” Models.

Because of this disciplined approach to “configuration” as a limited case of specialization,
relatively dramatic simplifications can frequently occur in the typical engineering process. A
table of configurations illustrates how patterns facilitate compression. The rows of the table
represent aspects of the model such as Stakeholder Features and their Attributes, Functional
Roles, Requirements Attributes, Design Components, Interfaces, etc.,

Table 2: Pattern Configurations Table

A different way to organize SE processes: PBSE offers us a different (and potentially
simpler) way to view the organization of the SE process areas. Instead of dividing, them by
their ISO 15288 type functionality first, we can divide them into two major processes (see
Figure 11):

• Pattern Management Process: Generates the underlying family model, and periodically
updates it based on application project discovery and learning

• Pattern Configuration Process: Configures the pattern into a specific model for
application in a project

The second of these two processes may well contain what could be viewed as outcome
equivalents to the ISO 15288 process areas, but they can be viewed in a much different light if
they are first each asking how to produce their products from what is already known (the
Patterns that govern the target system – not the engineering process). Much of the more
complex formal machinery of systems engineering can then be “hidden” in the other
process—the Pattern Management Process, in which a much smaller number of people’s
efforts are leveraged by a larger population in the second process. In this approach, Patterns
become valued IP, and are sometimes even financially capitalized as a form of “software”.

As a start toward a “thermodynamics of patterns”, the Gestalt Rules [Schindel, 1997] describe
what it means for a holistic system model to either conform to or not conform to a more general
holistic system model. For example, if we develop state models of aircraft over mission
profiles that include preparation, take-off, climb, cruise, combat, return, landing, etc., then how
can we compare fixed-wing, helicopter, VTOL, civil, and other aircraft?

Compression of models, using patterns. Each column in the table is a compressed system
representation with respect to (“modulo”) the pattern. The compression is typically very large.
The compression ratio tells us how much of the pattern is variable and how much fixed, across
the family of potential configurations. Refer to Figure 12

Figure 12: Pattern Compression

Connection to Minimum Description Length (MDL) theory. In MDL and Kolmogorov
Complexity theories applied to complexity, there is an idea of the representation of a system
“modulo” a certain language used to describe it. Likewise in PBSE, the configuration of a
pattern is a “description” of that system within the space of systems governed by that pattern. If
we assume that the pattern itself is already known or accepted, then the configuration

information becomes a (much shorter) description of “where in the pattern space the particular
configuration is”, tying down the degrees of freedom offered by the pattern.

If the language that emerges from a pattern is extremely flexible (e.g., English prose), then the
degrees of freedom are very large indeed, and the configuration data itself must be extensive.
But, if the pattern is based on a construct like the S* Metamodel, then the domain-specific SE
language that emerges from that pattern is orders of magnitude more restrictive, and the
configuration information is accordingly much simpler and easier to understand, analyze, and
communicate.

All Models Are Configurations of More Abstract Patterns

We arrive at a core idea for simplifying the SE process. Instead of asking how to adopt all the
sophisticated machinery of formal PBSE, we can alternatively realize that all models are
configurations of more abstract patterns, whether we formalize those patterns or not.
Moreover, even non-MBSE engineering projects are in fact creating informal “configurations”
of informal “patterns” every day, and have been all along. As evidence of this, consider all the
“important known stuff” that we don’t always write down in projects--the content of industry
and enterprise standards comes first to mind. We “invoke” these by reference, but we rarely
import explicitly all of their content into our specifications. They become stacks of additional
“side” documents that vex designers, suppliers, and others who must conform to them or verify
conformance.

What is missing in (most but not all of) these traditional approaches is a sufficient machinery to
truly configure these patterns of “external” data for a given project. At best, we might typically
see citations of particular sections of these documents that are chosen to apply. More typically,
we are left to wonder which parts of these stacks may apply and which do not. By adopting
some of the simplest elements of PBSE discipline, once onerous processes can become assets,
as we move more rapidly with configuration data, supported by less frequently consulted (but
nevertheless available when needed) “pattern” information in these other references.

Conclusions

1. The specific MBSE and PBSE methods discussed here have been successfully applied
across a wide range of domains: Transportation, Mil/Aero, Communications,
Medicine/Healthcare, Advanced Manufacturing, Consumer Products.

2. The minimum base of information required to perform specific SE process areas is
greatly clarified by MBSE metamodel understanding.

3. Minimal MBSE models contain information missing from many projects, causing
practical project problems.

4. Minimal underlying models generate the redundancies needed across different
task-based artifacts, with greater consistency or less effort to maintain that consistency.

5. Formalization of Patterns as configurable Models leads to further size compression:
Configurations.

6. All models are actually configurations of more abstract patterns. Realizing and
exploiting this can turn the previous “deadweight” of standards and other external
references into powerful assets for accelerating work.

References

1. Ahmed, J., Hansen, J., Kline, W., Peffers, S., Schindel, W. 2011. All innovation is
innovation of systems: An integrated 3-D model of innovation competency. To appear
in Proceedings of the 2011 American Society for Engineering Education Annual
Conference, Vancouver, BC.

2. Alexander, Christopher; Sara Ishikawa, Ingrid Fiksdahl-King, Shlomo Angel. 1977. A
pattern language: Towns, buildings, construction. New York: Oxford U. Press.

3. Ashby, W. Ross. 1957. An introduction to cybernetics. London: Chapman & Hall.
4. Bar-Yam, Y. 2003b. When systems engineering fails—toward complex systems

engineering. Proceedings of the International Conference on Systems, Man &
Cybernetics, Vol 2, 2021-2028. Piscataway, NJ: IEEE Press.

5. ———. 2005. About engineering complex systems: multiscale analysis and
evolutionary engineering. ESOA 2004, LNCS 3464, pp 16-31, Spinger-Verlag, 2005.

6. Bradley, J, Hughes, M, Schindel, W. 2010. Optimizing delivery of global
pharmaceutical packaging solutions, using systems engineering patterns. Proceedings
of the INCOSE 2010 Symposium.

7. Braha, D., A. Minai, Yaneer Bar-Yam, eds. 2006. Complex engineered systems:
Science meets technology, City: Springer.

8. Chaitin, Gregory. 2005. Metamath: The quest for omega, New York: Pantheon, 2005.
9. Cloutier, Robert J., Dinesh Verma. 2007. Applying the concepts of patterns to systems

architecture. Systems Engineering. Wiley. Vol 10, No. 2. pp 138-154.
10. Duda, Richard. O., Peter E. Hart, David G. Stork. 2001. Pattern classification, (2nd

ed.), New York: Wiley.
11. Estafan, J. 2008. Survey of model-based systems engineering (MBSE) methodologies.

INCOSE MBSE Initiative.
12. Gamma, E., R. Helm, Ralph Johnson, J. Vlissides. 1995. Design patterns: Elements of

reusable object-oriented software. Reading, MA: Addison-Wesley.
13. Gould, S. J. 2003. The hedgehog, the fox, and the magister’s pox: Mending the gap

between science and the humanities. New York: Three Rivers Press.
14. Grunwald, P. 2007. The minimum description length principle. Cambridge, MA: MIT

Press.
15. Gunyon, R., and Schindel, W. 2010. Engineering global pharmaceutical manufacturing

systems in the new environment. Proceedings of the INCOSE 2010 Symposium.
16. Haskins, Cecilia. 2005. Application of patterns and pattern languages to systems

engineering. Paper presented at the 15th annual international symposium of the
international council on systems engineering, Rochester, NY.

17. Haskins, Cecilia, ed. 2010. INCOSE systems engineering handbook, Version 3.2.
Seattle, WA: International Council on Systems Engineering.

18. INCOSE HSIG web site. http://www.incose.org/practice/techactivities/wg/hsi/
19. INCOSE MBSE web site :
 http://www.incose.org/practice/techactivities/modelingtools/mdsdwg.aspx.
20. INCOSE SSWG web site: http://www.incose.org/practice/techactivities/wg/syssciwg/
21. ISO 10303 AP233 web site. http://www.ap233.org/
22. ISO/IEC 15288: 2002. Systems engineering – System life cycle processes. Geneva:

International Organization for Standardization.
23. Karayanakis, N., Computer-assisted simulation of dynamic systems with block diagram

languages. CRC Press, 1993.
24. Kauffman, Stuart. 2000. Investigations New York: Oxford University Press.

25. Kuras, M. L., B. E. White. 2005. Engineering enterprises using complex-system
engineering. Paper presented at the annual international symposium of the International
Council on Systems Engineering, July, Rochester, NY.

26. Li, Ming, Vitany, Paul. 1997. An introduction to Kolmogorov complexity and its
applications. Second edition. Springer.

27. Mellor, Stephen; Marc J. Balcer. 2002. Executable UML: A foundation for
model-driven architecture. Boston: Addison-Wesley.

28. Schindel, W. 1996. Systems engineering: An overview of complexity’s impact. Tech
Paper 962177, SAE International.

29. ______. 1997. The tower of Babel: Language and meaning in system engineering.
Technical Report No. 973217 SAE International.

30. ———. 2005a. Requirements statements are transfer functions: An insight from
model-based systems engineering. Paper presented at the annual international
symposium of the International Council on Systems Engineering, July, Rochester, NY.

31. ———. 2005b. Pattern-based systems engineering: An extension of model-based
systems engineering. INCOSE TIES tutorial presented at 2005 INCOSE Symposium.

32. ______. 2006. Feelings and physics: Emotional, psychological, and other soft human
requirements, by model-based systems engineering. Proceedings of the INCOSE 2006
International Symposium.

33. ______. 2010. Failure analysis: Insights from model-based systems engineering.
Proceedings of the INCOSE 2010 International Symposium.

34. ______. 2011. Systems engineering for advanced manufacturing: Unit op insights from
model-based methods. To appear in Proceedings of the INCOSE 2011 International
Symposium.

35. Schindel, William D., Vern R. Smith. 2002. Results of applying a families-of-systems
approach to systems engineering of product line families. Technical Report
2002-01-3086. SAE International.

36. Shannon, Claude. 1963. A mathematical theory of communication. Champaign, IL:
University of Illinois Press.

37. Snow, C.P. 1960. The two cultures. Cambridge: University Press. pp. 181.
ISBN 978-0521457309 (second edition; 1993 reissue).

38. SysML Partners web site. http://www.sysml.org/

Biography

William D. Schindel is president of ICTT System Sciences, a systems engineering company,
and developer of the Systematica™ Methodology for model and pattern-based systems
engineering. His 40-year engineering career began in mil/aero systems with IBM Federal
Systems, Owego, NY, included service as a faculty member of Rose-Hulman Institute of
Technology, and founding of three commercial systems-based enterprises. He has consulted on
improvement of engineering processes within automotive, medical/health care, manufacturing,
telecommunications, aerospace, and consumer products businesses. Schindel earned the BS
and MS in Mathematics, and was awarded the Hon. D.Eng by Rose-Hulman Institute of
Technology for his systems engineering work.

V1.4.4

