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Abstract 
• This presentation argues that the most fundamental concept of systems receives less explicit 

attention than deserved in typical approaches to systems projects and life cycles. That 
fundamental concept is the notion of System Interactions. While not completely invisible in 
typical systems engineering processes, Interactions frequently seem to lurk just below the 
surface of system representations and engineering deliverables. This is true in Model-Based 
Systems Engineering (MBSE) as well as its predecessors. The cost of this “fog” is both missed 
opportunities and unpredicted problems or surprises.  

• By making Interactions the explicit heart of systems representations, the author has 
observed dramatic improvement in the ability of individuals and teams to analyze, 
understand, and communicate critical systems information. This approach has been verified 
across domains including mil/aerospace, automotive, construction, telecommunications, 
medical/health care, advanced manufacturing, and consumer products. In addition, it firms 
up the scientific basis for systems engineering, because the physical laws of the hard 
sciences are virtually all statements about physical interactions.  

• This presentation is for systems planners, engineering practitioners, system thinkers, and 
leaders. It includes a review of commonplace System Interactions in real systems, how they 
appear and don’t appear in typical engineering representations, and the practical impacts of 
this gap. It also includes examples of how this can be addressed within typical engineering 
and life cycle processes. The result is improved understanding, earlier awareness, and better 
project and life cycle performance.  
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1. Discovering System Requirements 

• Traditional historical view:  
– Requirements are prose statements whose structure, grammar, and clarity are 

important (atomic, objective, testable, etc.) 

– Requirements are about “what”, not “how” 

– “Functional” requirements are only a subset of all the requirements for a 
system 

– Requirements are derived from understanding of stakeholder needs 

• These are all valid in context, but the typical experience under this 
approach includes the following sub-optimal outcomes: 
– Different people reading the same requirements document have different 

interpretations of what it says  

– Evaluating the completeness and consistency of a requirements document 
depends heavily on subject matter experts, and subjective judgments  

– Overlooked requirements are sometimes discovered later than we’d like 

– Design constraints are sometimes mistaken as requirements 4 

Motivating Challenge: 
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 2. Unexpected system problems caused by 
environmental systems, including humans 

• Traditional  historical view: 

– I am responsible for my system’s design—someone else is 
responsible for the design of other nearby systems 

– We document the expected roles of human users/maintainers 
after the design is far enough along 

• These are likewise valid in context, but typical 
experience includes: 

– An external system caused unexpected problems for the 
system I designed 

– Human users/operators/maintainers lack of awareness or skills 
are causing problems for my system 

5 

Motivating Challenge: 



GLRC 2013: Leadership Through  
Systems Engineering 

3. Understanding causes of emergent behavior 

• Traditional historical view: 
– System designs (the “how”) should satisfy system requirements (the “what”) 

– The satisfaction of requirements is verified by a combination of design review 
and testing (including simulation) 

– Subject matter expertise / experience with the technology is central to 
assessing whether a design is likely to conform to requirements 

• These are likewise valid in context, but typical experience includes: 
– Systems exhibit some behaviors that were not expected, in functionality, 

performance, usability, reliability, etc.  

– System components interact with each other in unexpected ways, with 
emergent consequences discovered late 

– Changes to existing designs cause unexpected negative consequences that are 
discovered later than we’d prefer 
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A different view, emerging from 
MBSE / PBSE 

• The rise of model-based SE methods adds to the arsenal 
we have for addressing those concerns. 

• Converting to a model-based representation may help, 
but does not by itself assure an answer: 

– But, a model-based approach that is based on explicit 
interaction models for requirements and design can make a 
tremendous difference.  

– Repeating, holistic Patterns of these are likewise clearer. 

– A note of caution: Not all model-based approaches necessarily 
include the following discipline. 
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The Fundamental Definition of “System” 

• Definition: A system is a set of interacting components: 

 
 

 

– By “interact”, we mean one component changes the state of 
another, through physical exchange of energy, force, mass, or 
information. (The last of these is really a case of the first three.) 

– By “state” of a component, we mean a property of the 
component in time that influences its behavior in future 
interactions.  

– Notice the circularity of these definitions (relational model). 
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Compared to a traditional view 

– Two different starting points for defining System: 

 

 

 

 

 

 

– What seems like a small difference of perspective turns 
out to be fundamental to thinking about systems. 
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Interactions: 
Lessons from 300 years of science 

• The physical laws discovered by science are all 
descriptions of interactions! 

• Each engineering discipline (ME, EE, ChE, etc.) 
is based upon those scientific laws. 

• We ask the same of Systems Science, as a basis 
for Systems Engineering. 

• Bringing Interactions front and center in 
Systems Engineering improves our capabilities. 
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Connections to MBSE, PBSE 

• The rise of Model-Based Systems Engineering (MBSE) offers 
a great opportunity to make physical interactions more 
explicit: 

– Indeed, these interactions can be glimpsed surfacing in Interaction 
Diagrams of various types, in SysML and other languages; 

– However, Interactions are not necessarily identified as 
fundamental objects in these models, missing an opportunity; 

– By treating Interactions as fundamental classes, along with their 
relationships to other classes likewise fundamental, new insights 
and payoffs follow; 

– Although SysML and other modeling languages allow us to make 
Interactions explicit, they don’t necessarily force it to happen. 

– What is the smallest model of a system necessary for practical 
engineering? 11 
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Connections to MBSE, PBSE 
• That is why the (language independent) S*Metamodel, explicitly emphasizes Functional 

Interaction as a fundamentally coordinating class relating other information—and it is 
readily included in SysML or other models. 

• PBSE is likewise explicit in its representation of Patterns of Interactions, as would be the case 
in the physical sciences. 

12 

[Ref: “What Is the Smallest 
Model of A System?”, IS2011] 
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Example uses of this approach 

1. System requirements discovery 

2. Unexpected system problems caused by 
environmental systems, including humans 

3. Understanding causes of emergent behaviors 
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1. Discovering System Requirements 
(We are referring here to the technical system requirements consumed by design & 
verification processes—not stakeholder requirements, from which they might have 
been derived.) 

• Interactions-based view:  
– All system Requirements are descriptions of external system Interactions   

– System Requirements may be discovered by discovering Interactions, which are 
easier to find in a systematic way 

– Requirements statements (even though in prose and subject to typical 
requirements writing stylistic advice) take on a new interpretation that makes it 
easier to think about the content of each statement—including spotting design 
constraints and separating them 

– Requirements have a more objective basis for understanding in a common way 
across those who read them 

– Evaluating the completeness and consistency of Interaction-based 
Requirements is more practical to do in a systematic way 

• Let’s see why this is so . . .  
14 
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“Black Box” System Requirements 

• All system Requirements are descriptions of external system 
Interactions: 
– System Requirements can describe only behavior.  

– Only external behavior is of interest: “Black Box” Requirements (see case [3] 
later below for “White Box” Requirements generated in design). 

– The only way that behavior can be external is as Interactions with external 
actors. 

– In the universe we know, those Interactions can only be exchange of energy, 
force, mass, or information (the latter being carried by the first three). 

– For the Subject System boundary below, where does that behavior appear? 

15 
Subject System  



GLRC 2013: Leadership Through  
Systems Engineering 

Reminder: Why are “requirements” treated that way? 

• For very practical “commercial” reasons:  
– Requirements tell us what a “replacement” system would have to do, if we 

were to “drop it in place”, to replace a previous successful system. 

– Likewise, what a candidate design must externally satisfy. 

– That is, in a practical sense, they would be indistinguishable from the outside—
or if different in behavior, then sources of possible impacts. 

– This is the eminently pragmatic, commercial reason for this approach. 

– And, it leaves us free to separately describe other issues: 

• The value / utility landscape of stakeholders, placing value on that external behavior 

• The internal design of the system, producing that external behavior. 

 

16 Subject System  
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Reminder: Why are “requirements” treated that way? 

• So: 
– Requirements need only (and can only) tell us the Input-Output Behaviors of 

our system 

– How the Outputs are “related” to the Inputs, as to quantity, time, or other 
parameterized aspects  

– Requirements as transformations of Inputs to Outputs 
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Subject System  
[Ref: “Requirements Statements Are 
Transfer Functions”, IS2005] 
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So, if we can find all the Interactions,  
we can find all the Requirements! 

• This turns out to be a very powerful insight, because it moves the 
problem to something we can do very systematically. 

• External Interactions may be sought out in three contexts: 
– Domain Actor /Interface Trace: Trace through the external interfaces / external 

actors, seeking out the interactions of the subject system with each of those 
actors. This tells us “who” or “what” the system interacts with externally. 

– State / Mode Trace: Trace through the states / modes / situations of the 
subject system, seeking out the interactions that occur during each state / 
mode / situation. This tells us “when” the system interacts externally. (*) 

– Stakeholder Feature Trace: Trace through the stakeholder features / value 
packages of the subject system, seeking out the interactions that directly 
deliver each feature / value package. This tells us “why” (in a value sense) the 
system interacts as it does.  
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(*) The State / Mode Trace cross section is akin 
to the structure of Use Cases (i.e., situational). 
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How to find all the Interactions? 

 

• Each of those three contexts should produce exactly the same list of 
Interactions: 
– However, it is typically more likely to discover some of the Interactions first in 

one of these contexts, thereafter locating it in the other contexts. 

– This builds a more complete set of Interactions—and therefore Requirements.   
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How to find all the Interactions? 

• The three traces to Interactions, seen in the S*Metamodel: 
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A Simple Example: Oil Filter 
• Domain Model shows all external actors/interfaces, over life cycle: 
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A Simple Example: Oil Filter 

Interactions Model (explicit objects) 
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• State Model shows all life cycle states / modes / situations: 
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A Simple Example: Oil Filter 
• Stakeholder Feature Model shows all life cycle stakeholders/features 

– Formalizes Stakeholder Requirements in stakeholder language, creating a 
value / fitness / utility trade space: 
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A Simple Example: Oil Filter 

• Trace of Interactions to Stakeholder Features: 
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Are there “other” requirements? 
• It is somewhat traditional to divide requirements into categories, 

such as “functional” and “non-functional” 

– With “non-functional” including reliability, capacity or 
performance, etc.  

• Categorization of requirements is fine, but should not obscure the 
physical fact that: 

– All system requirements are descriptions of externally- visible 
behavior, including reliability, capacity, or otherwise 

– All system requirements describe behavior during interactions of 
the system with external actors—including reliability, capacity, or 
otherwise 

26 Subject System  
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 Appearance of Requirement Statements: Examples 

OF-50: “For a Return Lubricant stream of [Lubricant Viscosity Range] and 
[Lubricant Pressure Range], the Oil Filter shall separate Filtered 
Contaminant particles from the Lubricant output stream, 
according to the [Filter Particle Size Distribution Profile].” 

OF-51: “The Oil Filter shall operate at lubricant pressure of [Max 
Lubricant Pressure] with structural failure rates less than [Max 
Structural Failure Rate] over an in-service life of [Min Service 
Life].” 
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Interaction: Filter Lubricant 
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 2. Unexpected system problems caused by 
environmental systems, including humans 

• Interactions-based view : 

– The expected behavior of systems that can impact my system 
can be more readily and clearly defined, for verification in 
advance with the responsible parties 

– The expected behavior of human users/ maintainers can be 
more readily and clearly defined, for early verification as to 
feasibility, as well as creation of training and documentation 

  

28 Subject System  

Let’s see how this is done . . . .  

Next Illustrative Problem Addressed 
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Interaction Models Can  
Coordinate System Compatibilities 

• Interactions emphasize the idea that the two (or more) actors participating in the 
Interaction each have “roles” to play in the overall outcome. 

• If one of these actors meets its requirements, but the other does not (even if 
external), the overall result can be bad—because of the emergent Interaction. 

• Whether you call an external actor’s expected behavior “requirements” or 
“assumptions”, the same point applies. 

• The key point is that these component behaviors are associated with a common 
entity (the Interaction) for coordination purposes.  
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Subject System  
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Example 
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Interaction Role Requirement (Required or Assumed Behavior) 

Filter Lubricant Oil Filter System For a Return Lubricant stream of [Lubricant Viscosity Range] and 
[Lubricant Pressure Range], the Oil Filter shall separate Filtered 
Contaminant particles from the Lubricant output stream, 
according to the [Filter Particle Size Distribution Profile]. 

Filter Lubricant Lubricant in 
Filtration 

The Lubricant in Filtration shall have viscosity within the 
[Lubricant Viscosity Range]. 

Filter Lubricant Lubricant  
Distribution 
Pump 

The Pump shall maintain oil pressure within the [Lubricant 
Pressure Range]. 

Install Filter Oil Filter System The Oil Filter shall be manually installable  in ten minutes or 
less, using only a screwdriver. 

Install Filter Oil Filter System The Oil Filter shall have installation instructions printed on its 
exterior surface,  in English 

Install Filter Service Person The Service Person shall have the visual acuity and hand 
strength of an average 40 year old adult.  

Install Filter Service Person The Service Person shall be capable of reading English at the 
tenth grade level. 
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3. Understanding causes of emergent behavior 
• Interactions-based view: 

– “Whats” are more objectively differentiated (as external physical Interactions), 
from “hows” (as internal or other aspects). 

– Internal Interactions can be systematically discovered and analyzed, and are the 
basis for all emergent external behavior 

– Design review is put on a more technical, objective, and transparent / explicit 
basis by Interaction models 

– Subject matter expertise and experience can be significantly leveraged with 
explicit Interaction Patterns   

– Proposed changes to designs can be more systematically analyzed in terms of 
their likely impacts.      

 

• Let’s see why the above are so . . .  
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Next Illustrative Problem Addressed 
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Logical Architecture Model Provides a Decomposition of 
External Behavior, Before Allocations to Physical Entities 
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Projection of External Interactions onto Logical Architecture 
Provides a Framework for Analysis of Internal Interactions 

33 

Projection, onto  
Logical Architecture, of  

Interaction: Filter Lubricant 

“Black Box” Requirements are 
decomposed to “White Box” 
Requirements on Logical Subsystems.  
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Facilitates Improved Design Review: For Each Interaction . . .  

34 

Note that pure traditional Requirement Statement decomposition is weaker than modeling Interactions 
between subsystems, which generates the same decompositions but also the interactions that connect them.   
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Attribute (Parameter) Couplings--Requirements 
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•The “A” couplings organize all the 
Stakeholder-to-Technical 
Requirements quantitative 
dependencies, including interviews, 
focus groups, market surveys, etc.  
•Organizes stakeholder value / fitness / 
utility trade space scoring. 
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Attribute (Parameter) Couplings--Design 

•The “B” couplings organize all the 
Requirements-Design quantitative 
dependencies, including first principles 
math / physics models, design of 
experiment models, empirical studies, 
etc.  
•Couples to trade space 
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Parameter Coupling Views: DSM 
and Coupling Representation 
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The Coupling Model is a unifying framework 
integrating all forms of coupling: 

• First principles equations 

• Empirical datasets 

• Graphical relations 

• Data tables 

• Prose statements 

• Fuzzy relationships 

• Other 

 
 
 
 
 

N2  Coupling Matrix 
Views (e.g., DSM) 

Note that informal use of the term “interactions” 
for such couplings can be confusing. These 
couplings are dependencies between parameters, 
and are not physical interactions between entities. 

 
 
 
 
 

SysML Parametric 
Coupling Diagram 
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Implications: What you can do 
• Identify the external interactions for your system 

– Check their completeness by tracing each interaction to external 
Actors/Interfaces, States, and Stakeholder Features 

– Adjust each of the three lists until they include the same Interactions 

• Create Requirements Statements for each Interaction: 
– Each should describe the expected input-output relationships during that 

Interaction 

– You can also list the Requirements (Assumptions) of the external Actors during 
the same Interactions 

• Applies to both new and existing (reverse engineered) systems: 
– There is a high likelihood of finding opportunities to improve understanding 

and communication.  

• Let us know how you do, and good luck! 
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