
24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Utilizing MBSE Patterns to
Accelerate System Verification

David Cook William D. Schindel

Moog Aircraft Group ICTT System Sciences

dcook@moog.com schindel@ictt.com

Copyright © 2015 by David Cook and William D. Schindel. Published and used by INCOSE with permission.

Abstract. In aerospace, automotive, health care, and other domains, the capability to effectively

plan and perform system verification tests is increasingly a strategic differentiator. This paper

reports on methods used to improve effectiveness of complex aircraft system tests, the gains

achieved, and their connection to underlying methods and trends. These include use of

Model-Based Systems Engineering (MBSE), leveraged by Pattern-Based Systems Engineering

(PBSE) to generate configurable, re-usable system models--the focus of the INCOSE MBSE

Patterns Challenge Team. (PBSE Team, 2014)

Distinctive aspects include (1) use of configurable, model-based patterns of system

descriptions, including configurable system verification tests, (2) improved ability of

model-based descriptions to integrate modeling tools and automated systems for test

management, (3) use of models to describe both system under development and the

development process, and (4) ability of these models to be integrated with other system life

cycle management processes and information systems, for increased leverage.

I. Introduction

Enterprises involved in the development of technological systems have significant intellectual

capital that has been accumulated through the execution of numerous development projects.

Regardless of the methods employed, this existing knowledge is a key asset in the development

of new systems. The utilization of model-based system patterns and Pattern Based Systems

Engineering processes provide a disciplined and systematic approach to maximize the effective

use of this intellectual capital in the development of new systems. Coupled with the capabilities

of modern MBSE tools and techniques, the application of pattern based MBSE holds the

promise of significant improvements in the development of modern technological systems.

This paper examines the application of model based system patterns to accelerate the

verification of modern technological systems. The particular example for chosen for this paper

is the testing of a safety critical aircraft subsystem, namely the flight control actuation system.

II. Challenges and Opportunities

It is understandable that the development of safety critical systems tends to be very risk averse.

Processes for the development of safety critical aircraft systems are subject to scrutiny by the

aircraft manufacturers (customers) and certification authorities to ensure that the development

processes do not introduce unintended hazards into the system. For safety critical systems, like

flight control actuation, modeling provides the ability to improve the requirements quality and

overall system design integrity. However, regardless of the design rigor, extensive verification

(primarily testing or combination of analysis and test) is required to verify the system meets the

functional and safety related requirements. The effort required to develop and execute a

rigorous test program results in significant development cost. Testing cost can be 20% to 50%

of development effort (excluding hardware manufacturing costs) in many cases. Cutting testing

mailto:dcook@moog.com
mailto:schindel@ictt.com

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

costs without sacrificing test effectiveness can result in significant competitive advantages.

(Cook, 2014)

A primary goal of MBSE is to utilize the system models to capture and communicate all system

related information in a clear and unambiguous fashion. If this can be accomplished with

models then the documents used in traditional systems engineering are no longer necessary as

the prime repository of information—they instead become snapshot artifacts that are views of

the primary model database at the times of key milestones. The system model supersedes all

the previous document artifacts as the most fundamental representation, but this model can be

made to formally include model-based prose requirements and similar structures (Schindel,

2005). The current state of the industry and the extensive formal documentation associated

with safety critical aircraft systems necessitate the use of conventional documents for many of

the system development artifacts. As such, any MBSE implementation must be compatible

with an environment where conventional engineering documentation is required. For

verification tests, this includes formal test procedure and report documents.

III. MBSE and Patterns

III.1 MBSE Improves Basic Representation

Model-Based Systems Engineering (MBSE) changes and improves how we represent systems

(Schindel, 2014). This applies to more than just the Product System to be developed. Benefits

can also be gained from explicit models of different systems across the Product System’s life

cycle, potentially including:

 The Product System itself, along with aspects of the larger Application Domain System

in which it will serve (*)

 The Test System that will perform formal verification tests (*)

 Other aspects of the System of Development (e.g., the ISO15288 Technical Processes)

 The Manufacturing System (the System of Production) that instantiates the Product

 The Distribution System (including installation) that distributes the Product

 The Operations System that helps support in-service use of the Product

 The Maintenance System that helps maintain the Product

 The Decommissioning and Disposal System

Those marked (*) above are the focus of this paper.

Basic benefits of using MBSE to represent a Product System under development are becoming

better known. For example, when compared to earlier traditional prose approaches,

model-based requirements are generally:

 more explicit, less ambiguous, more likely to be interpreted consistently;

 easier to audit for completeness and correctness;

 more objectively interpreted for planning of test.

(Schindel, 2005, 2014)

These general benefits apply across a variety of contemporary modeling languages and

supporting tools. They are amplified when applied using the underlying S*Metamodel of

Figure 1 (Schindel, 2014). Such S*Models associate system requirements with physical

Interactions (Schindel, 2013), treat requirements as parameterized “transfer functions”

(Schindel, 2005), and otherwise conform to that framework. Beyond the aerospace example of

Section IV, these techniques are currently being demonstrated by the INCOSE Patterns

Challenge Team, across multiple languages, tools, and domains (PBSE Team, 2014).

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Figure 1: Underlying S*Metamodel Summary, Language & Tool Independent

 III.2 MBSE Improves Test Representation

When MBSE is based on the S*Metamodel, all system requirements are seen to be described in

the context of physical Interactions (exchanges of energy, force, mass, or information) with

external domain actors, and each of the interacting entities has assigned Functional Roles that

are modeled. As shown in Figure 2, this means that not only the requirements on the system

under test are captured—so also are the related requirements (which could be called assumed

behaviors) of the external systems. This has several advantages, but for purposes of this paper a

key advantage is that it provides candidate behaviors of the Test System that will exercise the

system under test. Having these role-based behaviors linked together as Interactions in the

model from the outset reduces the effort of coordinating the test protocol with the requirements

being tested. Since the Test System should also measure and capture the behavior of the

System Under Test, this also provides an indication of expected behavior during test, for

comparison.

Figure 2: Models Describe In-Service Application Domain, As Well As its Test Simulation

In the context of Figure 2, there are several opportunities to use an integrated model:

State

Input/

Output

Interface

Functional

Interaction

(Interaction)

System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix
Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

BB

WB

Test System

Product System

External
Actor 1

External
Actor 2

External
Actor 3

External
Actor 4

Product System
(System Under

Test)

Requirements
Allocated to Product

System

Requirements
Allocated to External

Actors

Simulation Behavior
Allocated to Test

System

Behavior Expected of
Product System During
Test, for Comparison by

Test System

Product in Application Environment

Product in Test Environment

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

1. To specify requirements of the Product System

2. To partition the overall Test Cases and specify the Test System behaviors in each

3. To specify the expected behavior of the System Under Test, for comparison (related to

(1) above, but possibly also configured further for purposes of test versus service)

4. To specify the reports to be produced by the Test System

The above could be of some value if the Test System were completely manual (human

performed), but becomes much more valuable if the Test System includes automation that can

be driven directly by the MBSE models. This is illustrated in Section IV.

III.3 PBSE: Configurable Models Magnify Leverage and IP

When a systems enterprise focuses ongoing work in product lines or platform systems of a

particular domain (e.g., automotive, aerospace, medical/health care, telecom systems,

consumer products, etc.), the above gains may be further leveraged. The system models

described in III.1-2 may be arranged to describe a general family of systems in a re-usable,

configurable fashion. When S*Models described above are arranged in this way, they are

referred to as S*Patterns (Peterson and Schindel, 2013; Patterns Team 2013-14). These can

describe not only the Product System family, but also the other systems listed in Section III.1,

and used for the test purposes described in Section III.2.

Figure 3 illustrates the idea that such S*Patterns describe abstract families of systems, using the

same S*Metamodel. These system patterns may be specialized and configured for specific

projects, as part of the development, verification, and other system life cycle processes.

Figure 3: S*Patterns Are Re-usable, Configurable S*Models

System Containment Hierarchy

S*Metamodel for

Model-Based Systems

Engineering (MBSE)

S*Pattern Hierarchy for

Pattern-Based Systems

Engineering (PBSE)

System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Configure,

Specialize

Pattern

Improve

Pattern

General
System
Pattern

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix
Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

BB

WB

Class

Every S*Metaclass shown is

embedded in both a

containment hierarchy and an

abstraction (class) hierarchy.

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

In the case of S*Patterns, configurability is driven by the Stakeholder Features portion of the

applicable patterns. This reflects the idea that the only reason for configuring a general system

pattern to a specific configuration is to deliver specific stakeholder-realizable benefits or

outcomes. For this reason, the delivery process of configuring the Features portion of an

S*Pattern can be used to semi-automatically generate configured versions system requirements,

system tests, and other configured models (Peterson and Schindel, 2013). Furthermore, if the

Test System is arranged to be driven (or configurable) by the configured Test System Pattern,

then additional benefits of test protocol development and validation may be gained.

The application of these ideas to system verification test is illustrated in Section IV.

IV. Verification Application Examples

To realize the maximum effectiveness in the application of MBSE, the processes, tools, and

methods have to be engineered in much the same way that the product system is engineered.

There can generally be specific test needs based on the type of system being tested. The system

in this example is a safety critical flight control actuation system for modern aircraft. In this

example, the test platform and associated tool chain were selected to support the overall MBSE

workflow. The combination of development and test tools were selected to optimize

effectiveness over the entire life cycle. In much the same way that a globally optimized system

is not necessarily made up of locally optimized system elements, a globally optimized

development tool chain is not necessarily made of locally optimal tools. A depiction of the

example workflow is shown in Figure 4. In the depicted workflow, the start is with System

Design followed by Real-Time Simulation, then Prototype/Integration Testing, and finally

Formal System Testing.

System Design

Requirements

Based Inputs

Model Based

Analysis, Design,

and Architecture

Requirement

Derivation and

Flowdown

Lower Level

Requirements

Real-Time Simulation

• System model ported to

real-time simulator

• Same user interface as

test lab

• Develop and

debug test

procedures and

scripts before

integration

• Find functional

problems early

• Simulation allows parallel test

development with no lab assets

Formal System Testing

• Utilizes procedures

and scripts

developed in

simulation and dry

run in integration

• Formal Verification of

requirements

• Modular, scalable lab

to accommodate any

type of system

Controller 1

Controller 2

Controller 3

Test System

Actuator 5

Actuator 4

Actuator 3

Actuator 2

Actuator 1

Actuator 6

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Te
st

 F
ix

tu
re

 1
Te

st
 F

ix
tu

re
 2

Te
st

 F
ix

tu
re

 3
Te

st
 F

ix
tu

re
 4

Te
st

 F
ix

tu
re

 5
Te

st
 F

ix
tu

re
 6

Test Fixture Interface

Signal Sense and Fault InjectionSignal Sense and Fault Injection

Power Supply 1 Power Supply 2 Power Supply 3

Power Bus 1 Power Bus 2 Power Bus 3

Power Bus 1

Power Bus 2

Power Bus 3

Hydraulic Pressure Control

Co
nt

ro
lle

r1
Co

nt
ro

ll
er

2
Co

nt
ro

ll
er

3

Prototype/Integration Testing

Full System Integration

• Common, reconfigurable

development and verification lab

architecture

• Capable of running with

simulations up to full system

hardware and anything in between

EHA System

EMA System

Conventional
Hydraulic System

VCAS System

Other Systems

Real Actuators,

Simulated Controllers
Real Controllers,

Simulated Actuators

Controller 1

Controller 2

Controller 3

Test System

Actuator 5

Actuator 4

Actuator 3

Actuator 2

Actuator 1

Actuator 6

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Te
st

 F
ix

tu
re

 1
Te

st
 F

ix
tu

re
 2

Te
st

 F
ix

tu
re

 3
Te

st
 F

ix
tu

re
 4

Te
st

 F
ix

tu
re

 5
Te

st
 F

ix
tu

re
 6

Test Fixture Interface

Signal Sense and Fault InjectionSignal Sense and Fault Injection

Power Supply 1 Power Supply 2 Power Supply 3

Power Bus 1 Power Bus 2 Power Bus 3

Power Bus 1

Power Bus 2

Power Bus 3

Hydraulic Pressure Control

Co
nt

ro
lle

r1
Co

nt
ro

ll
er

2
Co

nt
ro

ll
er

3

Controller 1

Test System

Actuator 5

Actuator 4

Actuator 3

Actuator 2

Actuator 1

Actuator 6

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Te
st

 F
ix

tu
re

 1
Te

st
 F

ix
tu

re
 2

Te
st

 F
ix

tu
re

 3
Te

st
 F

ix
tu

re
 4

Te
st

 F
ix

tu
re

 5
Te

st
 F

ix
tu

re
 6

Test Fixture Interface

Signal Sense and Fault InjectionSignal Sense and Fault Injection

Power Supply 1 Power Supply 2 Power Supply 3

Power Bus 1 Power Bus 2 Power Bus 3

Power Bus 1

Power Bus 2

Power Bus 3

Hydraulic Pressure Control

Controller 2

Controller 3

Controller 1

Controller 2

Controller 3

Test System

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Data Bus

Te
st

 F
ix

tu
re

 1
Te

st
 F

ix
tu

re
 2

Te
st

 F
ix

tu
re

 3
Te

st
 F

ix
tu

re
 4

Te
st

 F
ix

tu
re

 5
Te

st
 F

ix
tu

re
 6

Test Fixture Interface

Signal Sense and Fault InjectionSignal Sense and Fault Injection

Power Supply 1 Power Supply 2 Power Supply 3

Power Bus 1 Power Bus 2 Power Bus 3

Power Bus 1

Power Bus 2

Power Bus 3

Hydraulic Pressure Control

Co
nt

ro
lle

r1
Co

nt
ro

ll
er

2
Co

nt
ro

ll
er

3

Actuator
Simulator

Actuator
Simulator

Actuator
Simulator

Actuator
Simulator

Actuator
Simulator

Actuator
Simulator

Figure 4. Example MBSE Workflow

Traditionally, test procedures are developed based on the system requirements and the test

engineer’s understanding of the test system functionality. The procedures are then

implemented using test automation software (generally a test scripting language). The

automation script would then be debugged in the test lab. Generally iterations of the procedure

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

and script would be required to arrive at test that is ready for formal verification testing. In the

newer paradigm, the goal of the Real-Time Simulation step in the MBSE workflow is to utilize

the system model to develop and debug system tests while utilizing the same user and

automation environment as the test lab. This allows tests to be developed without the need for a

test lab.

Further benefits are realized by applying system patterns to the system testing process. That is,

there are repeatable patterns in both the system under test and the testing system. A

representation of a portion of a generic testing pattern is shown in Figure 5. Once the pattern

configuration is complete, a test procedure suitable for customer review and an automated

script that can be executed in the physical test lab are automatically generated. The automation

script also analyzes the test data and generates an automated test report.

act [Package] Testing [Testing]

Creat Test Pre-

Conditions

Test Start

Execute Test Steps Collect Test Data

Analyze Test Data

Post-Test Actions

Generate Test Report

Test End

Figure 5. Portion of Generalized Testing Process Pattern

In implementing the pattern, there were two subcategories of testing patterns that were

developed for the actuation system testing. The first type of pattern, referred to as template

tests, involves tests that are run in basically the same fashion for each different type of system.

The template test patterns are developed with configurable parameters to facilitate use with

different types of systems. For actuation systems these tests tended to performance

measurement and similar tests. The second type of pattern, referred to as vector tests, is more

generic and has broader potential application. This is a generic pattern where system inputs are

defined as a (configurable) function of time (time-based vectors). Expected results are also

defined as a function of time. Expected results are defined as upper and lower bounds on the

pertinent system outputs. To perform the test, the vectors of inputs vs. time are applied to the

system. The pertinent system outputs are recorded and then compared against the defined

bounds to determine a pass/fail result.

Taking advantage of the system model, vector test development begins in the desktop

modeling environment. To verify a particular requirement, the input and expected output

vectors are defined as time based vectors that are applied to the system simulation. Simulated

outputs are checked against the expected outputs to determine if the designed system satisfies

the given requirement. This capability to test in simulation provides a measure of validation for

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

the design and associated derived requirements. Once the test is developed and debugged in

simulation, the test vectors are converted for execution in the real-time environment and the

test lab. This conversion is a simple formatting change to put the input and expected output

vectors in a format compatible the real-time simulation and test lab environments. The

automation capability of the tool chain makes it possible to go from simulation on a desk top

computer to execution on the physical system in a matter of seconds. This workflow is

demonstrated for an actuator fault injection test in the following section.

 IV.1 A Safety Critical System Verification Example

Safety critical systems typically have architectures and design features that are intended to

allow safe operation in the presence of system hazards. One of the more significant hazards for

flight control actuation systems is the loss of control of an actuator. One such failure mode for

a hydraulic actuator is servo valve hardover failure (failure at max output). This failure causes

the actuator to move at maximum velocity until it contacts the actuator mechanical travel

limits. The result is an aircraft with a control surface fixed at maximum deflection which

typically has catastrophic results for the vehicle. Due to the serious effects of the failure, the

system design includes functionality to detect and mitigate failures such as this. For this

example a test is developed to test the fault response of a rudder actuator to a servo valve

hardover failure. For this test, the key system requirements are:

1. The FCAS shall limit surface transients to less 5% of the actuator stroke.

2. The FCAS shall transition a failed surface to the fail-safe mode in less than 250 msec.

3. The FCAS shall annunciate failures to the flight control computer.

FCAS = Flight Control Actuation System

The system model is developed to include the simulation of key fault conditions. Once the

model fidelity is sufficient to represent the system design and the associated fault conditions, a

test approach is developed. A set of system input and expected output vectors are defined based

on the test approach. The system inputs and expected outputs for this example are shown in

Figure 6.

Once the test vectors are defined, additional meta-data is associated with the test. Test

objectives and a brief description of the test methodology is created and associated with the test

vectors. This meta-data aids in review and maintenance of the tests. Links are also created to

link the test to the requirements in the requirements database.

When the test is executed in simulation, the system response is compared to the expected

outputs. The simulated test results are displayed and archived automatically using the tool

automation features. An example of the simulated test results is shown in Figure 7.

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Figure 6. System Input/Expected Output Vectors for Hardover Failure Test

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
CE1_LR_VotedActPosition

C
E

1
_
L
R

_
V

o
te

d
A

c
tP

o
s
it
io

n

Recorded Data

Upper Bound

Lower Bound

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

N
o
rm

a
liz

e
d
 V

a
lu

e

Normalized Results
Figure 7. Results for Simulated Hardover Failure Test

Once the test definition is complete, a test procedure is automatically generated using the test

vectors, test meta-data, and the linked requirements. A snapshot of the automated procedure is

shown in Figure 8.

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Figure 8. Auto-Generated Procedure Excerpt for Hardover Failure Test

When the test is ready to be executed in real-time simulation or the system test lab, the test is

converted into a format that is compatible with the test environment. The test is executed by a

script that utilizes the test vectors for real-time execution. Data is collected and compared

against the expected outputs. An example excerpt from the auto-generated test report is shown

in Figure 9.

Figure 9. Auto-Generated Test Report Excerpt for Hardover Failure Test

 IV.2 Representation Using Formal S*Patterns

Both re-usability and configurability are maximized when both the Product System and the

Test System of the above example are represented by configurable S*Patterns:

 The Product System Pattern represents the general class of product systems for the

developer enterprise, and this may be specialized to individual product line platforms,

and then configured for specific project deliverables.

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

 The Test System Pattern represents the general test system (including automated as

well as manual aspects) of the developer enterprise, and may be specialized to

individual test platforms and further configured to specific project tests.

Figure 10. Product System Pattern and Test System Pattern

Each of these S*Patterns consists of generalized configurable models that conform to the

S*Metamodel of Figure 1. Figures 11 and 12 are extracts of the ISO15288 model portion of the

System of Innovation Pattern, with Figure 12 focused on its Verification Process, itself driven

by patterns. Example extracts of the Feature and Interaction portions of these two patterns are

summarized in Figure 13.

During a project, the applicable System Pattern is configured for the specific product and

product test plans. The main input to this configuration is the configuration of the applicable

Features from the pattern. Figure 14 illustrates a typical feature configuration process user

interface, which can be attached to any third party toolset used as the pattern repository.

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Figure 11. From the System of Innovation Pattern: ISO15288 Technical Processes

Figure 12. From the System of Innovation Pattern: Verification Process, Pattern-Driven

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Figure 13. Selected Extracts from Product Pattern and Test System Pattern

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Figure 14. Configuring the Pattern Features for Specific Product and Test Systems

 IV.3 Initial Gains Experienced

The application of MBSE patterns to system verification efforts can yield significant

improvements in the effectiveness and efficiency of the testing program. The benefits realized

through the presented workflow implementation are:

 Scalability of test development. The ability to develop and debug tests and the

automated scripts independent of the system test lab means that test development can

be economically parallelized.

 Test development in simulation. Verification tests can be developed independent of test

hardware. This eliminates the test lab as a potential bottleneck in the development of

verification tests.

 Focus on technical content. Engineers focus on test content and system responses rather

than the administrative tasks of generating tests, test procedures, and test reports. This

process also eliminates much of the test rework effort because tests can be effectively

debugged using the system model.

 Rapid test development. Tests can be implemented quickly in simulation then

converted to run in real-time on the test system in seconds.

The presented application of MBSE patterns as presented in this paper are expected to reduce

integration and test effort by more than 25% for the testing of flight control actuation systems.

 IV.4 Future Applications and Extensions

Future extensions include the further expansion of the system patterns into the design and

modeling of the product system. The goal here is to expand the approach developed and

presented here into the analysis and design phases of development. Plans are to demonstrate

and mature the patterns for portions of the system and expand the pattern progressively over

time while continuing to deliver increased value to current development efforts.

V. Summary and Conclusions

The application of Pattern-Based Systems Engineering (PBSE) promises to improve the

efficiency of system development efforts by leveraging existing intellectual capital in new

development efforts. The application of S* Patterns provide a robust framework for effectively

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

creating effective system patterns. The application of MBSE tools and techniques can help to

realize greater pattern value. This paper presents the application of MBSE system patterns to

the testing of flight control actuation systems and associated benefits. The presented approach

holds promise for testing of similar technological systems.

While significant benefits have been realized from the current MBSE implementation, the

potential exists for significant additional gains. The further application of S* patterns to similar

systems is one of the goals of the INCOSE PBSE Challenge Team.

References

1. Cook, David. “Electronics Take Off: Real-Time Testing of Modern Actuation Systems

at Moog”, dSpace Magazine, Paderborn, Germany, January, 2014.

2. W. Schindel, “Maps or Itineraries? A Systems Engineering Insight from Ancient

Navigators”, to appear in Proceedings of the INCOSE 2015 International Symposium,

Seattle, WA, July, 2015.

3. W. Schindel, “System Life Cycle Trajectories: Tracking Innovation Paths Using

System DNA”, to appear in Proceedings of the INCOSE 2015 International

Symposium, Seattle, WA, July, 2015.

4. W. Schindel, S. Lewis, J. Sherey, S. Sanyal, “Accelerating MBSE Impacts Across the

Enterprise: Model-Based S*Patterns”, to appear in Proceedings of the INCOSE 2015

International Symposium, Seattle, WA, July, 2015.

5. W. Schindel, “Requirements statements are transfer functions: An insight from

model-based systems engineering”, Proceedings of INCOSE 2005 International

Symposium, (2005).

6. W. Schindel, “What Is the Smallest Model of a System?”, Proc. of the INCOSE 2011

International Symposium, International Council on Systems Engineering (2011).

7. Schindel, W. “The Difference Between Whole-System Patterns and Component

Patterns: Managing Platforms and Domain Systems Using PBSE”, INCOSE Great

Lakes Regional Conference on Systems Engineering, Schaumburg, IL, October, 2014

8. Schindel, W. “Interactions: At the Heart of Systems”, INCOSE Great Lakes Regional

Conference on Systems Engineering, W. Lafayette, IN, October, 2013.

9. W. Schindel, and V. Smith, “Results of applying a families-of-systems approach to

systems engineering of product line families”, SAE International, Technical Report

2002-01-3086 (2002).

10. W. Schindel, “Pattern-Based Systems Engineering: An Extension of Model-Based SE”,

INCOSE IS2005 Tutorial TIES 4, (2005).

11. J. Bradley, M. Hughes, and W. Schindel, “Optimizing Delivery of Global

Pharmaceutical Packaging Solutions, Using Systems Engineering Patterns”

Proceedings of the INCOSE 2010 International Symposium (2010).

12. W. Schindel, “The Impact of ‘Dark Patterns’ On Uncertainty: Enhancing Adaptability

In The Systems World”, in Proc. of INCOSE Great Lakes 2011 Regional Conference

on Systems Engineering, Dearborn, MI, 2011

24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

13. W. Schindel, “Introduction to Pattern-Based Systems Engineering (PBSE)”, INCOSE

Finger Lakes Chapter Webinar, April 26, 2012.

14. INCOSE/OMG MBSE Initiative: Patterns Challenge Team 2013-14 Web Site:

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

15. Bill Schindel, Troy Peterson, “Introduction to Pattern-Based Systems Engineering

(PBSE): Leveraging MBSE Techniques”, in Proc. of INCOSE 2013 International

Symposium, Tutorial, June, 2013.

16. Eric Berg, “Affordable Systems Engineering: An Application of Model-Based System

Patterns To Consumer Packaged Goods Products, Manufacturing, and Distribution”, at

INCOSE IW2014 MBSE Workshop, 2014.

17. ISO/IEC 15288: Systems Engineering—System Life Cycle Processes. International

Standards Organization (2014).

18. INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes

and Activities, Version 4, International Council on Systems Engineering (2014).

19. ISO/IEC 26550 “Software and Systems Engineering—Reference Model for Product

Line Engineering and Management”, 2013.

20. ISO/IEC42010 “Systems and Software Engineering—Architecture Description”, 2011.

21. Rick Dove, Ralph LaBarge, “Fundamentals of Agile Systems Engineering—Part 1”

and “Part 2”, INCOSE IS2014, July, 2014.

22. Rick Dove, Bill Schindel, “Agile Modelling and Modelling Agile Systems” session at

INCOSE IW2015 MBSE Workshop, Torrance, CA, January 24, 2015.

Biography

William D. (Bill) Schindel is president of ICTT System Sciences. His

engineering career began in mil/aero systems with IBM Federal Systems,

included faculty service at Rose-Hulman Institute of Technology, and

founding of three systems enterprises. Bill co-led a 2013 project on the

science of Systems of Innovation in the INCOSE System Science Working

Group. He co-leads the Patterns Challenge Team of the OMG/INCOSE

MBSE Initiative.

David Cook is the Systems Chief Engineer for the Moog Aircraft

Group. He has over 17 years of experience in the development of safety

critical flight control actuation systems. He has been an active advocate

and change agent in the introduction MBSE his organization. David is

currently a member of the Patterns Challenge Team of the

OMG/INCOSE MBSE Initiative.

