

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC

S*Metamodel

Metamodel Version 7.1

07/03/2019

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC.
2

.

Licensed under a Creative Commons

Attribution Share Alike-License CC BY SA International 4.0

License Link: https://creativecommons.org/licenses/by-sa/4.0/legalcode

Uses are permitted under this license without further permission from the copyright owner, provided

each use (1) is clearly marked to attribute the underlying work to “S*Patterns Community”, (2)

provides a link to the CC BY SA license, (3) indicates if changes were made, (4) does not suggest the

licensor endorses the user or use, (5) does not apply legal terms or technological measures that legally

restrict others from doing anything the license permits, and (6) if you remix, transform, or build upon

the material, you must distribute your contributions under the same license as the original.

Permissions beyond the scope of this license are administered through contacting:

Corporate Officer

ICTT System Sciences

378 South Airport Street

Terre Haute, IN 47803

812-232-2208

Systematica is a registered trademark of System Sciences, LLC.
.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
tel:812-232-2208

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC. 3

TABLE OF CONTENTS

1.1 DOCUMENT PURPOSE .. 7

1.2 DOCUMENT SCOPE ... 7

1.3 DOCUMENT OVERVIEW .. 7

1.4 DOCUMENT REFERENCES ... 7

1.5 DOCUMENT HISTORY .. 8

2.1 SUMMARY METAMODEL .. 10

2.1.1 MODEL-BASED SYSTEMS ENGINEERING (MBSE) ... 12
2.1.2 PATTERN-BASED SYSTEMS ENGINEERING (PBSE) .. 12
2.1.3 INTELLIGENCE-BASED SYSTEMS ENGINEERING (IBSE) ... 12

2.2 CLASS HIERARCHY VIEW ... 13

2.3 GENERAL CLASS VIEW ... 14

2.4 FEATURE FRAMEWORK VIEW ... 15

2.5 MODELED RELATIONSHIP VIEWS VIEW .. 16

2.6 MODELED RELATIONSHIP VIEW ... 17

2.7 ARCHITECTURAL RELATIONSHIP VIEW ... 17

2.8 EMBEDDED INTELLIGENCE (EI) VIEW .. 18

2.9 FUNCTIONAL INTERACTION VIEW .. 19

2.10 REQUIREMENT RELATIONSHIP VIEW ... 20

2.11 DESIGN CONSTRAINT VIEW .. 21

2.12 ATTRIBUTE COUPLING VIEW ... 22

2.13 REQUIREMENTS COUPLING VIEW .. 23

2.14 DESIGN COUPLING VIEW .. 24

2.15 DOMAIN ANALYSIS VIEW.. 25

2.16 LOGICAL ARCHITECTURE VIEW ... 26

2.17 STATE ANALYSIS VIEW .. 27

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 4

2.18 DETAIL REQUIREMENTS VIEW .. 27

2.19 HIGH LEVEL DESIGN VIEW ... 29

2.20 SUMMARY PATTERN CONFIGURATION VIEW ... 30

3.1 CLASSES ... 32

3.1.1 ALLOCATION DECISION ... 32
3.1.2 ALTERNATIVE .. 33
3.1.3 ARCHITECTURAL RELATIONSHIP ... 34
3.1.4 ARCHITECTURAL RELATIONSHIP ROLE ... 36
3.1.5 ATTRIBUTE COUPLING .. 37
3.1.6 ATTRIBUTE COUPLING MAP .. 38
3.1.7 ATTRIBUTE ROLE ... 39
3.1.8 CLASS .. 40
3.1.9 DESIGN COMPONENT ATTRIBUTE ROLE .. 41
3.1.10 DESIGN CONSTRAINT ... 42
3.1.11 DESIGN CONSTRAINT STATEMENT ... 44
3.1.12 DESIGN COUPLING .. 45
3.1.13 DESIGN COUPLING MAP .. 46
3.1.14 DOMAIN .. 47
3.1.15 DOMAIN SYSTEM .. 48
3.1.16 EVENT ... 49
3.1.17 FEATURE (SERVICE) ... 50
3.1.18 FEATURE ATTRIBUTE ROLE .. 51
3.1.19 FUNCTIONAL INTERACTION ... 52
3.1.20 FUNCTIONAL ROLE .. 53
3.1.21 INFORMATION INPUT/OUTPUT ... 55
3.1.22 INPUT/OUTPUT .. 56
3.1.23 INPUT ROLE .. 57
3.1.24 INTERFACE ... 58
3.1.25 ISSUE ... 59
3.1.26 LOGICAL SYSTEM ... 60
3.1.27 MANAGED SYSTEM (MDS) .. 62
3.1.28 MANAGEMENT SYSTEM (MTS) .. 63
3.1.29 MANAGES .. 64
3.1.30 MODELED ATTRIBUTE .. 65
3.1.31 MODELED RELATIONSHIP ... 66
3.1.32 MODELED RELATIONSHIP ROLE ... 68
3.1.33 MODELED STATEMENT .. 69
3.1.34 NEED .. 70
3.1.35 OUTPUT ROLE .. 71
3.1.36 PHYSICAL INPUT/OUTPUT .. 72
3.1.37 PHYSICAL SYSTEM ... 73
3.1.38 PORT ... 75
3.1.39 RATIONALE ... 76
3.1.40 REQUIREMENTS COUPLING ... 77
3.1.41 REQUIREMENT RELATIONSHIP ... 78
3.1.42 REQUIREMENTS COUPLING MAP ... 79
3.1.43 REQUIREMENT STATEMENT .. 80
3.1.44 ROLE ATTRIBUTE ROLE ... 81
3.1.45 STATE .. 82
3.1.46 SYSTEM ... 83
3.1.47 SYSTEM OF ACCESS (SOA) ... 85

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 5

3.1.48 SYSTEM OF USERS (SOU) ... 86
3.1.49 TRANSITION.. 87
3.1.50 VALUE ... 88

3.2 METACLASS RELATIONSHIPS .. 89

3.2.1 ADVOCATES ... 89
3.2.2 ALLOCATED TO ... 90
3.2.3 APPEARS IN .. 92
3.2.4 BENEFITS ... 92
3.2.5 CONTAINS .. 92
3.2.6 DERIVED FROM ... 93
3.2.7 EMERGES FROM ... 93
3.2.8 EXEMPLIFIES ... 94
3.2.9 GROUPS .. 94
3.2.10 HAS ADVOCATE .. 95
3.2.11 HAS ATTRIBUTE .. 95
3.2.12 HAS FEATURE ... 96
3.2.13 HAS ISSUE .. 96
3.2.14 HAS PREVIOUS .. 96
3.2.15 HAS ROLE .. 97
3.2.16 HAS STAKEHOLDER .. 97
3.2.17 HAS STATE ... 98
3.2.18 HAS SUBJECT .. 98
3.2.19 HAS VALUE .. 98
3.2.20 HAS VIEW .. 99
3.2.21 INTERACTS THROUGH .. 100
3.2.22 IS A TYPE OF ... 100
3.2.23 IS CONSTRAINED BY ... 101
3.2.24 IS FACILITATED BY EXTERNALLY .. 101
3.2.25 IS FACILITATED BY INTERNALLY .. 101
3.2.26 IS LINKED BY EXTERNALLY ... 102
3.2.27 IS LINKED BY INTERNALLY ... 102
3.2.28 IS TRIGGERED BY ... 103
3.2.29 IS SPECIFIED BY ... 103
3.2.30 IS USED DURING ... 103
3.2.31 PERCEIVES .. 104
3.2.32 PERMITS ARCHITECTURAL RELATIONSHIP .. 104
3.2.33 PERMITS FUNCTIONAL INTERACTION .. 104
3.2.34 PERMITS INPUT/OUTPUT ... 105
3.2.35 PERMITS SOA .. 105
3.2.36 PROVIDES CONTEXT ... 106
3.2.37 PROVIDES INTERFACE ... 106
3.2.38 RECEIVES ... 106
3.2.39 REQUIRES .. 107
3.2.40 SATISFIES ... 107
3.2.41 SENDS ... 107
3.2.42 TRANSITIONS FROM... 108
3.2.43 TRANSITIONS TO ... 108
3.2.44 USES FUNCTIONAL INTERACTION ... 109

3.3 METACLASS ATTRIBUTES .. 109

3.3.1 ALLOCATED .. 109
3.3.2 AUTHOR .. 109
3.3.3 CHANGE DATE .. 109
3.3.4 CHANGE DESCRIPTION ... 109

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 6

3.3.5 CLASS LEVEL ... 109
3.3.6 DATE SUBMITTED .. 110
3.3.7 DEFINITION .. 110
3.3.8 DUE DATE .. 110
3.3.9 ID ... 110
3.3.10 MAJOR VERSION ... 110
3.3.11 MINOR VERSION ... 110
3.3.12 NAME ... 110
3.3.13 ORGANIZATION OWNER ... 110
3.3.14 ORIGINATOR .. 110
3.3.15 OWNER ... 110
3.3.16 PORT TYPE ... 111
3.3.17 PRIORITY .. 111
3.3.18 RANK .. 111
3.3.19 REFERENCE... 111
3.3.20 REQUEST TYPE .. 111
3.3.21 SCORE ... 111
3.3.22 SOURCE ... 111
3.3.23 STATUS .. 111
3.3.24 UPDATE VERSION .. 111

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 7

1 Introduction

1.1 Document Purpose

This document describes the information model of the Systematica® systems engineering

methodology at a conceptual level. Its intent is to provide the summarized and detailed

views of Systematica and describe the entities shown in these views. The intended

audience of this document is a system engineering methodologist concerned with defining

a methodology for an organization.

1.2 Document Scope

This document is at a conceptual level. No preferences to specific data model designs or

software tool paradigms are intended, as this document should be read as a guidance and

standard for any Systematica methodology implementations from pencil and paper to

advanced object-oriented systems. This document also does not describe the methodology

processes that develop, use, or maintain the information modeled herein; please refer to the

references below for Systematica process descriptions and guidance. Instead, this

document solely concentrates on explaining the information and concepts any Systematica

user will need, independent of the form that that information takes.

1.3 Document Overview

◼ Section 1 describes the document’s purpose, scope, structure, and history.

◼ Section 2 unveils the Metamodel by progressing from the summary view to the several

detailed views of Systematica.

◼ Section 3 describes the classes, relationships, and attributes of the metaclasses shown

in the Section 2 models.

1.4 Document References

1) Systematica Process Views Model

2) Systematica Pattern-Based Systems Engineering Process

3) The Systems Engineering Process Workshop

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 8

1.5 Document History

Date Version Changes

1/22/03 6.0.1 Initial Content

1/31/03 6.0.2 Edits to Views, Definitions,

and Relationships

2/02/03 6.0.3 Metaclass Attributes added

2/12/03 6.0.4 Clarified text and collapsed

Logical and Physical

System synonyms.

7/14/05 7.0.1 Initial upgrade to

Systematica 3.

12/01/07 7.0.1A Update legends

05/29/09 7.1 Added Configurability

Content

08/29/18 7.1.2 Corrected Spelling, Order

errors

10/26/18 7.1.3 Corrected logos, registration

marks, and branding.

11/19/18 7.1.4 Updated summary diagram

to show coupling clouds,

corrected meta relationship

pasting errors.

03/04/19 7.1.5 Updated summary diagram

to show new coupling

clouds.

3/29/19 7.1.6 Corrected header formats

and table of contents

7/3/19 7.1.6A Creative Commons License

nomenclature

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 9

2 Metamodel Views

This section uncovers the Systematica Metamodel (S* Metamodel) by first reviewing a

summary model and then by exploring a series of more detailed and formal views. The

summary model is intended for training and reference situations which require a less formal

description that still includes the main concepts of the Systematica Methodology. The

detailed views describe the Metamodel in a formal manner. Each detail view depicts the

metamodel in sometimes overlapping areas that roughly relate to Systematica process

steps or artifacts. Finally, this section provides a summary view on how pattern classes and

relationships are populated during a pattern configuration process. For explicit mappings to

Systematica process or artifact views, please consult the relevant references listed in

Section 1.4.

These Mata-Model views are explained in the following order:

◼ Summary Metamodel: The summary metamodel for informal reference and training.

◼ Class Hierarchy View: The formal view that depicts the class hierarchy of all

metaclasses.

◼ General Class View: The formal view that depicts the relationships allowed for every

metaclass.

◼ Feature Framework View: The formal view that depicts the relationships describing

information concerning Stakeholders, Needs, Features, and Feature Attributes.

◼ Modeled Relationship Views View: An informal view relating the following relationship

views to each other. This view does not have an impact on the Metamodel and only

explains how the next nine views relate.

◼ Modeled Relationship View: The formal view that depicts the abstract classes and

relationships with respect to modeled relationships and statements.

◼ Architectural Relationship View: The formal view that depicts the classes and

relationships relevant to Architectural Relationship modeling.

◼ Embedded Intelligence (EI) View: The formal view that depicts the specialization of

the abstract Architectural Relationship View into the model upon which the Intelligence-

Based Systems Engineering (IBSE) and the Embedded Intelligence (EI) pattern is

based.

◼ Functional Interaction View: The formal view that defines the classes and relationships

relevant to Functional Interactions to be specialization of those for Modeled

Relationships.

◼ Requirement Relationship View: The formal view that defines the classes and

relationships relevant to Requirement Statements.

◼ Design Constraint View: The formal view that defines the classes and relationships

relevant to Design Constraints.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 10

◼ Attribute Coupling View: The formal view that defines the abstract classes and

relationships relevant to coupling attributes.

◼ Requirements Coupling View: The formal view that depicts the classes and

relationships used to couple Feature Attributes to Functional Role Attributes.

◼ Design Coupling View: The formal view that depicts the classes and relationships used

to couple Functional Role Attributes to Design Component Attributes.

◼ Domain Analysis View: The formal view that depicts the classes and relationships

relevant to model the systems in a domain, their interfaces, and the relationships and

Input/Outputs between them.

◼ Logical Architecture View: The formal view that depicts the classes and relationships

relevant to modeling a system’s logical architecture.

◼ State Analysis View: The formal view that depicts the classes and relationships relevant

to modeling a system’s dynamic state behavior.

◼ Detail Requirements View: The formal view that depicts the classes and relationships

relevant to modeling a system’s detail level requirements (DLR) on a Functional

Interaction basis.

◼ High Level Design View: The formal view that depicts the classes and relationships

relevant to modeling a system’s high level design (HLD), including its physical

architecture, Functional Role allocations, and design rationale.

◼ Summary Pattern Configuration View: The summary view that depicts how the classes

and relationships of a pattern are populated during the pattern configuration process.

Definitions and view references for the classes and relationships in the following views can

be found in Section 3.

2.1 Summary Metamodel

The Summary Metamodel is an informal view of the S* Metamodel that covers the classes

and relationships most relevant to the concepts of the Systematica Methodology. The

Summary Metamodel is shown in Figure 1.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 11

Embedded Intelligence (EI)

Pattern Roles

MTSC

SOUC

MDSC

SOAC

Mtmt

Interac

tion

Management

System (MTS)

System of

Users (SOU)

Managed

System (MDS)

System of

Access (SOA)

Manages

System Containment Hierarchy

S*Metamodel for

Model-Based Systems

Engineering (MBSE)

Pattern-Based Systems

Engineering (PBSE)

Intelligence-Based Systems

Engineering (IBSE)

EI Hierarchy

S* Metamodel–Summary View,

for MBSE, PBSE, and IBSE

03-04-19 V1.7.1

Class

Every S*Metaclass shown is
embedded in both a
containment hierarchy and an
abstraction (class) hierarchy.

Pattern Class Hierarchy

Individual Product
or System Configurations

Product Lines or
System Families

Configure,
Specialize

Pattern

Improve
Pattern

General
System
Pattern

State

Input/

Output

Interface

Functional

Interaction

(Interaction)

System

System of

Access

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

attribute

Stakeholder
World

Language

High Level
Requirements

Technical
World

Language

Design

Constraint

Statement

Stakeholder

Requirement

Statement

Detail Level
Requirements

High Level
Design Characterization

(B) Coupling

Fitness
(A) Coupling

Decomposition
(C) Coupling

Functional

Role

attribute

Input-Output
(D) Coupling

Class

Every S*Metaclass shown is
embedded in both a
containment hierarchy and an
abstraction (class) hierarchy.

Figure 1: Summary Metamodel

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 12

The following subsections uncover the Systematica Summary Metamodel by considering a

series of views of models and their related descriptions. These views get more complex as

the Systematica level increases:

◼ Systematica Level 1: Model Based Systems Engineering (MBSE), a systems

engineering methodology for a single complex system.

◼ Systematica Level 2: Pattern-Based Systems Engineering (PBSE), a systems

engineering methodology for a family or product line of systems.

◼ Systematica Level 3: Intelligence-Based Systems Engineering (IBSE), a systems

engineering methodology for intelligent systems.

2.1.1 Model-Based Systems Engineering (MBSE)

The Summary Metamodel view in Figure 1 shows a class web in the upper right enclosed.

This web shows the classes most relevant to the methodology. The Systematica

Methodology revolves around the modeling of a system. Each System has a set of

Features, States, and Interfaces. Functional Interactions support the defined Features and

States of a System. During these Functional Interactions, Functional Roles, which are

Logical Systems, interact by transferring Input/Outputs through a System’s Interface. A

System’s Interface manages the relationships between an Input/Output, the Functional

Role, and which System of Access facilitates the interaction for interface control

documentation. Requirement Statements are written with respect to a Functional Role in a

context of a specific Functional Interaction. These Functional Roles are then allocated to a

Physical System, often called a Design Component.

Systematica MBSE Methodology incorporates containment relationships for every class, so

that each level of the System Containment Hierarchy, which is often symbolized by the

Systems Engineering “Vee”, can be modeled using the same metamodel.

2.1.2 Pattern-Based Systems Engineering (PBSE)

The Pattern-Based Systems Engineering (PBSE) model adds a class, or generalization,

relationship for each class, allowing models to be configured and specialized into separate

yet related MBSE models for specific applications. An MBSE model can use the PBSE

extension to define the common requirements and designs of an entire product line, system

family, or even sets of product lines or system families. The pyramid in Figure 1 describes

how the Systematica Metamodel can be applied at each abstraction level in the Pattern

Class Hierarchy.

2.1.3 Intelligence-Based Systems Engineering (IBSE)

The Intelligence-Based Systems Engineering (IBSE) model describes a specific pattern of

Functional Roles that is appropriate and valuable for systems that center on embedded

intelligence and management of systems. The Embedded Intelligence (EI) roles in the lower

left of Figure 1 describe the pattern suggested in IBSE. The EI pattern models four

functional roles in any management interaction. A Management System (MTS) manages

a Managed System (MDS) through a System of Access (SOA) to provide services

consumed by a System of Users (SOU). This pattern leads to a decomposition strategy to

the System Containment Hierarchy that leads to much improved understanding, analyses,

and decisions on the very complicated issues dealing with embedded intelligence and

management of systems.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 13

2.2 Class Hierarchy View

The first detailed, formal view of the S* Metamodel is the Class Hierarchy View in Figure 2.

This view relates each of the classes in the metamodel in a class hierarchy, or generalization

manner. The UML generalization line ending represents the “Is_A_Type_Of” Systematica

relationship.

Figure 2: Class Hierarchy View

System of

Access (SOA)

Domain

System

System of

Users (SOU)

System

Logical

System

Physical

System

Class

Interface

State

Functional

Interaction

Feature

(Service)

Input/Ouput

Physical Input/

Output

Information

Input/Output

Event

Domain

Modeled

Attribute

Managed

System (MDS)

Management

System (MTS)

Need

Architectural

Relationship

Port

Transition

Modeled

Statement

Requirement

Statement

Design

Constraint

Statement

Attribute Coupling

Map

Issue

Modeled

Relationship

Manages

Architectural

Relationship Role

Functional Role

Requirement

Relationship

Attribute Coupling

Requirements

Coupling

Design

Coupling

Attribute Role

Input Role

Design

Constraint

Value

Modeled

Relationship Role

Output Role

Feature

Attribute Role

Role Attribute

Role

Design

Component

Attribute Role

Requirements

Coupling Map

Design

Coupling Map

Rationale

Allocation

Decision

Alternative

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 14

2.3 General Class View

The General Class View depicts the metamodel relationships that are relevant to all classes. As in all other views, the UML generalization line

ending represents Systematica’s “Is_A_Type_Of” and the UML aggregation line ending represents Systematica’s “Contains” relationship.

However, Systematica’s “Contains” relationship is closer to UML’s “Composition” concept in that a class can only have one container.

Figure 3: General Class View

Class

Issue

Modeled

Attribute
Has_Attribute >

Has_Issue >

Derived_From >

Has_ Previous >

DomainAppears In>

*

*
* *

1

*

* *

*

*

ValueHas_Value >
1 *

Source

Derivation

Next

Version

Previous

Version
C

la
s
s

Attribute Attribute Value

Class

C
la

s
s

Domain

Issue

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 15

2.4 Feature Framework View

Figure 4 depicts the Feature Framework View of the metamodel. This view details the classes and relationships that model the Needs Analyses

and a System’s Features, or Services. This view defines the framework that guides and support value-based requirements and design

approaches.

Figure 4: Feature Framework View

System

Functional

Interaction

Feature

(Service)

Need
Logical

System

Has_Advocate>
Perceives >

Has_ Feature >

< Uses_ Functional_ Interaction

Satisfies >< Benefits
Has_

Stakeholder >

Modeled

Attribute
Has_ Attribute >

Advocates >
* *

*

*
* *

*

*

*

* *

*

*1 1 *

*

* Value

H
a

s
_

V
a

lu
e

 >

1

*

Feature Feature

Class

F
e

a
tu

re

Feature

Interaction

Attribute

Attribute

Value

Subject System

Subject System

S
ta

k
e
h

o
ld

e
r S

ta
k
e

h
o

ld
e
r

Stakeholder

Advocate

Advocate Need

Need

N
e

e
d

Stakeholder

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 16

2.5 Modeled Relationship Views View

The metamodel defines abstract concepts such as a Modeled Relationship, its Modeled

Relationship Roles, and Modeled Statements. These concepts are specialized to define

Architectural Relationships, Functional Interactions, Requirements, Design Constraints, and

Attribute Couplings. The following sections provide views defining each of these and are

related in a class hierarchy manner in Figure 5. This view does not impact the metamodel

but it does help relate each of the specialized relationship views to each other.

Figure 5: Modeled Relationship Views View

Modeled

Relationship View

Architectural

Relationship View

Requirement

Relationship View

Design Constraint

Relationship View

Attribute Coupling

Relationship View

Requirements

Coupling

Relationship View

Design Coupling

Relationship View

Functional

Interaction

Relationship View

Embedded

Intelligence (EI)

View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 17

2.6 Modeled Relationship View

The Modeled Relationship View defines the abstract concepts of Modeled Relationships and Modeled Statements. This abstract portion of the

model is specialized into other classes to create the views in the following sections.

Figure 6: Modeled Relationship View

2.7 Architectural Relationship View

Figure 7 specializes the Modeled Relationship View into classes that are used to model Architectural Relationships between modeled Systems.

This view enables the High Level Requirements (HLR) to be comprehensive yet much less detailed by summarizing specific Input/Outputs into

Architectural Relationships.

Figure 7: Architectural Relationship View

Class

Modeled

Relationship

Role

Modeled

Relationship
Has_Role > Allocated_ To >

Modeled

Statement
< Has_ View

*
1

2..* 1*Statement Relationship Relationship Role Role Class
1..*

Class

Modeled

Relationship

Role

Modeled

Relationship
Has_Role > Allocated_ To >

Modeled

Statement
< Has_ View

*
1

2..* 1*Statement Relationship Relationship Role Role Class

System

Architectural

Relationship

Role

Architectural

Relationship
Has_Role > Allocated_ To >

2..* 1*Relationship Role Role Class

1..*

1..*

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 18

2.8 Embedded Intelligence (EI) View

The Embedded Intelligence (EI) View specializes the Architectural Relationship View into a model that is central to the Intelligence-Based

Systems Engineering (IBSE) methodology. The “manages” relationship and its roles are the main Architectural Relationship pattern used in

systems that feature system intelligence or management.

Figure 8: Embedded Intelligence (EI) View

System of

Access (SOA)

Domain

System

System of

Users (SOU)

Managed

System (MDS)

Management

System (MTS)

Manages

Has_ Role >

Has_ Role >

Has_ Role >

Has_ Role >

1..*

1..*

1..*

1..*

*

*

*
*

System

Architectural

Relationship

Role

Architectural

Relationship
Has_Role > Allocated_ To >

*
2..* 1*Relationship Role Role Class

Role

Role

Role

R
e
la

ti
o
n

s
h

ip

Relationship

Relationship

R
e

la
tio

n
s
h

ip

Allocated_ To >

Allocated_ To >

Allocated_ To >

Allocated_ To >

1
C

la
s
s

*Role

*Role

*Role

*Role

Role

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 19

2.9 Functional Interaction View

The Functional Interaction View defines the Functional Interaction and its related classes as subclasses of the Modeled Relationship View

classes. The Functional Interact differs from the other relationships because it indirectly allocates its roles to classes through Allocation

Decisions. Because Allocation Decision is itself a Modeled Relationship, the pattern holds.

Figure 9: Functional Interaction View

Class

Modeled

Relationship

Role

Modeled

Relationship
Has_Role > Allocated_ To >

Modeled

Statement
< Has_ View

*
1 *

2..* 1*Statement Relationship Relationship Role Role Class Physical

System

Functional

Role

Functional

Interaction
Has_Role > Allocated_ To >

*
2..* 1*Relationship Role Role Class

Logical

System

Allocation

Decision

Rationale

AlternativeHas_Role >
1..*

1..*Relationship Role

A
llo

c
a
te

d
_

 T
o
 >

1

*Role

Class

H
a
s
_
 V

ie
w

 >

*

1

Statement

Relationship

Attribute

Coupling

D
e

riv
e
d

_
F

ro
m

 >

*

*

Source

Derivation

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 20

2.10 Requirement Relationship View

Figure 10 displays the Requirement Relationship View of the metamodel. A requirement is considered a relationship between a system’s inputs

and outputs and is modified by that system’s attributes. A Requirement Statement, often a “shall” prose statement, describes the requirement

relationship. Modeling requirements using a transfer function pattern directly links prose statements to the models and ensures testability of

such statements.

Figure 10: Requirement Relationship View

Class

Modeled

Relationship

Role

Modeled

Relationship
Has_Role > Allocated_ To >

Modeled

Statement
< Has_ View

*
1

2..* 1*Statement Relationship Relationship Role Role Class

Input/OutputInput Role
Requirement

Relationship
Has_Role > Allocated_ To >

1..* 1*Relationship RoleRequirement

Statement
< Has_ View

*
1

Statement Relationship

Output RoleHas_Role >

In
te

ra
c
ts

T
h
ro

u
g

h
 >

1..*

1

*

Relationship

Role

Role

Role

Modeled

Attribute
Attribute RoleHas_Role > Allocated_ To >

1..* 1*

Relationship

RoleRole

Class

Class

Class System< Has_Attribute
1*Attribute Class

Port

Allocated_ To >

* Port

1System

< Sends
1Port0..1I/O

< Receives 1Port0..1I/O

1..*

1..*

1..*1..*

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 21

2.11 Design Constraint View

The Design Constraint View in Figure 11 defines the Design Constraint and Design Constraint Statements as a specialization of the Modeled

Relationship pattern that modifies a System’s Physical Subsystem.

Figure 11: Design Constraint View

Class

Modeled

Relationship

Role

Modeled

Relationship
Has_Role > Allocated_ To >

Modeled

Statement
< Has_ View

*
1

2..* 1*Statement Relationship Relationship Role Role Class

Input/OutputInput Role
Design

Constraint
Has_Role > Allocated_ To >

1..* 1*Relationship Role

Design

Constraint

Statement

< Has_ View
*

1
Statement Relationship

Output RoleHas_Role >

In
te

ra
c
ts

T
h
ro

u
g

h
 >

1..*

1

*

Relationship

Role

Role

Role

Modeled

Attribute
Attribute RoleHas_Role > Allocated_ To >

1..* 1*

Relationship

RoleRole

Class

Class

Class

Physical

System:

Subsystem

< Has_Attribute
1*Attribute Class

Port

Allocated_ To >

* Port

1 System

< Sends
1Port0..1I/O

< Receives 1Port0..1I/O

1..*

1..*

1..*1..*

Physical

System:

Container

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 22

2.12 Attribute Coupling View

The Modeled Relationship View is specialized into a pattern that relates attributes in Figure 12. Attributes are coupled together with Attribute

Coupling Maps as prose, mathematical equations, etc. to describe those relationships.

Figure 12: Attribute Coupling View

Class

Modeled

Relationship

Role

Modeled

Relationship
Has_Role > Allocated_ To >

Modeled

Statement
< Has_ View

*
1

2..* 1*Statement Relationship Relationship Role Role Class

Modeled

Attribute
Attribute Role

Attribute

Coupling
Has_Role > Allocated_ To >

2..* 1*Relationship RoleAttribute

Coupling Map
< Has_ View

*
1

Statement Relationship Role Class

1..*

1..*

Derived_

From >

* *S
o

u
rc

e

D
e

riv
a
tio

n

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 23

2.13 Requirements Coupling View

The Requirements Coupling View defines the Metamodel classes and relationships that link Feature Attributes (requirements in the

Stakeholders’ language) to Functional Role Attributes (requirements in the engineer’s language). This view of the model is also often used to

couple between Feature Attributes themselves and also between Functional Role Attributes.

Figure 13: Requirements Coupling View

Modeled

Attribute
Attribute Role

Attribute

Coupling
Has_Role > Allocated_ To >

Attribute

Coupling Map
< Has_ View

*
1

2..* 1*Statement Relationship Relationship Role Role Class

Modeled

Attribute:

Feature Attribute

Feature

Attribute Role

Requirements

Coupling
Has_Role >

Allocated_ To >

*

1*

Relationship

Role

Requirements

Coupling Map
< Has_ View

*
1

Statement Relationship

Modeled

Attribute:Role

Attribute

Role Attribute

Role
Has_Role >

Allocated_ To >

*

1*

Relationship

Role

Role

Role

Class

Class

Feature

(Service)

Functional

Role

< Has_Attribute
1* ClassAttribute

< Has_Attribute
1*Attribute Class

1..*

1..*

1..*

< Derived_ From

*

* Source

D
e

riv
a

tio
n

Functional

Interaction
Uses_ Functional_

Interaction >
* *Feature Interaction

< Has_Role

*

2..*

Relationship

RoleAttribute

Coupling

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 24

2.14 Design Coupling View

The Design Coupling View defines the Metamodel classes and relationships that link Functional Role Attributes to Physical System (Design

Component) Attributes. This view of the model is also often used to couple between Physical System (Design Component) Attributes

themselves.

Figure 14: Design Coupling View

Modeled

Attribute
Attribute Role

Attribute

Coupling
Has_Role > Allocated_ To >

Attribute

Coupling Map
< Has_ View

*
1

2..* 1*Statement Relationship Relationship Role Role Class

Modeled

Attribute: Role

Attribute

Role Attribute

Role

Design

Coupling
Has_Role > Allocated_ To >

* 1*Relationship RoleDesign

Coupling Map
< Has_ View

*
1

Statement Relationship

Modeled

Attribute:Design

Component

Attribute

Design

Component

Attribute Role

Has_Role >
Allocated_ To >

* 1*

Relationship

Role

Role

Role

Class

Class

Functional

Role

Physical

System

< Has_Attribute
1* ClassAttribute

< Has_Attribute
1*Attribute Class

1..*

1..*

1..*

< Derived_ From

*

* Source

D
e
riv

a
tio

n

Attribute

Coupling

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 25

2.15 Domain Analysis View

The Domain Analysis View defines the classes and relationships required to model the

environment of a system in a particular domain. This view corresponds to the Domain

Diagram artifact but also includes other relationships and classes that would follow such a

diagram to complete the system environment analysis.

Figure 15: Domain Analysis View

System Interface
Functional

Interaction

Input/Output

Architectural

Relationship

Architectural

Relationship Role

System of

Access (SOA)

A
llo

c
a
te

d

_
T

o
 >

H
a

s
_

R
o

le
 >

Provides_

Interface >

< Permits_

Architectural_

Relationship

Permits_Input-Output >

P
e
rm

it
s
_

S
O

A
 >

Permits_

Functional

_Interaction >

< Exemplifies

Domain Has_ Subject >* 1..* *1

*

*

* *

0..2

*

*

*

1

2..

1..*

*

1

InterfaceSystemSubjectDomain
In

te
rf

a
c
e

Interface

Interface
Interface

S
O

A
FI

I/O

AR

R
e

la
ti
o

n
s
h
ip

R
o
le

R
o

le
C

la
s
s

I/O

AR

Port

In
te

ra
c
ts

_

T
h
ro

u
g

h
 >

Is_Used_During >

Is_ Facilitated_

By_ Externally>

< Groups

Receives >

Emerges_From >

1

*

1

*

*

1

*

0..1

1

0..1

*
I/O

Sends>

1

0..1

System

P
o

rt

P
o

rt

Port

P
o

rt

P
o
rt

P
o

rt

SOA

Interface

FI

I/O

I/O

Is_ Facilitated_

By_ Internally>
*

1

Port

SOA

<
Is

_
 L

in
k
e
d

_
 B

y
_

 I
n

te
rn

a
lly

<
 I
s
_
 L

in
k
e

d
_

 B
y
_

 E
x
te

rn
a

lly

*Port

*Port

1AR

1AR

1SOA

1 AR

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 26

2.16 Logical Architecture View

The Logical Architecture View details the part of the metamodel that decomposes a subject

system in the Domain Analysis View into Logical Subsystems and their interactions that

describe its externally viewable behavior.

Figure 16: Logical Architecture View

Functional

Role

Input/Output

Architectural

Relationship

Architectural

Relationship

Role

A
llo

c
a

te
d
 _

T
o

 >
H

a
s
_

 R
o
le

 >

E
x
e
m

p
lif

ie
s
 >

Physical

System

Logical

System

< Allocated _To

Domain Has_ Subject >

H
a

s
_

 S
u
b

je
c
t >

A
llo

c
a
te

d
 _

T
o
 >

Interface

Permits_ Architectural_ Relationship >

Permits_Input-Output >

< Provides_ Interface

< Provides_ Interface
1

*

1

*

*
1

*

< Allocated _To

E
m

e
rg

e
s
 F

ro
m

 >

*

1

Port

< Interacts Through

< Interacts Through

Is_ Linked_ By_ Externally >

Is_ Linked_ By_ Internally >

Sends >

Receives >

G
ro

u
p

s
 >

< Interacts Through

Domain* Subject *

Domain*

Subject*

System System

0..1 0..1

Class1

Interface*

P
o

rt

*
Port
*

Role*

System
0..1

Role

Class

*

1

Role

Class

Relationship

1..*

Role
2..*

Role *

Class

AR

AR

AR

1AR 1AR

I/O

I/O

I/O
0..1

I/O
0..1

I/O

InterfaceInterface
*0..2

*
Port

*
Port

PortPort 11

P
o
rt

*

P
o

rt

*

In
te

rfa
c
e

0..1 Interface*
System

0..1

System

0..1

Alternative

Allocation

Decision

H
a

s
_

 R
o
le

 >

Relationship

1..*

Role
1..*

< Allocated _To

1

*Role

Class

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 27

2.17 State Analysis View

Figure 17 depicts the classes and relationships modeled to define a system’s dynamic

behavior using classes such as States, Events, and Functional Interactions.

Figure 17: State Analysis View

2.18 Detail Requirements View

The Detail Requirements View defines the classes and relationships that model the detailed

interactions and requirements that are summarized in the previous high level views. Instead

of being comprehensive across an entire system’s scope, there should be a set of models

using this view that each center on a single Functional Interaction and dive into the technical

depth necessary for requirements analysis and allocation. The system’s overall scope

should be the union of all the scopes of the individual detail models.

System State

Functional

Interaction
Event

TransitionHas_State >

<
 R

e
q

u
ir

e
s

Transitions_ From >

< Transitions_

To

<
 I
s
_

T
ri

g
g

e
re

d
_

B
y

*1

*

*

1

1 *

*

1

*

System State

From

To

Transition

T
ra

n
s
it
io

n

Transition

T
ri

g
g

e
r

S
ta

te
F

I

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 28

Figure 18: Detail Requirements View

Functional

Role
Interface

Functional

Interaction

Input/Output
Architectural

Relationship

Port

Requirement

Relationship

Attribute Role

System of

Access (SOA)

Modeled

Attribute

Has_Role >
Interacts_

Through >

< Is_Used_During

Is_ Facilitated_ By_ Externally>

< Groups

<
 S

e
n

d
s

< Emerges_ From

<
 H

a
s
_

A
tt
ri

b
u

te
A

llo
c
a
te

d
_
 T

o
 >

Allocated_ To >

Has_ Role >

< Is_ Specified_ By

<
 P

ro
v
id

e
s
_

C
o

n
te

x
t

Input RoleHas_ Role >

Requirement

Statement
< Has_ View

* 1

P
e
rm

its
_

A
rc

h
ite

c
tu

ra
l_

R
e

la
tio

n
s
h

ip
 >

P
e
rm

it
s
_

S
O

A
 >

< Permits_ Functional _Interaction

*

* 2..*

1

*

1 *

*

1

*

1

1

0..1

*

1

*

*

*

*

11

*

1

*

1..*1..*

*

1..* *

*

1 1

Allocated_ To >Output RoleHas_ Role >

1..*

1..* *

1

<
 R

e
c
e

iv
e

s

0..1

1

Is_ Facilitated_ By_ Internally>

*

1

< Is_ Linked_ By_

Externally

< Is_ Linked_ By_

Internally

*

*

1 1

Port

P
o

rt

P
o

rt

Port

Port

P
o

rt

P
o

rt

P
o

rt

Port

SOA

SOA

Interface

Interface

In
te

rfa
c
e

Interface

< Permits_ Input-Output

*

*

Interface

I/O

AR AR

ARARI/O

I/
O

I/
O

F
I

F
I

F
I

SOA

System

R
o

le

R
e

q
u
ir

e
m

e
n

t

Requirement

Relationship Role

R
e
la

tio
n
s
h

ip

Role

R
e
la

tio
n
s
h

ip

R
e

la
tio

n
s
h

ip

Role

Role

Statement Relationship

Role

Role

Role

C
la

s
s

C
la

s
s

Class

Attribute

Class

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 29

2.19 High Level Design View

The High Level Design View, pictured in Figure 19, details the part of the metamodel that models a system’s physical architecture, its Functional

Role allocations, and Design Constraints. This view also shows that Requirement Statements relate to a Physical System through an allocated

Functional Role. This provides for the capability to alter the design without changing the requirements or most of the models using the previous

metamodel views.

Figure 19: High Level Design View

Functional

Role

Physical

System

Modeled

Attribute

Design

Constraint

Attribute Role

Allocated_ To >

Has_ Attribute > < Allocated_ To

Has_ Role >Is_ Constrained_ By >

Architectural

Relationship

Role

Allocated_ To >
Architectural

Relationship
Has_Role >

Design

Constraint

Statement

<
 H

a
s
_
 V

ie
w

Interface
System of

Access (SOA)
< Permits_SOA

Provides_

Interface >
Allocated_ To >

*

* *

*

1

1

*

1 *

1

*2..*1..*

*

1

*

1

1..*

1

2..*

*

1

InterfaceSOA

In
te

rf
a

c
e

S
y
s
te

m

AttributeClassClass

Role

Role

C
la

s
s

RoleClass

Role

Role Role

Class

Relationship

Relationship

Relationship

Statement

Constraint

Component

Requirement

Relationship

Requirement

Statement

H
a

s
_

 V
ie

w
 >

*

1

Statement

Relationship

Is_ Specified_

By >
1 *Role Requirement

Alternative
Allocation

Decision

Has_Role >
1..*1..*Relationship

Design

Coupling

Design

Coupling Map

Rationale < Has_ View
* 1Statement Relationship

D
e

riv
e
d

_

F
ro

m
 >

*

*

Source

Derivation

< Has_ View
* 1Statement Relationship

A
llo

c
a

te
d

_
 T

o
 >

*

1

Role

Class

Role

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 30

2.20 Summary Pattern Configuration View

The Summary Pattern Configuration View presents how the classes and relationships of a

pattern are populated during the pattern configuration process. Once the detailed models

in a pattern are established, only three views are visible to the user during the pattern

configuration process; the configuration rules embedded in the pattern are used to trace

through the models behind the scenes to hide much of the data required during pattern

management.

The user’s Feature population choices and provided Feature Attribute values are used in

conjunction with the configuration rules within the modeled Uses_Functional_Interaction

relationships to determine how many copies of each Interaction to populate. The

configuration rules describe for each Interaction copy what behavior should be populated

as well as a set of larger system allocations for that Interaction’s roles. Each populated

Feature instance is identified uniquely by a Feature Primary Key (FPK). Each populated

Interaction instance is identified uniquely by an Interaction Primary Key (IPK), which

comprises of the Behavior Primary Key (BPK) and a larger system allocation, called a Role

Primary Key (RPK), for each Role of that Interaction

The configuration rules embedded within the Has_Role relationships are used to

automatically create copies of Roles for each copy of an Interaction and convert the relevant

RPK of an Interaction’s IPK into an RPK of a newly populated Role. The configuration rules

embedded within the Provides_Context relationships are used to automatically populate

sets of Requirement Statements based on an populated Interaction’s BPK. Each

Requirement Statement copy is identified with a Requirement Statement Primary Key

(RSPK), which is a copy of the entire IPK. The user can then view and manage the

populated Roles and Requirement Statements, including setting the values of the Attributes

for each Requirement Statement.

The last visible pattern configuration process view allows the user to populate the desired

Physical Components and provide values for their Attributes. The Primary Keys for the

Physical Components (PCPK) are determined by a combination of user entry and

configuration rules embedded in the Allocated_To relationships.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 31

User Visible—
other items
typically not
user visible

User Visible

User Visible

User Visible

Feature

FPK
Attribute
Attribute
Attribute

 Functional

Interaction

IPK

 Functional

Role

RPK
Attribute
Attribute

 Requirement

Statement

RSPK
Attribute
Attribute

Pa
tt

e
rn

C
on

fi
gu

re
d
 P

a
tt

e
rn

 (
M

od
e
l)

 Configured

Feature

FPK
Attribute
Attribute
Attribute

 Configured

Functional

Interaction
IPK

 Configured

Functional

Role
RPK

Attribute
Attribute

Configured

Requirement

Statement
RSPK

Attribute
Attribute

Feature-Interaction Table

Feature FPK Interaction IPK Rule

Interaction – Role Table

Interaction Role RPK Rule

Interaction Role Requirement RSPK Rule

Interaction-Role-Requirement Table

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

PK Value Set by
Pattern (Auto)

PK Value Set
by Pattern

(Auto)

Systematica®
Pattern Configuration

V1.5.2 09-26-18

Populated by
Pattern
(Auto)

 Design

Component

IPPK
Attribute
Attribute

Role Phys Comp IPPK Rule

Role-Phys Compon Table

 Configured

Design

Component
PCPK

Attribute
Attribute

Populated by
User or
Pattern (Auto)

Attribute
Attribute

Req’d Vals Capability Vals

Values

Values

Values

Attribute

Coupling

Attribute

Coupling

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

ACPK

ACPK

Populated by
User, from
Stakeholder
Needs

Figure 20: Summary Pattern Configuration View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 32

3 Metamodel Definitions

This section defines the metaclasses, relationships, and attributes of the metaclasses

shown in the views of the previous section.

3.1 Classes

A metaclass models a particular system engineering concept. Classes are related to each

other to form complete models of requirements or design using metaclass relationships (see

next section). They also have attributes to further tune the modeled concept on an individual

basis.

3.1.1 Allocation Decision

An Allocation Decision is the relationship between a Functional Role and one or more

Physical Systems that may play it. It is the point at which an allocation analysis and decision

occurs. Allocation Decisions reference Rationales and score Alternatives, which are the

roles the Physical Systems play in an Allocation Decision.

3.1.1.1 Aliases

None

3.1.1.2 Relationships

◼ Allocated To

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

3.1.1.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 33

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.1.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 9: Functional Interaction View

◼ Figure 16: Logical Architecture View

◼ Figure 19: High Level Design View

3.1.2 Alternative

An Alternative is the role a Physical System plays in an Allocation Decision.

3.1.2.1 Aliases

None

3.1.2.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.2.3 Attributes

◼ Allocated

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 34

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Rank

◼ Score

◼ Status

◼ Update Version

3.1.2.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 9: Functional Interaction View

◼ Figure 16: Logical Architecture View

◼ Figure 19: High Level Design View

3.1.3 Architectural Relationship

An Architectural Relationship is a relationship that summarizes the architectural significance

of a set of interactions between systems.

3.1.3.1 Aliases

None

3.1.3.2 Relationships

◼ Emerges From

◼ Has Role

◼ Is a Type of

◼ Is Linked By Externally

◼ Is Linked By Internally

◼ Permits Architectural Relationship

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 35

3.1.3.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ Emerges From

◼ Exemplifies

◼ Has Role

◼ ID

◼ Is Linked By Externally

◼ Is Linked By Internally

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Permits Architectural Relationship

◼ Status

◼ Update Version

3.1.3.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 7: Architectural Relationship View

◼ Figure 8: Embedded Intelligence (EI) View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 36

◼ Figure 19: High Level Design View

3.1.4 Architectural Relationship Role

An Architectural Relationship Role is a role defined within an Architectural Relationship that

is played by a System.

3.1.4.1 Aliases

None

3.1.4.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.4.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.4.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 7: Architectural Relationship View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 37

◼ Figure 8: Embedded Intelligence (EI) View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 19: High Level Design View

3.1.5 Attribute Coupling

An Attribute Coupling is a relationship between two or more Attributes and one or more

Attribute Coupling Maps that discuss the relationships between the Attributes.

3.1.5.1 Aliases

None

3.1.5.2 Relationships

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

3.1.5.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 38

◼ Update Version

3.1.5.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 9: Functional Interaction View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

3.1.6 Attribute Coupling Map

An Attribute Coupling Map is a statement in prose, mathematical equation, or other form

that describes the relationship between two or more Attributes.

3.1.6.1 Aliases

None

3.1.6.2 Relationships

◼ Has View

◼ Is a Type of

3.1.6.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 39

◼ Reference

◼ Status

◼ Update Version

3.1.6.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

3.1.7 Attribute Role

An Attribute Role is a Modeled Relationship Role in a Modeled Relationship that specifically

references an Attribute.

3.1.7.1 Aliases

None

3.1.7.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.7.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 40

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.7.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.1.8 Class

Class is the most abstract class; it is the root of the class hierarchy tree of all the metaclasses

as seen in Figure 2. A class is a set of things that are considered “similar” to each other by

virtue of their membership in that class.

3.1.8.1 Aliases

None

3.1.8.2 Relationships

◼ Appears In

◼ Allocated To

◼ Contains

◼ Derived From

◼ Has Attribute

◼ Has Previous

◼ Has Issue

◼ Is a Type of

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 41

3.1.8.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.8.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 6: Modeled Relationship View

◼ Figure 7: Architectural Relationship View

◼ Figure 9: Functional Interaction View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

3.1.9 Design Component Attribute Role

A Design Component Attribute Role is a Modeled Relationship Role in a Modeled

Relationship that specifically references an Attribute of a Physical System.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 42

3.1.9.1 Aliases

None

3.1.9.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.9.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.9.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 14: Design Coupling View

3.1.10 Design Constraint

Design Constraint is a relationship that limits a physical subsystem’s attribute values or

behavior with respect to its inputs and outputs. A Design Constraint is described by a

Design Constraint Statement.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 43

3.1.10.1 Aliases

None

3.1.10.2 Relationships

◼ Has Role

◼ Has View

◼ Is a Type of

◼ Is Constrained By

3.1.10.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.10.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 11: Design Constraint View

◼ Figure 19: High Level Design View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 44

3.1.11 Design Constraint Statement

A Design Constraint Statement is a description in prose, mathematical, or other form that

express a Design Constraint.

3.1.11.1 Aliases

None

3.1.11.2 Relationships

◼ Has View

◼ Is a Type of

3.1.11.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Reference

◼ Status

◼ Update Version

3.1.11.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 11: Design Constraint View

◼ Figure 19: High Level Design View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 45

3.1.12 Design Coupling

A Design Coupling is a relationship between Attributes of Functional Roles and Physical

Systems that play them. One or more Design Coupling Maps can discuss the relationships

between the Attributes.

3.1.12.1 Aliases

◼ B Matrix Coupling

◼ Role-Design Component Coupling

3.1.12.2 Relationships

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

3.1.12.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.12.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 46

◼ Figure 14: Design Coupling View

◼ Figure 19: High Level Design View

3.1.13 Design Coupling Map

A Design Coupling Map is a statement in prose, mathematical equation, or other form that

describes the relationship between Attributes of Functional Roles and Physical Systems.

3.1.13.1 Aliases

◼ B Matrix Coupling Map

◼ Role-Design Component Coupling Map

3.1.13.2 Relationships

◼ Has View

◼ Is a Type of

3.1.13.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Reference

◼ Status

◼ Update Version

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 47

3.1.13.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 14: Design Coupling View

◼ Figure 19: High Level Design View

3.1.14 Domain

A Domain is an environmental system. The components and relationships of this system

establish an overall environment (domain) for a subject system. A domain establishes the

domain knowledge relevant to a subject system.

3.1.14.1 Aliases

None

3.1.14.2 Relationships

◼ Appears In

◼ Has Subject

◼ Is a Type of

3.1.14.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 48

3.1.14.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

3.1.15 Domain System

A Domain System is a subsystem in a Domain whose interactions impact the characteristics

of that Domain.

3.1.15.1 Aliases

None

3.1.15.2 Relationships

◼ Is a Type of

3.1.15.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 49

3.1.15.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 8: Embedded Intelligence (EI) View

3.1.16 Event

An Event is a subclass of an Information Input/Output that describes an occurrence that

triggers a transition from one modeled state to another.

3.1.16.1 Aliases

None

3.1.16.2 Relationships

◼ Is a Type of

◼ Is Triggered By

3.1.16.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.16.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 50

◼ Figure 17: State Analysis View

3.1.17 Feature (Service)

A Feature is a collection of Functional Interactions having marketable value. Features are

also known as a Service in some domains. Features are used to summarize product

functionality in value sets or service sets to a customer. Prices are often associated with

Features.

3.1.17.1 Aliases

◼ Service

3.1.17.2 Relationships

◼ Benefits

◼ Has Attribute

◼ Has Feature

◼ Is a Type of

◼ Satisfies

◼ Uses Functional Interaction

3.1.17.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 51

◼ Update Version

3.1.17.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 13: Requirements Coupling View

3.1.18 Feature Attribute Role

A Feature Attribute Role is a Modeled Relationship Role in a Requirements Relationship

that specifically references an Attribute of a Feature.

3.1.18.1 Aliases

None

3.1.18.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.18.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 52

◼ Status

◼ Update Version

3.1.18.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 13: Requirements Coupling View

3.1.19 Functional Interaction

A Functional Interaction is an interaction of two or more Systems. Interaction means that

one system affects the state of another system. All functions are relationships between

systems, expressing the externally visible behavioral outcome (requirement) of the

interactions. A Function is also sometimes called a Collaboration.

3.1.19.1 Aliases

◼ Collaboration

◼ Contract

◼ Function (Deprecated)

◼ Interaction

3.1.19.2 Relationships

◼ Has Role

◼ Is a Type of

◼ Is Used During

◼ Permits Functional Interaction

◼ Provides Context

◼ Requires

◼ Uses Functional Interaction

3.1.19.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 53

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.19.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 9: Functional Interaction View

◼ Figure 13: Requirements Coupling View

◼ Figure 15: Domain Analysis View

◼ Figure 17: State Analysis View

◼ Figure 18: Detail Requirements View

3.1.20 Functional Role

A Functional Role is the behavioral description (and therefore Logical System) of a part

played by (through an Allocation Decision) a System in a Functional Interaction’s

relationship.

3.1.20.1 Aliases

◼ Function

◼ Function Role

◼ Role

3.1.20.2 Relationships

◼ Allocated To

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 54

◼ Contains

◼ Has Attribute

◼ Has Role

◼ Interacts Through

◼ Is a Type of

◼ Is Specified By

3.1.20.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.20.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 9: Functional Interaction View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 16: Logical Architecture View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 55

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.1.21 Information Input/Output

An Information Input/Output is a subclass of Input/Output that represents symbolic

information exchanged between interacting systems. Such information is always “about”

another System, and has semantic meaning to a Management System (MTS).

3.1.21.1 Aliases

◼ Information View (Deprecated)

3.1.21.2 Relationships

◼ Is a Type of

3.1.21.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.21.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 56

3.1.22 Input/Output

An Input/Output is that which is exchanged between interacting systems.

3.1.22.1 Aliases

◼ I/O

◼ Input

◼ Output

◼ View (Deprecated)

3.1.22.2 Relationships

◼ Allocated To

◼ Emerges From

◼ Exemplifies

◼ Is a Type of

◼ Permits Input/Output

◼ Receives

◼ Sends

3.1.22.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 57

◼ Status

◼ Update Version

3.1.22.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.1.23 Input Role

An Input Role is a Modeled Relationship Role in a Modeled Relationship that specifically

references an Input/Output that is being transformed into another Input/Output.

3.1.23.1 Aliases

None

3.1.23.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.23.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 58

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.23.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 18: Detail Requirements View

3.1.24 Interface

An Interface is an association of Input/Outputs, Functional Interactions, Systems of Access

(SOAs), and Architectural Relationships through which a system interacts with other

systems. Each interface is owned by that system.

3.1.24.1 Aliases

None

3.1.24.2 Relationships

◼ Groups

◼ Is a Type of

◼ Permits Architectural Relationship

◼ Permits Functional Interaction

◼ Permits Input/Output

◼ Permits SOA

◼ Provides Interface

◼

3.1.24.3 Attributes

◼ Author

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 59

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.24.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.1.25 Issue

An Issue is statement related to the properties of a Class that may indicate a need to change

its model.

3.1.25.1 Aliases

◼ Action Item

◼ Open Issue

3.1.25.2 Relationships

◼ Has Issue

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 60

◼ Is a Type of

3.1.25.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Reference

◼ Status

◼ Update Version

3.1.25.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

3.1.26 Logical System

A Logical System is a system identified based solely upon its required functionality or

behavior as seen by external systems interacting with it., and not based upon how it

achieves that functionality internally or its physical make-up. Logical systems are typically

named and defined without reference to their physical composition, unless (in some cases)

this is a part of the external behavior description. Logical Systems are exactly the same as

Functional Roles (for some Functional Interaction which may not have been identified), and

are candidates to be named as roles in Functional Interaction definitions.

3.1.26.1 Aliases

◼ Function

◼ Logical Architecture Component (LAC)

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 61

3.1.26.2 Relationships

◼ Advocates

◼ Allocated To

◼ Benefits

◼ Contains

◼ Has Advocate

◼ Has Stakeholder

◼ Has Subject

◼ Interacts Through

◼ Is a Type of

◼ Perceives

◼ Provides Interface

3.1.26.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 62

3.1.26.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 9: Functional Interaction View

◼ Figure 16: Logical Architecture View

3.1.27 Managed System (MDS)

A Managed System (MDS) is a system which provides a valuable consumable service to a

System of Users, and which is planned to be managed with a Management System. An

MDSC is a component of an MDS. Examples: A semi-trailer-truck fleet, with individual

trucks providing freight transportation services to customers of the trucking company; an

electrical power generation system.

3.1.27.1 Aliases

◼ Managed System Component

◼ MDS

◼ MDSC

3.1.27.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.27.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 63

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.27.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 8: Embedded Intelligence (EI) View

3.1.28 Management System (MTS)

A Management System (MTS) is a system used to manage the performance, fault,

configuration, security, or accounting aspects of a Managed System. An MTSC is a

component of a MTS. Examples: The Operations Center Systems of a trucking company,

used to monitor and manage the fuel economy performance of the total trucking fleet; the

Machine Controller of an Electrical Power Generator, used to monitor and control the

operation of the Generator.

3.1.28.1 Aliases

◼ Management System Component

◼ MTS

◼ MTSC

3.1.28.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

◼

3.1.28.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 64

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.28.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 8: Embedded Intelligence (EI) View

3.1.29 Manages

Manages is the central Architectural Relationship in the Embedded Intelligence (EI) pattern.

It relates a Management System (MTS), Managed System (MDS), System of Access

(SOA), and System of Users (SOU).

3.1.29.1 Aliases

◼ Interacts

◼ Manages For

3.1.29.2 Relationships

◼ Has Role

◼ Is a Type of

3.1.29.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 65

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.29.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 8: Embedded Intelligence (EI) View

3.1.30 Modeled Attribute

A Modeled Attribute is a modeled property or characteristic of any of the metaclasses, which

might take on different attribute values to describe the various instances of that class. An

attribute may belong to any metaclass, including another Attribute.

3.1.30.1 Aliases

◼ Attribute

3.1.30.2 Relationships

◼ Allocated To

◼ Has Attribute

◼ Has Value

◼ Is a Type of

◼ Attributes

◼ Author

◼ Change Date

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 66

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.30.3 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.1.31 Modeled Relationship

A Modeled Relationship has a statement about several classes that may be true or false. If

true, the classes are said to be in that relationship with each other.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 67

3.1.31.1 Aliases

This class has been reified from actual relationships to allow for clearer modeling. Some

examples of such relationships are dsr, mdsr, mtsr, soar, and sour.

3.1.31.2 Relationships

◼ Has Role

◼ Has View

◼ Is a Type of

3.1.31.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.31.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 6: Modeled Relationship View

◼ Figure 7: Architectural Relationship View

◼ Figure 9: Functional Interaction View

◼ Figure 10: Requirement Relationship View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 68

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

3.1.32 Modeled Relationship Role

A Modeled Relationship Role is a part a class plays when being referred to in a Modeled

Relationship.

3.1.32.1 Aliases

None

3.1.32.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

3.1.32.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.32.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 69

◼ Figure 6: Modeled Relationship View

◼ Figure 7: Architectural Relationship View

◼ Figure 9: Functional Interaction View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

3.1.33 Modeled Statement

A Modeled Statement is a prose, mathematical equation, or other description of another

class, typically a Modeled Relationship.

3.1.33.1 Aliases

◼ Statement

3.1.33.2 Relationships

◼ Has View

◼ Is a Type of

3.1.33.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Reference

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 70

◼ Status

◼ Update Version

3.1.33.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 6: Modeled Relationship View

◼ Figure 7: Architectural Relationship View

◼ Figure 9: Functional Interaction View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

3.1.34 Need

A Need is a statement (either in formal or informal language) that implies formal

requirements or design constraints upon a system. Once analyzed, a validated Need

becomes an originating source for other, more formal metaclasses (e.g. Features)

describing that system.

3.1.34.1 Aliases

◼ Informal Need

3.1.34.2 Relationships

◼ Advocates

◼ Is a Type of

◼ Perceives

◼ Satisfies

3.1.34.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Date Submitted

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 71

◼ Definition

◼ Due Date

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Originator

◼ Owner

◼ Priority

◼ Reference

◼ Request Type

◼ Source

◼ Status

◼ Update Version

3.1.34.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

3.1.35 Output Role

An Output Role is a Modeled Relationship Role in a Modeled Relationship that specifically

references an Input/Output that is being transformed from another Input/Output.

3.1.35.1 Aliases

None

3.1.35.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 72

3.1.35.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.35.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 18: Detail Requirements View

3.1.36 Physical Input/Output

A Physical Input/Output is a subclass of Input/Output that represents a physical quantity like

energy or mass exchanged between interacting Systems.

3.1.36.1 Aliases

◼ Physical View (Deprecated)

3.1.36.2 Relationships

◼ Is a Type of

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 73

3.1.36.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.36.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

3.1.37 Physical System

A Physical System is System defined based upon its identity or physical compositions, but

not its behavior. Physical systems may be given proper names, such as names of

commercial products, corporate systems, people, organizations, buildings, etc. Physical

Systems are Design Components that fulfill the Functional Roles (Logical Systems)

allocated to them through an Allocation Decision.

3.1.37.1 Aliases

◼ Design Component

3.1.37.2 Relationships

◼ Allocated To

◼ Contains

◼ Has Attribute

◼ Has Subject

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 74

◼ Interacts Through

◼ Is a Type of

◼ Is Constrained By

◼ Provides Interface

3.1.37.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.37.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 9: Functional Interaction View

◼ Figure 11: Design Constraint View

◼ Figure 14: Design Coupling View

◼ Figure 16: Logical Architecture View

◼ Figure 19: High Level Design View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 75

3.1.38 Port

A Port is the coincidence of an Input/Output and System border. A Port is a specific

relationship between a received and sent Input/Output, internal and external Systems of

Access (SOAs), internal and external Architectural Relationship, and a Functional

Interaction.

3.1.38.1 Aliases

None

3.1.38.2 Relationships

◼ Groups

◼ Interacts Through

◼ Is a Type of

◼ Is Facilitated By Externally

◼ Is Facilitated By Internally

◼ Is Linked By Externally

◼ Is Linked By Internally

◼ Is Used During

◼ Receives

◼ Sends

3.1.38.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 76

◼ Organization Owner

◼ Owner

◼ Port Type

◼ Status

◼ Update Version

3.1.38.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.1.39 Rationale

A Rationale is a statement, prose discussion, or some other explanation of the choice of an

Alternative in an Allocation Decision.

3.1.39.1 Aliases

None

3.1.39.2 Relationships

◼ Has View

◼ Is a Type of

3.1.39.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 77

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Reference

◼ Status

◼ Update Version

3.1.39.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 9: Functional Interaction View

◼ Figure 19: High Level Design View

3.1.40 Requirements Coupling

A Requirements Coupling is a relationship between Attributes of Features and Attributes of

Functional Roles. One or more Requirements Coupling Maps can discuss the relationships

between the Attributes

3.1.40.1 Aliases

◼ A Matrix Coupling

◼ Feature-Role Coupling

3.1.40.2 Relationships

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

3.1.40.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 78

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.40.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 13: Requirements Coupling View

3.1.41 Requirement Relationship

A Requirement Relationship is a relationship that limits a System’s attribute values or

behavior with respect to its inputs and outputs. A Requirement Relationship is described by

a Requirement Statement.

3.1.41.1 Aliases

None

3.1.41.2 Relationships

◼ Has Role

◼ Has View

◼ Is a Type of

◼ Is Specified By

◼ Provides Context

3.1.41.3 Attributes

◼ Author

◼ Change Date

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 79

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.41.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 10: Requirement Relationship View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.1.42 Requirements Coupling Map

A Requirements Coupling Map is a statement in prose, mathematical equation, or other

form that describes the relationship between Attributes of Features and Functional Roles.

3.1.42.1 Aliases

◼ A Matrix Coupling Map

◼ Feature-Role Coupling Map

3.1.42.2 Relationships

◼ Has View

◼ Is a Type of

3.1.42.3 Attributes

◼ Author

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 80

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Reference

◼ Status

◼ Update Version

3.1.42.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 13: Requirements Coupling View

3.1.43 Requirement Statement

A behavioral description, in prose, mathematical, or other form, relating a System’s Inputs,

Outputs, and Attributes, against which a System will be verified.

3.1.43.1 Aliases

◼ “Shall” Statement

3.1.43.2 Relationships

◼ Has View

◼ Is a Type of

3.1.43.3 Attributes

◼ Author

◼ Change Date

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 81

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Reference

◼ Status

◼ Update Version

3.1.43.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 10: Requirement Relationship View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.1.44 Role Attribute Role

A Role Attribute Role is a Modeled Relationship Role in a Requirements or Design Coupling

that specifically references an Attribute of a Functional Role.

3.1.44.1 Aliases

None

3.1.44.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 82

3.1.44.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.44.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

3.1.45 State

A State is a System condition, situation, or mode that has existence for a length of time. The

State of a System determines future behavior in which Functional Interactions are to be

performed, entered, and exited based upon events. The States of an environmental System

of a subject system are use cases for the subject system. During a use case, the subject

system is requested to perform certain functions, interacting with the environmental system.

3.1.45.1 Aliases

◼ Mode

◼ Situation

◼ Use Case (often includes required Functional Interactions)

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 83

3.1.45.2 Relationships

◼ Has State

◼ Is a Type of

◼ Requires

◼ Transitions From

◼ Transitions To

3.1.45.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.45.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 17: State Analysis View

3.1.46 System

A system is a collection of interacting components. A component can itself be a System,

called a sub-system. Information about the purpose or configuration of a system is encoded

into the metaclasses associated with the System (e.g., Feature).

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 84

3.1.46.1 Aliases

◼ Actor

◼ Component

◼ Subject System

3.1.46.2 Relationships

◼ Allocated To

◼ Has Attribute

◼ Has Feature

◼ Has Stakeholder

◼ Has State

◼ Has Subject

◼ Interacts Through

◼ Is a Type of

◼ Provides Interface

3.1.46.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 85

◼ Update Version

3.1.46.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 7: Architectural Relationship View

◼ Figure 8: Embedded Intelligence (EI) View

◼ Figure 10: Requirement Relationship View

◼ Figure 15: Domain Analysis View

◼ Figure 17: State Analysis View

3.1.47 System of Access (SOA)

A System of Access (SOA) is the system which allows other systems to interact (impact

each other’s state).

3.1.47.1 Aliases

◼ SOA

◼ SOAC

◼ System of Access Component

3.1.47.2 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

◼ Is Facilitated By Externally

◼ Is Facilitated By Internally

◼ Permits SOA

3.1.47.3 Attributes

◼ Author

◼ Change Date

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 86

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.47.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 8: Embedded Intelligence (EI) View

◼ Figure 15: Domain Analysis View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.1.48 System of Users (SOU)

A System of Users (SOU) is the system that consumes services from a Managed Systemor

Management System.

3.1.48.1 Aliases

◼ SOU

◼ SOUC

◼ System of Users Component

3.1.48.2 Relationships

◼ Allocated To

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 87

◼ Has Role

◼ Is a Type of

3.1.48.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.48.4 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 8: Embedded Intelligence (EI) View

3.1.49 Transition

A Transition is the instantaneous switch from one State to another State that has been

caused, or triggered, by some Event.

3.1.49.1 Aliases

None

3.1.49.2 Relationships

◼ Is a Type of

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 88

◼ Is Triggered By

◼ Transitions From

◼ Transitions To

3.1.49.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.49.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 17: State Analysis View

3.1.50 Value

A Value is the allowed range or specific value of a Class’s Attribute. A Value describes a

subset of a Class, and is the main means of configuring a pattern.

3.1.50.1 Aliases

None

3.1.50.2 Relationships

◼ Has Value

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 89

◼ Is a Type of

3.1.50.3 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.1.50.4 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

3.2 Metaclass Relationships

Metaclass relationships semantically link metaclasses together to create statements about

system required behavior, design, or other aspects of interest to system engineering

processes. Each relationship has roles that describe a certain concepts classes must fill in

order to complete the semantic statement.

3.2.1 Advocates

The Advocates relationship links a Need to the Advocate it would be elicited from or

validating it against delivered System performance.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 90

3.2.1.1 Roles

◼ Advocate: The Logical System represents a Stakeholder during the elicitation of Needs

and in the Validation of the Requirements and the System. This role is played by

Logical System. This role’s cardinality is Many.

◼ Need: The statement elicited from and validated against by an Advocate. This role is

played by a Need. This role’s cardinality is Many.

3.2.1.2 Meta-Model View References

◼ Figure 4: Feature Framework View

3.2.2 Allocated To

The Allocated To relationship assigns a Class to a Modeled Relationship Role in a Molded

Relationship.

3.2.2.1 Roles

◼ Class: The class that plays the role in the relationship. This role is played by Class,
System, Allocation Decision, Physical Input/Output

A Physical Input/Output is a subclass of Input/Output that represents a physical quantity like

energy or mass exchanged between interacting Systems.

3.2.2.2 Aliases

◼ Physical View (Deprecated)

3.2.2.3 Relationships

◼ Is a Type of

3.2.2.4 Attributes

◼ Author

◼ Change Date

◼ Change Description

◼ Class Level

◼ Definition

◼ ID

◼ Major Version

◼ Minor Version

◼ Name

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 91

◼ Organization Owner

◼ Owner

◼ Status

◼ Update Version

3.2.2.5 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Physical System, Input/Output, Modeled Attribute, Functional Role, and Logical

System. Its cardinality is 1.

◼ Role: The role is the part in a relationship that is played by a Class it is allocated to.

This role is played by Modeled Relationship Role, Architectural Relationship Role,

Managed System (MDS), Management System (MTS), System of Access (SOA),

System of Users (SOU), Functional Role, Alternative, Input Role, Output Role, Attribute

Role, Feature Attribute Role, Role Attribute Role, and Design Component Attribute

Role. This role’s cardinality is Many.

3.2.2.6 Meta-Model View References

◼ Figure 6: Modeled Relationship View

◼ Figure 7: Architectural Relationship View

◼ Figure 8: Embedded Intelligence (EI) View

◼ Figure 9: Functional Interaction View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 92

3.2.3 Appears In

The Appears In relationship groups any type of Class into a Domain. These groupings are

often organized by enterprise organizations, technologies, or products.

3.2.3.1 Roles

◼ Class: The Class that is organized into a domain category. This role is played by all

Classes. Its cardinality is Many.

◼ Domain: The category that organizes classes into a group. This role is played by

Domain. This role’s cardinality is Many.

3.2.3.2 Meta-Model View References

◼ Figure 3: General Class View

3.2.4 Benefits

The Benefits relationship relates a Feature to the stakeholders it benefits.

3.2.4.1 Roles

◼ Feature: The marketable value or valuable service that attempts to benefit a

Stakeholder. This role is played by a Feature (Service). This role’s cardinality is Many.

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit a Need request upon a System. This role is

played by Logical System. This role’s cardinality is Many.

3.2.4.2 Meta-Model View Reference

◼ Figure 4: Feature Framework View

3.2.5 Contains

The Contains relationship is a generic compilation or whole-part relationships between

classes of the same metaclass. This relationship is represented by a diamond head towards

the larger or containing class. This relationship is most similar to a UML™ composition

relationship.

3.2.5.1 Roles

◼ Container Class: The larger class that includes the contained class. This role is played

by all Classes. This role’s cardinality is 1.

◼ Contained Class: The smaller class that aggregates with other small classes to form

the larger Container Class. This role is played by all Classes. This role’s cardinality is

Many.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 93

3.2.5.2 Meta-Model View References

◼ Figure 3: General Class View

◼ Figure 9: Functional Interaction View

◼ Figure 11: Design Constraint View

◼ Figure 16: Logical Architecture View

◼ Figure 17: State Analysis View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.2.6 Derived From

The Derived From relationship links a class’s purpose or origin to one or more classes. This

relationship is often used for validation purposes, to trace the origin or disposition of

information.

3.2.6.1 Roles

◼ Source: The statement or class impacting upon the destination. This role is played by

all Classes. This role’s cardinality is Many.

◼ Destination: The derived class that is impacted by or validated from the Source Class.

This role is played by all Classes. This role’s cardinality is Many.

3.2.6.2 Meta-Model View References

◼ Figure 3: General Class View

◼ Figure 9: Functional Interaction View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 19: High Level Design View

3.2.7 Emerges From

The Emerges From relationship links an Architectural Relationship with its summarized

Input/Outputs.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 94

3.2.7.1 Roles

◼ AR: The Architectural Relationship resulting from Input/Outputs being transferred

between Systems. This role is played by an Architectural Relationship. This role’s

cardinality is 1.

◼ I/O: The Input/Output that results in an Architectural Relationship being true. This role

is played by an Input/Output. Its cardinality is Many.

3.2.7.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.2.8 Exemplifies

The Exemplifies relationship links an Architectural Relationship to its Input/Outputs that are

used to refer to the full set of Input/Outputs summarized by the Architectural Relationship.

3.2.8.1 Roles

◼ AR: The Architectural Relationship referred to by the Input/Output. This role is played

by an Architectural Relationship. This role’s cardinality is 1.

◼ I/O: The Input/Output that refers to an Architectural Relationship. This role is played by

an Input/Output. Its cardinality is Many.

3.2.8.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

3.2.9 Groups

The Groups relationship links an Interface to the set of Ports it is used to group or manage.

3.2.9.1 Roles

◼ Interface: The Interface that groups the Port. This role is played by an Interface. This

role’s cardinality is 0 to 1.

◼ Port: The Port that is grouped by an Interface. This role is played by a Port. This role’s

cardinality is Many.

3.2.9.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 95

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.2.10 Has Advocate

The Has Advocate relationship links a Logical System playing the Stakeholder role in a Has

Stakeholder relationship to another Logical System that would represent that Stakeholder

in evaluating a System’s deliverable with respect to a Need..

3.2.10.1 Roles

◼ Advocate: The Logical System represents a Stakeholder during the elicitation of Needs

and in the Validation of the Requirements and the System. This role is played by

Logical System. This role’s cardinality is Many.

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit a Need request upon a System. This role is

played by Logical System. This role’s cardinality is Many.

3.2.10.2 Meta-Model View Reference

◼ Figure 4: Feature Framework View

3.2.11 Has Attribute

The Has Attribute relationship links a Modeled Attribute to any Class that has that Attribute.

3.2.11.1 Roles

◼ Attribute: The attribute that models a property of a Class. This role is played by Modeled

Attribute. This role’s cardinality is Many.

◼ Class: The class that has a property modeled by the Attribute. This role is played by all

Classes. This role’s cardinality is 1.

3.2.11.2 Meta-Model View References

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 18: Detail Requirements View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 96

◼ Figure 19: High Level Design View

3.2.12 Has Feature

The Has Feature relationship links a subjects system to a Feature.

3.2.12.1 Roles

◼ Feature: The feature that provides value for the stakeholders of a system. This role is

played by a Feature (Service). This role’s cardinality is Many.

◼ Subject System: The system that offers certain Features. This role is played by a

System. Its cardinality is 1.

3.2.12.2 Meta-Model View Reference

◼ Figure 4: Feature Framework View

3.2.13 Has Issue

The Has Issue relationship links an Issue to any class.

3.2.13.1 Roles

◼ Class: The class that has an Issue. This role is played by all Classes. This role’s

cardinality is Many.

◼ Issue: The Issue that relates to classes. This role is played by Issue. This role’s

cardinality is Many.

3.2.13.2 Meta-Model View References

◼ Figure 3: General Class View

3.2.14 Has Previous

The Has Previous relationship links a Class to its previous version.

3.2.14.1 Roles

◼ Next Version: The version of a Class that has the most recent version. This role is

played by all Classes. Its cardinality is Many.

◼ Previous Version: The version of a Class that has the next to recent version. This role

is played by all Classes. Its cardinality is Many.

3.2.14.2 Meta-Model View References

◼ Figure 3: General Class View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 97

3.2.15 Has Role

The Has Role relationship connects a relationship to the roles of described in that

relationship.

3.2.15.1 Roles

◼ Relationship: The relationship between two or more classes. This role is played by

Modeled Relationship, Architectural Relationship, Manages, Functional Interaction,

Allocation Decision, Requirement Relationship, Design Constraint, Attribute Coupling,

Requirements Coupling, and Design Coupling. This role’s cardinality is 1 to Many.

◼ Role: A role is a part within a relationship that is played by a Class. This role is played

by Modeled Relationship Role, Architectural Relationship Role, Managed System

(MDS), Management System (MTS), System of Access (SOA), System of Users

(SOU), Functional Role, Alternative, Input Role, Output Role, Attribute Role, Feature

Attribute Role, Role Attribute Role, and Design Component Attribute Role. Its

cardinality is 1 or 2 to Many.

3.2.15.2 Meta-Model View References

◼ Figure 6: Modeled Relationship View

◼ Figure 7: Architectural Relationship View

◼ Figure 8: Embedded Intelligence (EI) View

◼ Figure 9: Functional Interaction View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.2.16 Has Stakeholder

The Has Stakeholder relationship links a stakeholder to a Domain’s subject system.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 98

3.2.16.1 Roles

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit a Need request upon a System. This role is

played by Logical System. This role’s cardinality is Many.

◼ Subject System: The System that is being specified or is the focus of attention in a

Domain. This role is played by System. This role’s cardinality is Many.

3.2.16.2 Meta-Model View Reference

◼ Figure 4: Feature Framework View

3.2.17 Has State

The Has State relationship requires that a situation in which a System participates is

modeled as a State for that System.

3.2.17.1 Roles

◼ System: A System that participates during the State. This role is played by a System.

This role’s cardinality is 1.

◼ State: The situation in which a System participates. This role is played by a State. This

role’s cardinality is Many.

3.2.17.2 Meta-Model View References

◼ Figure 17: State Analysis View

3.2.18 Has Subject

The Has Subject relationship links a Domain to a System that is the focus of attention and

is being specified.

3.2.18.1 Roles

◼ Domain: The Domain with the Subject as its focus point. This role is played by a

Domain. This role’s cardinality is Many.

◼ Subject: The System that is the focus point and subject of a Domain. This role is played

by a System, Logical System, and Physical System. This role’s cardinality is 1 to Many.

3.2.18.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

3.2.19 Has Value

The Has Value relationship links a Modeled Attribute to a defined Value it may have.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 99

3.2.19.1 Roles

◼ Attribute: The Modeled Attribute that has one or more Values. This role is played by

Modeled Attribute. This role’s cardinality is 1.

◼ Value: The Value of a Modeled Attribute. This role is played by Value. This role’s

cardinality is Many.

3.2.19.2 Meta-Model View References

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

3.2.20 Has View

The Has View relationship links a Modeled Relationship to the various Modeled Statements

that describe it and how its role relates to each other.

3.2.20.1 Roles

◼ Relationship: The relationship between two or more classes. This role is played by

Modeled Relationship, Allocation Decision, Requirement Relationship, Design

Constraint, Attribute Coupling, Requirements Coupling, and Design Coupling. This

role’s cardinality is 1.

◼ Statement: The statement describing how the relationship’s roles relate. This role is

played by Modeled Statement, Rationale, Requirement Statement, Design Constraint

Statement, Attribute Coupling Map, Requirements Coupling Map, and Design Coupling

Map. This role’s cardinality is Many.

3.2.20.2 Meta-Model View References

◼ Figure 6: Modeled Relationship View

◼ Figure 7: Architectural Relationship View

◼ Figure 9: Functional Interaction View

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

◼ Figure 19: High Level Design View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 100

3.2.21 Interacts Through

The Interacts Through relationship links a System to one of its Ports.

3.2.21.1 Roles

◼ Port: The Port through which a System interacts. This role is played by a Port. This

role’s cardinality is Many.

◼ System: The System that interacts through a Port. This role is played by a System,

Physical System, Functional Role, and Logical System. This role’s cardinality is 1.

3.2.21.2 Meta-Model View Reference

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.2.22 Is a Type of

The Is a Type of relationship is a generic taxonomy, generalization, or abstraction

relationship between two classes. This relationship is represented in UMLTM by an arrow

from the more special class (subclass) towards the more general class (superclass).

3.2.22.1 Roles

◼ Superclass: The class that generalizes the Subclass. This role is played by all Classes.

This role’s cardinality is Many.

◼ Subclass: The class that is generalized by the Superclass. This role is played by all

Classes. This role’s cardinality is Many.

3.2.22.2 Meta-Model View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 5: Modeled Relationship Views View

◼ Figure 7: Architectural Relationship View

◼ Figure 8: Embedded Intelligence (EI) View

◼ Figure 9: Functional Interaction View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 101

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 12: Attribute Coupling View

◼ Figure 13: Requirements Coupling View

◼ Figure 14: Design Coupling View

3.2.23 Is Constrained By

The Is Constrained By relationship describes which Physical System is the subject of a

Design Constraint.

3.2.23.1 Roles

◼ Component: The Physical Subsystem that is the subject of the Design Constraint. This

role is played by a Physical System. This role’s cardinality is 1.

◼ Constraint: The Design Constraint that restricts aspects of a Physical Subsystem. This

role is played by a Design Constraint. This role’s cardinality is Many.

3.2.23.2 Meta-Model View References

◼ Figure 19: High Level Design View

3.2.24 Is Facilitated By Externally

The Is Facilitated By Externally relationship links a Port to the System of Access that it uses

outside of the System boundary.

3.2.24.1 Roles

◼ Port: The Port that uses the System of Access outside of the System boundary. This

role is played by a Port. This role’s cardinality is Many.

◼ SOA: The System of Access that links to a Port outside of the System boundary. This

role is played by a System of Access (SOA). This role’s cardinality is 1.

3.2.24.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 18: Detail Requirements View

3.2.25 Is Facilitated By Internally

The Is Facilitated By Internally relationship links a Port to the System of Access that it uses

inside of the System boundary.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 102

3.2.25.1 Roles

◼ Port: The Port that uses the System of Access inside of the System boundary. This role

is played by a Port. This role’s cardinality is Many.

◼ SOA: The System of Access that links to a Port inside of the System boundary. This

role is played by a System of Access (SOA). This role’s cardinality is 1.

3.2.25.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 18: Detail Requirements View

3.2.26 Is Linked By Externally

The Is Linked By Externally relationship links a Port to the Architectural Relationship that it

uses outside of the System boundary.

3.2.26.1 Roles

◼ AR: The Architectural Relationship outside of the System boundary that the Port uses.

This role is played by an Architectural Relationship. Its cardinality is 1.

◼ Port: The Port that uses the System of Access outside of the System boundary. This

role is played by a Port. This role’s cardinality is Many.

3.2.26.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.2.27 Is Linked By Internally

The Is Linked By Internally relationship links a Port to the Architectural Relationship that it

uses inside of the System boundary.

3.2.27.1 Roles

◼ AR: The Architectural Relationship inside of the System boundary that the Port uses.

This role is played by an Architectural Relationship. Its cardinality is 1.

◼ Port: The Port that uses the System of Access inside of the System boundary. This role

is played by a Port. This role’s cardinality is Many.

3.2.27.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 103

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.2.28 Is Triggered By

The transitions relationship describes which Event causes one State to end and another to

begin.

3.2.28.1 Roles

◼ Transition: A path triggered by the Event. This role is played by a Transition. This

role’s cardinality is Many.

◼ Trigger: The Event that triggers the Transition from State to another. This role is played

by an Event. This role’s cardinality is Many.

3.2.28.2 Meta-Model View References

◼ Figure 17: State Analysis View

3.2.29 Is Specified By

The Is Specified By relationship describes which Functional Role is the subject of a

Requirement Relationship.

3.2.29.1 Roles

◼ Requirement: A Requirement Relationship specifying a Functional Role. This role is

played by a Requirement Relationship. This role’s cardinality is Many.

◼ Role: The Functional Role being specified by the Requirement Relationship. This role

is played by a Functional Role. This role’s cardinality is 1.

3.2.29.2 Meta-Model View References

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.2.30 Is Used During

The Is Used During relationship explains for which Functional Interaction a Port is used by

a System.

3.2.30.1 Roles

◼ FI: The Functional Interaction during which a Port is used. This role is played by a

Functional Interaction. This role’s cardinality is 1.

◼ Port: The Port used during the Functional Interaction. This role is played by a Port. This

role’s cardinality is Many.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 104

3.2.30.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 18: Detail Requirements View

3.2.31 Perceives

The is a type of relationship is a generic taxonomy, generalization, or abstraction

relationship between two classes. This relationship is represented in UMLTM by an arrow

from the more special class (subclass) towards the more general class (superclass).

3.2.31.1 Roles

◼ Need: The statement elicited from and validated against by an Advocate. This role is

played by a Need. This role’s cardinality is Many.

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit a Need request upon a System. This role is

played by Logical System. This role’s cardinality is Many.

3.2.31.2 Meta-Model View Reference

◼ Figure 4: Feature Framework View

3.2.32 Permits Architectural Relationship

The Permits Architectural Relationship relationship links an Interface to the allowed

Architectural Relationships with which its Ports can be linked.

3.2.32.1 Roles

◼ AR: The Architectural Relationship allowed by the Interface. This role is played by an

Architectural Relationship. This role’s cardinality is Many.

◼ Interface: The Interface that allows the Functional Interaction. This role is played by an

Interface. This role’s cardinality is Many.

3.2.32.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.2.33 Permits Functional Interaction

The Permits Functional Interact relationship links an Interface to the allowed Functional

Interactions for which its Ports can be used.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 105

3.2.33.1 Roles

◼ FI: The Functional Interaction allowed by the Interface. This role is played by a

Functional Interaction. This role’s cardinality is Many.

◼ Interface: The Interface that allows the Functional Interaction. This role is played by an

Interface. This role’s cardinality is Many.

3.2.33.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 18: Detail Requirements View

3.2.34 Permits Input/Output

The Permits Input/Output relationship links an Interface to the allowed Input/Outputs to

which its Ports can link.

3.2.34.1 Roles

◼ Interface: The Interface that allows the Input/Output. This role is played by an Interface.

This role’s cardinality is 0 to 2.

◼ I/O: The Input/Output that is allowed through an Interface. This role is played by an

Input/Output. Its cardinality is Many.

3.2.34.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 18: Detail Requirements View

3.2.35 Permits SOA

The Permits SOA relationship links an Interface to the allowed Systems of Access (SOAs)

to which its Ports can link.

3.2.35.1 Roles

◼ Interface: The Interface that allows the System of Access. This role is played by an

Interface. This role’s cardinality is Many.

◼ SOA: The System of Access that is permitted. This role is played by a System of Access

(SOA). This role’s cardinality is Many.

3.2.35.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 106

◼ Figure 18: Detail Requirements View

◼ Figure 19: High Level Design View

3.2.36 Provides Context

The Provides Context relationship defines for which Functional Interaction a Requirement

Relationship is valid.

3.2.36.1 Roles

◼ FI: The Functional Interaction for which the Requirement Relationship is valid. This

role is played by a Functional Interaction. This role’s cardinality is 1.

◼ Requirement: A Requirement Relationship specified during a Functional Interaction.

This role is played by a Requirement Relationship. This role’s cardinality is Many.

3.2.36.2 Meta-Model View References

◼ Figure 18: Detail Requirements View

3.2.37 Provides Interface

The Provides relationship links an Interface to a System.

3.2.37.1 Roles

◼ Interface: The Interface that is provided by the System. This role is played by an

Interface. This role’s cardinality is Many.

◼ System: The System that has the Interface. This role is played by a System, Logical

System, and Physical System. Its cardinality is 1.

3.2.37.2 Meta-Model View References

◼ Figure 15: Domain Analysis View

◼ Figure 16: Logical Architecture View

◼ Figure 19: High Level Design View

3.2.38 Receives

The Receives relationship links an internal Input/Output to an output Port or an external

Input/Output to an input Port.

3.2.38.1 Roles

◼ I/O: The Input/Output that is being received at the Port. This role is played by an

Input/Output. This role’s cardinality is 0 to 1.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 107

◼ Port: The Port that is receiving the Input/Output. This role is played by a Port. This

role’s cardinality is 1.

3.2.38.2 Meta-Model View Reference

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 15: Domain Analysis View

◼ Figure 18: Detail Requirements View

3.2.39 Requires

The Requires relationship asserts that a Functional Interaction is required during a certain

State.

3.2.39.1 Roles

◼ FI: A required Functional Interaction between Systems. This role is played by a

Functional Interaction. Its cardinality is Many.

◼ State: The situation that requires a Functional Interaction. This role is played by a State.

This role’s cardinality is 1.

3.2.39.2 Meta-Model View References

◼ Figure 17: State Analysis View

3.2.40 Satisfies

The Satisfies relationship links a Need to the Features of a System that attempt to satisfy it.

3.2.40.1 Roles

◼ Feature: The marketable value or valuable service that attempts to satisfy a set of

Needs. This role is played by a Feature (Service). This role’s cardinality is Many.

◼ Need: The statement describing what a Stakeholder desires of a System’s Features.

This role is played by a Need. This role’s cardinality is Many.

3.2.40.2 Meta-Model View Reference

◼ Figure 4: Feature Framework View

3.2.41 Sends

The Sends relationship links an external Input/Output to an output Port or an internal

Input/Output to an input Port.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 108

3.2.41.1 Roles

◼ I/O: The Input/Output that is being sent from the Port. This role is played by an

Input/Output. This role’s cardinality is 0 to 1.

◼ Port: The Port that is sending the Input/Output. This role is played by a Port. This role’s

cardinality is 1.

3.2.41.2 Meta-Model View Reference

◼ Figure 10: Requirement Relationship View

◼ Figure 11: Design Constraint View

◼ Figure 15: Domain Analysis View

◼ Figure 18: Detail Requirements View

3.2.42 Transitions From

The Transitions From relationship links a Transition to the State it is leaving.

3.2.42.1 Roles

◼ From: The State that ends during the transition. This role is played by a State. This

role’s cardinality is 1.

◼ Transition: A path leaving the From State. This role is played by a Transition. This

role’s cardinality is Many.

3.2.42.2 Meta-Model View References

◼ Figure 17: State Analysis View

3.2.43 Transitions To

The Transitions To relationship links a Transition to the State it is entering.

3.2.43.1 Roles

◼ To: The State that begins during the transition. This role is played by a State. This

role’s cardinality is 1.

◼ Transition: A path entering the To State. This role is played by a Transition. This role’s

cardinality is Many.

3.2.43.2 Meta-Model View References

◼ Figure 17: State Analysis View

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 109

3.2.44 Uses Functional Interaction

The Uses Functional Interaction relationship asserts that a certain Functional Interaction is

required to deliver at least part of a Feature’s value.

3.2.44.1 Roles

◼ Feature: The Feature whose value is supported by the Functional Interaction. This role

is played by a Feature (Service). This role’s cardinality is Many.

◼ Interaction: The Functional Interaction that supports the Feature’s value. This role is

played by a Functional Interaction. Its cardinality is Many.

3.2.44.2 Meta-Model View Reference

◼ Figure 4: Feature Framework View

◼ Figure 9: Functional Interaction View

◼ Figure 13: Requirements Coupling View

3.3 Metaclass Attributes

Metaclass attributes are properties of a metaclass. These properties (along with the

metaclass relationships above) allow a metaclass to model its concepts

3.3.1 Allocated

The Allocated attribute indicates whether or not an Alternative in an Allocation Decision has

been chosen.

3.3.2 Author

An Author of a class is the person who last made changes to that class.

3.3.3 Change Date

The Change Date of a class the time and date in which the latest changes were made to

that class.

3.3.4 Change Description

The Change Description of a class is an explanation of the changes made to the previous

version of that class.

3.3.5 Class Level

The Class Level of a class is the depth of the class hierarchy in which that class is defined.

This attribute indicates how abstract or specific a class with reference to the other classes

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 110

defined. The smaller the level number, the more abstract a class is. The definitions and

meanings of the class levels vary and are specific to an enterprise.

3.3.6 Date Submitted

The Date Submitted of a class is the date in which a Need was first recognized and

recorded.

3.3.7 Definition

The Definition of a class is a short summary of the concept that class models.

3.3.8 Due Date

The Due Date of a Need is the date by which that Need must be fulfilled.

3.3.9 ID

The ID of a class is a unique identifier of that class.

3.3.10 Major Version

The Major Version of a class signifies the number of substantial changes of that class. A

class with version X.Y.Z has a Major Version of X.

3.3.11 Minor Version

The Minor Version of a class signifies the number of significant yet less than substantial

changes of that class. A class with version X.Y.Z has a Minor Version of Y.

3.3.12 Name

The Name of a class is a short label or title by which that class is identified and summarizes

that class’s concepts.

3.3.13 Organization Owner

An Organization Owner of a class is the organization that is responsible for maintaining and

managing a class’s attribute values and relationships.

3.3.14 Originator

An Originator of a Need is the person or organization that first raised the Need upon a

System.

3.3.15 Owner

An Owner of a class is the person responsible for managing a class’s attribute values and

relationships.

BY S*PATTERNS COMMUNITY © 2019, SYSTEM SCIENCES, LLC 111

3.3.16 Port Type

A Port Type describes whether a Port is an Input Port, Output Port, or Both.

3.3.17 Priority

A Priority of a Need describes the relative importance of fulfilling a Need of a System.

3.3.18 Rank

Rank is the relative preference of Alternatives in an Allocation Decision.

3.3.19 Reference

A Reference is a listing to find more information concerning a Modeled Statement.

3.3.20 Request Type

A Request Type of a Need is an enterprise specific categorization of a Need.

3.3.21 Score

Score is the result of an evaluation of an Alternative in an Allocation Decision.

3.3.22 Source

A Source is the document in which a Need was originally stated or documented.

3.3.23 Status

The Status of a class is the systems engineering procedural state in which the class is at.

The status values, definitions, and meanings vary and are specific to an enterprise and even

class.

3.3.24 Update Version

The Update Version of a class signifies the number of insignificant changes or bug fixes of

that class. A class with version X.Y.Z has an Update Version of Z

