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Abstract. In aerospace, automotive, health care, and other domains, the capability to effectively 

plan and perform system verification tests is increasingly a strategic differentiator.  This paper 

reports on methods used to improve effectiveness of complex aircraft system tests, the gains 

achieved, and their connection to underlying methods and trends. These include use of 

Model-Based Systems Engineering (MBSE), leveraged by Pattern-Based Systems Engineering 

(PBSE) to generate configurable, re-usable system models--the focus of the INCOSE MBSE 

Patterns Challenge Team. (PBSE Team, 2014)    

 

Distinctive aspects include (1) use of configurable, model-based patterns of system 

descriptions, including configurable system verification tests, (2) improved ability of 

model-based descriptions to integrate modeling tools and automated systems for test 

management, (3) use of models to describe both system under development and the 

development process, and (4) ability of these models to be integrated with other system life 

cycle management processes and information systems, for increased leverage.   

I. Introduction 

Enterprises involved in the development of technological systems have significant intellectual 

capital that has been accumulated through the execution of numerous development projects. 

Regardless of the methods employed, this existing knowledge is a key asset in the development 

of new systems. The utilization of model-based system patterns and Pattern Based Systems 

Engineering processes provide a disciplined and systematic approach to maximize the effective 

use of this intellectual capital in the development of new systems. Coupled with the capabilities 

of modern MBSE tools and techniques, the application of pattern based MBSE holds the 

promise of significant improvements in the development of modern technological systems. 

 

This paper examines the application of model based system patterns to accelerate the 

verification of modern technological systems. The particular example for chosen for this paper 

is the testing of a safety critical aircraft subsystem, namely the flight control actuation system. 

II. Challenges and Opportunities 

It is understandable that the development of safety critical systems tends to be very risk averse. 

Processes for the development of safety critical aircraft systems are subject to scrutiny by the 

aircraft manufacturers (customers) and certification authorities to ensure that the development 

processes do not introduce unintended hazards into the system. For safety critical systems, like 

flight control actuation, modeling provides the ability to improve the requirements quality and 

overall system design integrity. However, regardless of the design rigor, extensive verification 

(primarily testing or combination of analysis and test) is required to verify the system meets the 

functional and safety related requirements. The effort required to develop and execute a 

rigorous test program results in significant development cost. Testing cost can be 20% to 50% 

of development effort (excluding hardware manufacturing costs) in many cases. Cutting testing 

mailto:dcook@moog.com
mailto:schindel@ictt.com


24
th

 Annual INCOSE International Symposium (IS2015) 

Seattle, WA, July 10 – 16, 2015 

 

  

costs without sacrificing test effectiveness can result in significant competitive advantages. 

(Cook, 2014) 

 

A primary goal of MBSE is to utilize the system models to capture and communicate all system 

related information in a clear and unambiguous fashion. If this can be accomplished with 

models then the documents used in traditional systems engineering are no longer necessary as 

the prime repository of information—they instead become snapshot artifacts that are views of 

the primary model database at the times of key milestones. The system model supersedes all 

the previous document artifacts as the most fundamental representation, but this model can be 

made to formally include model-based prose requirements and similar structures (Schindel, 

2005). The current state of the industry and the extensive formal documentation associated 

with safety critical aircraft systems necessitate the use of conventional documents for many of 

the system development artifacts. As such, any MBSE implementation must be compatible 

with an environment where conventional engineering documentation is required. For 

verification tests, this includes formal test procedure and report documents. 

III. MBSE and Patterns 

III.1 MBSE Improves Basic Representation 

Model-Based Systems Engineering (MBSE) changes and improves how we represent systems 

(Schindel, 2014). This applies to more than just the Product System to be developed.  Benefits 

can also be gained from explicit models of different systems across the Product System’s life 

cycle, potentially including:   

 The Product System itself, along with aspects of the larger Application Domain System 

in which it will serve (*) 

 The Test System that will perform formal verification tests (*) 

 Other aspects of the System of Development (e.g., the ISO15288 Technical Processes) 

 The Manufacturing System (the System of Production) that instantiates the Product 

 The Distribution System (including installation) that distributes the Product 

 The Operations System that helps support in-service use of the Product 

 The Maintenance System that helps maintain the Product  

 The Decommissioning and Disposal System  

Those marked (*) above are the focus of this paper.  

 

Basic benefits of using MBSE to represent a Product System under development are becoming 

better known. For example, when compared to earlier traditional prose approaches, 

model-based requirements are generally: 

 more explicit, less ambiguous, more likely to be interpreted consistently; 

 easier to audit for completeness and correctness;  

 more objectively interpreted for planning of test. 

(Schindel, 2005, 2014) 

 

These general benefits apply across a variety of contemporary modeling languages and 

supporting tools. They are amplified when applied using the underlying S*Metamodel of 

Figure 1 (Schindel, 2014). Such S*Models associate system requirements with physical 

Interactions (Schindel, 2013), treat requirements as parameterized “transfer functions” 

(Schindel, 2005), and otherwise conform to that framework. Beyond the aerospace example of 

Section IV, these techniques are currently being demonstrated by the INCOSE Patterns 

Challenge Team, across multiple languages, tools, and domains (PBSE Team, 2014). 
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Figure 1: Underlying S*Metamodel Summary, Language & Tool Independent 

   

 III.2 MBSE Improves Test Representation 

When MBSE is based on the S*Metamodel, all system requirements are seen to be described in 

the context of physical Interactions (exchanges of energy, force, mass, or information) with 

external domain actors, and each of the interacting entities has assigned Functional Roles that 

are modeled. As shown in Figure 2, this means that not only the requirements on the system 

under test are captured—so also are the related requirements (which could be called assumed 

behaviors) of the external systems. This has several advantages, but for purposes of this paper a 

key advantage is that it provides candidate behaviors of the Test System that will exercise the 

system under test. Having these role-based behaviors linked together as Interactions in the 

model from the outset reduces the effort of coordinating the test protocol with the requirements 

being tested.  Since the Test System should also measure and capture the behavior of the 

System Under Test, this also provides an indication of expected behavior during test, for 

comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Models Describe In-Service Application Domain, As Well As its Test Simulation 
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1. To specify requirements of the Product System 

2. To partition the overall Test Cases and specify the Test System behaviors in each 

3. To specify the expected behavior of the System Under Test, for comparison (related to 

(1) above, but possibly also configured further for purposes of test versus service) 

4. To specify the reports to be produced by the Test System 

 

The above could be of some value if the Test System were completely manual (human 

performed), but becomes much more valuable if the Test System includes automation that can 

be driven directly by the MBSE models.  This is illustrated in Section IV.   

III.3 PBSE: Configurable Models Magnify Leverage and IP 

When a systems enterprise focuses ongoing work in product lines or platform systems of a 

particular domain (e.g., automotive, aerospace, medical/health care, telecom systems, 

consumer products, etc.), the above gains may be further leveraged. The system models 

described in III.1-2 may be arranged to describe a general family of systems in a re-usable, 

configurable fashion.  When S*Models described above are arranged in this way, they are 

referred to as S*Patterns (Peterson and Schindel, 2013; Patterns Team 2013-14).  These can 

describe not only the Product System family, but also the other systems listed in Section III.1, 

and used for the test purposes described in Section III.2. 

 

Figure 3 illustrates the idea that such S*Patterns describe abstract families of systems, using the 

same S*Metamodel. These system patterns may be specialized and configured for specific 

projects, as part of the development, verification, and other system life cycle processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: S*Patterns Are Re-usable, Configurable S*Models 
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In the case of S*Patterns, configurability is driven by the Stakeholder Features portion of the 

applicable patterns. This reflects the idea that the only reason for configuring a general system 

pattern to a specific configuration is to deliver specific stakeholder-realizable benefits or 

outcomes. For this reason, the delivery process of configuring the Features portion of an 

S*Pattern can be used to semi-automatically generate configured versions system requirements, 

system tests, and other configured models (Peterson and Schindel, 2013).   Furthermore, if the 

Test System is arranged to be driven (or configurable) by the configured Test System Pattern, 

then additional benefits of test protocol development and validation may be gained.   

 

The application of these ideas to system verification test is illustrated in Section IV. 

IV.  Verification Application Examples 

To realize the maximum effectiveness in the application of MBSE, the processes, tools, and 

methods have to be engineered in much the same way that the product system is engineered. 

There can generally be specific test needs based on the type of system being tested. The system 

in this example is a safety critical flight control actuation system for modern aircraft. In this 

example, the test platform and associated tool chain were selected to support the overall MBSE 

workflow. The combination of development and test tools were selected to optimize 

effectiveness over the entire life cycle. In much the same way that a globally optimized system 

is not necessarily made up of locally optimized system elements, a globally optimized 

development tool chain is not necessarily made of locally optimal tools. A depiction of the 

example workflow is shown in Figure 4. In the depicted workflow, the start is with System 

Design followed by Real-Time Simulation, then Prototype/Integration Testing, and finally 

Formal System Testing. 
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Figure 4. Example MBSE Workflow  

Traditionally, test procedures are developed based on the system requirements and the test 

engineer’s understanding of the test system functionality. The procedures are then 

implemented using test automation software (generally a test scripting language). The 

automation script would then be debugged in the test lab. Generally iterations of the procedure 
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and script would be required to arrive at test that is ready for formal verification testing. In the 

newer paradigm, the goal of the Real-Time Simulation step in the MBSE workflow is to utilize 

the system model to develop and debug system tests while utilizing the same user and 

automation environment as the test lab. This allows tests to be developed without the need for a 

test lab. 

 

Further benefits are realized by applying system patterns to the system testing process. That is, 

there are repeatable patterns in both the system under test and the testing system. A 

representation of a portion of a generic testing pattern is shown in Figure 5. Once the pattern 

configuration is complete, a test procedure suitable for customer review and an automated 

script that can be executed in the physical test lab are automatically generated. The automation 

script also analyzes the test data and generates an automated test report. 
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Figure 5. Portion of Generalized Testing Process Pattern  

 

In implementing the pattern, there were two subcategories of testing patterns that were 

developed for the actuation system testing. The first type of pattern, referred to as template 

tests, involves tests that are run in basically the same fashion for each different type of system. 

The template test patterns are developed with configurable parameters to facilitate use with 

different types of systems.  For actuation systems these tests tended to performance 

measurement and similar tests. The second type of pattern, referred to as vector tests, is more 

generic and has broader potential application. This is a generic pattern where system inputs are 

defined as a (configurable) function of time (time-based vectors).  Expected results are also 

defined as a function of time.  Expected results are defined as upper and lower bounds on the 

pertinent system outputs. To perform the test, the vectors of inputs vs. time are applied to the 

system. The pertinent system outputs are recorded and then compared against the defined 

bounds to determine a pass/fail result. 

 

Taking advantage of the system model, vector test development begins in the desktop 

modeling environment. To verify a particular requirement, the input and expected output 

vectors are defined as time based vectors that are applied to the system simulation. Simulated 

outputs are checked against the expected outputs to determine if the designed system satisfies 

the given requirement. This capability to test in simulation provides a measure of validation for 
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the design and associated derived requirements. Once the test is developed and debugged in 

simulation, the test vectors are converted for execution in the real-time environment and the 

test lab. This conversion is a simple formatting change to put the input and expected output 

vectors in a format compatible the real-time simulation and test lab environments. The 

automation capability of the tool chain makes it possible to go from simulation on a desk top 

computer to execution on the physical system in a matter of seconds. This workflow is 

demonstrated for an actuator fault injection test in the following section. 

             IV.1 A Safety Critical System Verification Example 

Safety critical systems typically have architectures and design features that are intended to 

allow safe operation in the presence of system hazards. One of the more significant hazards for 

flight control actuation systems is the loss of control of an actuator. One such failure mode for 

a hydraulic actuator is servo valve hardover failure (failure at max output). This failure causes 

the actuator to move at maximum velocity until it contacts the actuator mechanical travel 

limits. The result is an aircraft with a control surface fixed at maximum deflection which 

typically has catastrophic results for the vehicle. Due to the serious effects of the failure, the 

system design includes functionality to detect and mitigate failures such as this. For this 

example a test is developed to test the fault response of a rudder actuator to a servo valve 

hardover failure. For this test, the key system requirements are: 

 

1. The FCAS shall limit surface transients to less 5% of the actuator stroke. 

2. The FCAS shall transition a failed surface to the fail-safe mode in less than 250 msec. 

3. The FCAS shall annunciate failures to the flight control computer. 

 

FCAS = Flight Control Actuation System 

 

The system model is developed to include the simulation of key fault conditions. Once the 

model fidelity is sufficient to represent the system design and the associated fault conditions, a 

test approach is developed. A set of system input and expected output vectors are defined based 

on the test approach. The system inputs and expected outputs for this example are shown in 

Figure 6. 

 

Once the test vectors are defined, additional meta-data is associated with the test. Test 

objectives and a brief description of the test methodology is created and associated with the test 

vectors. This meta-data aids in review and maintenance of the tests. Links are also created to 

link the test to the requirements in the requirements database. 

 

When the test is executed in simulation, the system response is compared to the expected 

outputs. The simulated test results are displayed and archived automatically using the tool 

automation features. An example of the simulated test results is shown in Figure 7. 
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Figure 6. System Input/Expected Output Vectors for Hardover Failure Test  
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Figure 7. Results for Simulated Hardover Failure Test  

 

 

 

 

Once the test definition is complete, a test procedure is automatically generated using the test 

vectors, test meta-data, and the linked requirements. A snapshot of the automated procedure is 

shown in Figure 8. 
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Figure 8. Auto-Generated Procedure Excerpt for Hardover Failure Test  

 

When the test is ready to be executed in real-time simulation or the system test lab, the test is 

converted into a format that is compatible with the test environment. The test is executed by a 

script that utilizes the test vectors for real-time execution. Data is collected and compared 

against the expected outputs. An example excerpt from the auto-generated test report is shown 

in Figure 9. 

 

 
Figure 9. Auto-Generated Test Report Excerpt for Hardover Failure Test  

              IV.2 Representation Using Formal S*Patterns 

Both re-usability and configurability are maximized when both the Product System and the 

Test System of the above example are represented by configurable S*Patterns: 

 The Product System Pattern represents the general class of product systems for the 

developer enterprise, and this may be specialized to individual product line platforms, 

and then configured for specific project deliverables.  
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 The Test System Pattern represents the general test system (including automated as 

well as manual aspects) of the developer enterprise, and may be specialized to 

individual test platforms and further configured to specific project tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Product System Pattern and Test System Pattern 

 

Each of these S*Patterns consists of generalized configurable models that conform to the 

S*Metamodel of Figure 1.  Figures 11 and 12 are extracts of the ISO15288 model portion of the 

System of Innovation Pattern, with Figure 12 focused on its Verification Process, itself driven 

by patterns.  Example extracts of the Feature and Interaction portions of these two patterns are 

summarized in Figure 13.  

 

During a project, the applicable System Pattern is configured for the specific product and 

product test plans. The main input to this configuration is the configuration of the applicable 

Features from the pattern. Figure 14 illustrates a typical feature configuration process user 

interface, which can be attached to any third party toolset used as the pattern repository.  
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Figure 11. From the System of Innovation Pattern: ISO15288 Technical Processes   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. From the System of Innovation Pattern: Verification Process, Pattern-Driven  
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Figure 13. Selected Extracts from Product Pattern and Test System Pattern 
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Figure 14. Configuring the Pattern Features for Specific Product and Test Systems 

 

  IV.3 Initial Gains Experienced 

The application of MBSE patterns to system verification efforts can yield significant 

improvements in the effectiveness and efficiency of the testing program. The benefits realized 

through the presented workflow implementation are: 

 

 Scalability of test development. The ability to develop and debug tests and the 

automated scripts independent of the system test lab means that test development can 

be economically parallelized. 

 Test development in simulation. Verification tests can be developed independent of test 

hardware. This eliminates the test lab as a potential bottleneck in the development of 

verification tests. 

 Focus on technical content. Engineers focus on test content and system responses rather 

than the administrative tasks of generating tests, test procedures, and test reports. This 

process also eliminates much of the test rework effort because tests can be effectively 

debugged using the system model. 

 Rapid test development. Tests can be implemented quickly in simulation then 

converted to run in real-time on the test system in seconds. 

 

The presented application of MBSE patterns as presented in this paper are expected to reduce 

integration and test effort by more than 25% for the testing of flight control actuation systems. 

             IV.4 Future Applications and Extensions 

Future extensions include the further expansion of the system patterns into the design and 

modeling of the product system. The goal here is to expand the approach developed and 

presented here into the analysis and design phases of development. Plans are to demonstrate 

and mature the patterns for portions of the system and expand the pattern progressively over 

time while continuing to deliver increased value to current development efforts. 

V. Summary and Conclusions 

The application of Pattern-Based Systems Engineering (PBSE) promises to improve the 

efficiency of system development efforts by leveraging existing intellectual capital in new 

development efforts. The application of S* Patterns provide a robust framework for effectively 

 



24
th

 Annual INCOSE International Symposium (IS2015) 

Seattle, WA, July 10 – 16, 2015 

 

  

creating effective system patterns. The application of MBSE tools and techniques can help to 

realize greater pattern value. This paper presents the application of MBSE system patterns to 

the testing of flight control actuation systems and associated benefits. The presented approach 

holds promise for testing of similar technological systems. 

 

While significant benefits have been realized from the current MBSE implementation, the 

potential exists for significant additional gains. The further application of S* patterns to similar 

systems is one of the goals of the INCOSE PBSE Challenge Team. 
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