
When two is good company, but more is not a crowd

Andy J. Nolan*, Andrew C Pickard*, Jennifer L Russell+ and William D Schindel#

*Rolls-Royce, +Parsons Brinckerhoff, #ICTT System Sciences

Andy.Nolan@rolls-royce.com, Andrew.C.Pickard@rolls-royce.com,

RussellJe@PBWorld.com, Schindel@ictt.com

Copyright © 2015 Rolls-Royce plc. Permission granted to INCOSE to publish and use.

Abstract: This paper summarizes an approach to improve the effectiveness of the

review (inspection) process. Effectiveness here is defined as the ability to reduce

the number of defects escaping a review activity.

By carefully pairing up developers and reviews, Rolls-Royce was able to halve the

rate of occurrence of defects in software, with no change to the process or tools, and

with no changes to the team or the effort required to perform the reviews

The method hinges on an understanding of the capability of the developers and

reviewers and making sure that only select pairings of team members will be

allowed. The paper illustrates an example of the practice when applied to software

code review but the principle can be applied to any development process. The

paper ends by illustrating other ways to benefit from this approach.

Introduction

mailto:Andy.Nolan@rolls-royce.com
mailto:Andrew.C.Pickard@rolls-royce.com
mailto:RussellJe@PBWorld.com
mailto:Schindel@ictt.com

V
er

if
ic

a
ti

o
n

V
al

id
at

io
n

At Rolls-Royce, we develop a range of software applications for embedded engine

controllers. The applications are safety critical and satisfy Radio Technical

Commission for Aeronautics’ RTCA DO-178B level-A requirements (1) for Software

Considerations in Airborne Systems and Equipment. The Technical Standard Order

specifies the RTCA DO-178B for certification. The certification required places a

heavy emphasis on gathering objective evidence and independent verification and

validation.

 While we make extensive use of testing for certification, we also rely on static

analysis and independent reviews (see Figure 1). The net effect is that we have a

very low defect escape rate of 0.03 defects per 1000 lines of code. This compares

favourably with published industry values. World class organisations can produce

software with a defect escape rate of 1 defect per 1000 lines of code. Rolls Royce’s

escape rate is even better than the well documented case of NASA (2 - 5), which

delivers software with an average 0.1 defects per 1000 lines of code.

Verification is satisfied through review (all artefacts are placed under formal

independent review), analysis (modelling, architectural analysis, static code analysis

and Object Code verification) and test (Component test, software-software

integration and hardware-software integration). Software-software integration is

performed closed loop, with an engine model, in a host environment. Hardware-

software testing is performed closed loop, with an engine model, in target on a real

production quality Engine Controller.

Verification Validation Operation

C
o

st
The software is then passed to the validation teams. The Systems Integration test is

a closed loop environment, running on a production quality Engine Controller and

has the capability of multiple fault insertion. Engine Integration is an environment

where the production quality software and hardware are tested on a real engine.

The Aircraft Integration combines the engine (or engine controller) with their aircraft.

Flight test (not shown on Figure 1) is where the flight trials are performed.

Figure 2 shows, on average, where defects are detected during verification and

validation. Within the software development process alone, we spend 52% of effort

on testing and up to 24% on peer reviews.

Although we have an extremely low in-service defect rate, we do have internal

defects, which are introduced, detected, and removed before the software team

delivers the code to the system team.

Figure 3 shows the cost to detect and remove a defect at various project stages. It is

most cost effective for Rolls Royce to remove defects in the verification phase.

Therefore, we seek to optimize defect detection early in the development lifecycle.

Throughout this paper, we have used the term defect to describe an unforeseen

change to the software. However, on average 16% of the changes are caused by

emergent needs that arise during engine and aircraft integration. In addition, 11% of

software changes are to address hardware issues or improvements in system

performance. For simplicity, this paper does not differentiate such changes, as all

unexpected changes are costly.

This paper refers only to functional changes. A functional change is any change that

will affect the object code (the compiled executable software). There are

occurrences of defects with the documentation that do not result in a change to the

software. These have been ignored primarily because functional changes tend to be

more expensive to rectify.

 By combining Figure 2 (where defects are detected) and Figure 3 (cost to detect

and remove a defect) it is clear that a good review process is not only effective at

removing defects, it is also cost effective (6).

Figure 4 was generated by adding two attributes to the change control system. Each

defect raised recorded (1) where was the defect found and (2) where should the

defect have been found. Figure 4 shows the two attributes ordered in time sequence

where the top left are the first processes and the bottom right are the last. Clearly,

defects on the diagonal were found in the correct place but any defect detected

below this diagonal line was detected late.

Although the review process is one of the most effective V&V methods, when

factoring for the cost of these late defect escapes (using data from Figure 3), it was

evident that the review processes were about 50% effective by value.

The challenge to the team was to double the effectiveness of the review processes,

specifically to halve the number of defect escapes.

Pairing Reviewers and Authors

Over the years, Rolls Royce has made many attempts to improve review

effectiveness. The dominant approach was to refine the process and checklists

used. Additional questions were incorporated in review checklists after analysing

defect escapes. Over time, the checklists became long. Yet the review

effectiveness did not improve. Therefore, this team considered an alternative

approach to improve review effectiveness based on the team members’ task

performance and innate strengths.

Everyone is not equally capable of performing a specific task - people are good at

different things. Anecdotally, we recognize that a person may be very good at

contributing ideas and solutions at meeting, but terrible at following up with the

details to execute those solutions. As managers and team mates, we may work

around this, become frustrated, or just avoid inviting this team member to meetings.

Regardless of how we respond, it is clear that this person is good at finding

solutions, but we should not rely on this person to develop a detailed execution plan.

However, not all strengths and weaknesses are equally visible through

demonstration. Consequently, it is challenging to predict which tasks someone may

be good at performing. Therefore, managers tend to rely on experience to predict

future performance. If a team member has been successful in one area, often that

person will continue to be successful in similar tasks. However, it is more difficult to

predict if someone will be successful in different tasks.

Dozens of personality models provide personality and behaviour characterisation.

Myers Briggs Type Indicator (MBTI) (7) is one such model. Myers Briggs describes

an individual’s behaviour preferences through 4 main categories and has been used

throughout the business world for decades. Russell (8) offered a use of the MBTI

characteristics by mapping the software development lifecycle to MBTI strengths. By

understanding the personality characteristics and the tasks performed, it is possible

to capitalize on behaviour preferences to maximize task performance. However

obvious this may be, how many managers systematically take advantage of this fact

when forming teams?

If we assume that an average review has an author and a reviewer, is it possible to

combine these individuals to deterministically reduce the number of defect escapes?

Is it possible that, by accident, a manager can put a weak author with a weak

reviewer? Do managers actually know who is strong and weak? Rolls Royce

conducted this study to determine if it was possible to quantitatively understand

capability and use this information to form effective pairings of authors and reviewers

to further reduce the defect escape rate.

The approach presented here to minimize defect escape rate from software code

hinges on the need to define, understand, and manage the capabilities of the team

members. The approach uses defect metrics to define the effectiveness of authors

and reviewers. There are 3 steps involved:

Step 1 – Define team members

Quantify authors’ effectiveness at creating defect free code

Quantify reviewers’ effectiveness at detecting defects

Step 2 – Understand team members

Build defect models

Step 3 – Manage pairings

Apply author-reviewer pairing strengths

Consider behavioural preferences

Step 1 – Define team members

The first step in the process is to define a metric that can compare the effectiveness

of the authors and reviewers.

Measuring Author Effectiveness

The author effectiveness measure relied on two factors, the “size” of the artefact and

the number of defects found within it. Size was measured as lines-of-code modified

or introduced – excluding comments and blank lines. The author effectiveness was

measured as the number of defects introduced per 1000 lines of code. This

measure did not account for complexity primarily because the relationship between

defect rate and complexity is unclear. Previous studies have not shown that

complex functions are more prone to defects. In this case, complexity was

measured as cyclomatic complexity (a method commonly used for measuring the

complexity of software source code).

The results from the measurement of author effectiveness showed that the

difference in defect introduction rates between the best and worst varied by an order

of magnitude i.e. the best author produced on average 0.5 defects per 1000 lines of

code whilst the worst produced 18. Experience and training did not seem to be the

dominant factor in determining the best authors. Actual author effectiveness rates

are not shown in this research because the information is confidential to Rolls

Royce.

Measuring reviewer effectiveness

The method for determining reviewer effectiveness was to find the average ratio of

defects found in an artefact compared to the total number of defects found through

other verification. For example, a reviewer may find five functional defects, but

Author Effectiveness

rank

Reviewer Effectiveness

rank

Person 1 1 2 (*tie rating)

Person 2 2

Person 3 3

Person 4 4

Person 5 5 2 (*tie rating)

Person 6 6

Person 7 1

Person 8 4

Person 9 5

Person 10 6

Figure 5: Author and Reviewer Effectiveness ranking

through subsequent testing five more functional defects may be found. The reviewer

would have found five out of the 10 defects resulting in a review-effectiveness of

50%.

The analysis was performed on historic work to prevent the research activity from

affecting behaviour. When subsequent research was done with the team’s

awareness, we noticed additional improvements driven mainly by the challenge of

beating the metric. This paper focuses on the initial study only.

Clearly, it will never be possible to determine exactly how many defects are in an

artefact. Therefore, this study measured a “reasonable” time period over which we

were confident we should have detected the majority of defects. Waiting a period of

time minimised the risk of drawing incomplete conclusions.

The results yielded some surprises. A factor of three difference was measured in the

defect detection rates of the reviewers; one reviewer could, on average, detect 90%

of defects in an artefact whilst another detected only 36%. A second study of

another software team showed a ten-fold difference in reviewer effectiveness.

Remember that all reviewers are following the exact same process using the exact

same checklists to guide them. Therefore, the difference in performance cannot be

attributed to the processes used.

The best reviewers were not necessarily the most experienced or most trained. A

new starter ranked in the top four, whist an experienced team member ranked in the

bottom two. This demonstrates that experience and training is not necessarily the

recipe for competence.

Eliminating process or training and experience as dominant factors for review

effectiveness suggests that attitude or aptitude plays a dominant factor in

competence. For example, the best reviewers all shared a common delight in finding

defects and had a very detailed, critical approach to reviewing. Actual reviewer

effectiveness rates are not shown in this research because the information is

confidential to Rolls Royce.

Step 2 – Understand team members

To understand the team members, the effectiveness rates were organized from most

to least effective. There were

two people who were both

authors and reviewers. The

comparison of two subjects who

were both reviewers and

authors provides more insight

into the concept that attitude or

aptitude is a dominant factor in

competence. Our data

revealed that competent authors are not necessarily competent reviewers. Of the six

authors and six reviewers evaluated, the best author (1 of 6) was the second best

reviewer (2 of 6). Two subjects had the same reviewer effectiveness rate. Another

tied for second best reviewer (2 of 6) was the second worst author (5 of 6). Figure 5

shows the effectiveness ratings comparison for authors and reviewers.

It is clear that a competent author is not necessarily a competent reviewer. This

supports the hypothesis that attitude or aptitude is an important factor in

competence. An author tends to delight in creating something and the reviewers

delight in finding errors in the creation. These attitudes are not always compatible.

This is perhaps a warning to team leaders and managers who may assume that

competence in one area assumes competence in all areas.

Build Defect Models

Based on the measures of author effectiveness and reviewer effectiveness, a matrix

was formed for every pairing of authors and reviewer. The proprietary Rolls Royce

data is undisclosed. Therefore, an example was recreated in Figure 6. In the

example below, a team of 6 people, named A to F were assigned arbitrary

effectiveness rates. The top left hand corner has been reserved for the most

effective team members. In Figure 6, the vertical axis represents the number of

defects introduced per 1000 lines of code by the author; the horizontal axis

represents the effectiveness of the reviewer in finding those defects.

C B A E D F

94% 80% 75% 50% 45% 30%

A 0.5

B 1.0

C 3.0

D 4.0

E 10.0

F 18.0

C B A E D F

94% 80% 75% 50% 45% 30%

A 0.5 0.0 0.1 0.1 0.3 0.3 0.4

B 1.0 0.1 0.2 0.3 0.5 0.6 0.7

C 3.0 0.2 0.6 0.8 1.5 1.7 2.1

D 4.0 0.2 0.8 1.0 2.0 2.2 2.8

E 10.0 0.6 2.0 2.5 5.0 5.5 7.0

F 18.0 1.1 3.6 4.5 9.0 9.9 12.6

Figure 7: Defect escape rates

Reviewer effectiveness

defect detection rate

Author

Effectiveness

Defects introduced

per 1000 lines

Figure 6: Author / Reviewer Matrix

Reviewer effectiveness

defect detection rate

Author

Effectiveness

Defects introduced

per 1000 lines

It is now possible to hypothesise the number of defects that will escape from each

combination of author and reviewer. For example, an author will produce “X” defects

per 1000 lines of code. The reviewer has an effectiveness of “Y%” at finding those

defects. Thus, for any author-reviewer pairing, the number of defects detected will

be on average X*Y%. The number of defects escaping the review process will

therefore be the number introduced minus the number detected = X – X*Y%.

Figure 7 then becomes a guide to team leaders and managers for how best to pair

the authors and reviewers. Within Rolls Royce, we endeavour to always mix “green

zone” combinations. The amber-zone is used in the event that pressures do not

permit green-zone combinations. For a red-zone combination, we would pick a

second reviewer (a third person) who was in the green-zone for that particular

author, by reading across the row.

New-starters are still given the opportunity to develop and grow with no risk to the

project or product quality. Where we had no readings for a new starter to a group, it

was assumed by default that they belonged to the red-zone and therefore a second

green-zone review was automatically performed.

This method does not require a change to the processes used to perform the

reviewers and on average, the review process costs no more than normal as the

reviews would have had to take place anyway.

Using the method above, it is possible to produce code with 1 defect per 1000 lines

of code before it even leaves the coding team. The cost implications are evident

from Figure 2 as we increase early defect detection and reduce defect escapes to

more expensive phases

Validation of the matrix

Several approaches were used to validate the findings. Based on every author-

reviewer pairing, it was possible to look at historical reviews and predict the number

of defects that should have been detected based on the measures, and then to

compare this to what was actually found. There was an R2 correlation of 0.85, which

would suggest that the model is reasonably good at estimating escape rates.

A further form of validation was to consider reviews just completed for a current build

and, based on the size of the artefacts, determine the theoretical number of defects

introduced based on the authors effectiveness. This figure was then compared to

the actual number of defects found. We investigated any instances where there were

two or more undetected defects per 1000 lines. Not surprisingly, each instance

studied revealed an author-reviewer pairing that belonged to the red zone.

Identifying training needs

Although it was stated earlier that training was not necessarily a guarantee of a good

author or reviewer, it is proposed that the “right” training is valuable. The measures

described here allow you to objectively measure the training provided to determine

the “right” training.

In addition to using the matrix to manage the teams, the matrix is also used to target

training needs. As training is only the beginning of someone’s development, not the

end, we ensure that all defects found are fed back to the author for experiential

learning. In addition, when we have an initial red-zone combination supplemented by

a second review from a green-zone reviewer, additional defects were shown to the

original reviewer, allowing them to learn where they missed defects.

Step 3 – Manage Pairings

A manager can use the matrix to identify pairing that will result in the highest likely

defect detection rate. However, quantifying performance in this way is not always

possible. And additional factors, such as software complexity and personal attitude

may also affect the defect escape rate. Therefore, managers should consider many

factors when assigning author-reviewer pairings.

Considerations

In many cases, there are multiple authors and/or reviews of a single software code

package. It is still possible to derive effectiveness using statistical methods such as

Design of Experiments. However, to be pragmatic, it is best to try to find examples

with a single author and reviewer to calibrate the model.

Accounting for the function’s complexity

If people are not equal then the same can be said of software functions. Within Rolls-

Royce, we performed an analysis of functions by understanding two factors; (a) the

% of change and (b) the size of the function in terms of lines of code. We derived

diagrams similar to that shown in Figure 8. The analysis revealed functional classes,

e.g. functions with a similar characteristic, that had a similar volatility. With this

information, we can anticipate which functions are most difficult to get right.

Understanding this provides a third variable in our defect reduction model i.e. never

mix a difficult function with a weak author and reviewer. There must always be one

point of strength.

The approach may not be to everyone’s taste. In some countries it will be illegal to

capture performance measures. In most cases, regardless of its uncomfortable

implications, many companies will just not have the data. Although the authors do

not have evidence of the success of this strategy, it is perhaps still possible to derive

a similar metric from qualitative data or simply from a manager’s observations. The

principle of not have two weak people together still applies regardless of your

philosophies, legislation or data.

MBTI Type

(estimated)

Person 1 ISTJ

Person 2 ENxP

Person 3 xNTP

Person 4 xxFP

Person 5 ISTJ

Person 6 xNxP

Person 7 ISTJ

Person 1 ISTJ

Person 5 ISTJ

Person 8 ISFJ

Person 9 ISFJ

Person 10 ENTP

R
e
v
ie

w
e
rs

A
u
th

o
rs

x = not enough information to estimate this

characteristic

Figure 10: Author and Reviewer MBTI

estimation

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1000 100 200 300 400 500 600 700 800 900 1000

900 90 180 270 360 450 540 630 720 810 900

800 80 160 240 320 400 480 560 640 720 800

700 70 140 210 280 350 420 490 560 630 700

600 60 120 180 240 300 360 420 480 540 600

500 50 100 150 200 250 300 350 400 450 500

400 40 80 120 160 200 240 280 320 360 400

300 30 60 90 120 150 180 210 240 270 300

200 20 40 60 80 100 120 140 160 180 200

100 10 20 30 40 50 60 70 80 90 100

% change
Fu

n
ct

io
n

 s
iz

e:
 L

in
es

 o
f

C
o

d
e

Figure 9: Function size vs Function change

Accounting for the human aspect

The work by Jennifer L. Russell (8) shows how a manager can use Myers-Briggs to

understand the characters required for the various roles in a project. It is proposed

here that the personality types for authors

and reviews are different and a manager

may be able to use Myers-Briggs to

quickly understand how best to combine

team members.

A post-processing effort to characterise

the MBTI personality characteristics of

each author and review led to the

characteristics estimated in Figure 10.

An examination of the personality types

reveals that there was a strong

correlation between authors and the

Perceiving (P) characteristic and

Reviewers and the Judging (J)

characteristic. The judging and

perceiving characteristics describe how a

person views the world around them.

The Judging characteristic describes a person who considers the world to be fixed,

hierarchical, and consistent. They pay attention to details, quickly identify

inconsistency, and are bothered when they do not have order. The Perceiving

characteristic describes a person who sees the world as flexible, and welcomes

change and variation. They are sensitive to the environment around them and can

adapt quickly using their existing skills and knowledge.

The correlation between authors and the Perceiving characteristic is logical. Authors

must be creative and adjust their knowledge of programming to create software

solutions for the situation. This closely maps to the Perceiving characteristic as

described by the MBTI. Therefore, it is logical, and supported by the correlation that

people with a Perceiving characteristic would be effective authors.

Likewise, the correlation between reviewers and the Judging characteristic is also

logical. Reviewers must be consistent and quickly identify errors and faults in the

code. They rely on their knowledge and rigorously review the details of the code

searching for errors and inconsistency. This also maps to the Judging characteristic

as described by MBTI.

The strong correlation between the Perceiving characteristic for authors and Judging

characteristic for reviewers may provide additional insight for managers. In addition

to considering the defect detect rates, managers could consider personality

characteristics in order to capitalize on behavioural preferences of the team. Pairing

a Judging reviewer with a Perceiving author is likely to result in creative coding

solutions that are carefully reviewed.

Managers should be aware to not over-rely on personality characteristics as a sole

basis for pairing. It is possible that a judging person can be a good author and a

perceiving person can be a good reviewer. People learn skills and grow from

experience which may override some natural inclinations. This is evidenced in this

research where the top author had a Judging characteristic instead of Perceiving.

But, the natural inclinations can provide insight into where team members may be

more comfortable and therefore, more likely to be successful. This provides insight

and supporting detail to inform a manager before making pairings

Review Patterns and Pattern Based Systems Engineering Models

The above discussion on selection of reviews is based on patterns that the authors

have identified relating to review in particular and more generally to System

Verification and Validation. Figure 11 illustrates the first of these patterns:

The other four patterns share the same Problem Statement, Forces or Tensions and

Context. The five patterns are:

Pattern 1: Who Reviews What?

Solution 1: Whoever is most able to detect the errors in a system artefact should

review the artefact before it is used to create further system artefacts

Pattern 2: Effective Reviews Address Error Escapes

Solution 2: Measure the capabilities of team members in terms of rate of error

introduction and rate of error detection. Never pair a developer who is prone to

introducing errors with a reviewer who is poor at detecting errors.

Evocative Name Who Reviews What?

Problem Statement
Errors are introduced during development of a system that could have been detected by review. However, the errors are not found during

review but are detected later in the development of the system, where the cost to fix them is considerably higher.

Forces or Tensions

There are two factors which impact error escapes; the rate at which errors are introduced, and the rate at which they are detected. Both of

these are strongly impacted by the capabilities and behaviors of the people involved. It is rarely possible to assemble a team to develop a

system where each person is equally capable, which means that inevitably there will be some system developers who introduce more errors

and some reviewers who miss more errors than desired. Also, schedule pressures may mean that some members of the team who are best

able to detect errors may not be available at the best time to perform the review

Context

It is inevitable that errors will be introduced during the development of a system. These may occur at any stage during system development,

from requirements elicitation through design, integration, verification, validation and system deployment. Although it may be possible to deploy a

system with known functional issues (consider many commercial software applications!) most systems cannot be deployed with unresolved

functional issues. Also, there is a known relationship between the stage in the development process at which the problem is detected and the

cost to fix the problem; finding a problem after entry into service costs between 200 (software) and 1000 (hardware) times as much to resolve

than if the problem is detected and resolved during requirements elicitation and the early stages of design. However, the primary means of

detecting errors early in the system development - review - is often not as effective as it could be, reflected in the number of issues that are

detected later in the development process but should have been detected during requirements or design review.

Related Patterns Effective Reviews Address Error Escapes. Train Your Reviewers. Train Your Developers. Danger! Difficult Function.

Solution
Whoever is most able to detect the errors in a system artefact should review the artefact before it is used to create further system

artefacts

1. The system verification team should review the system requirements for testability before they are used to guide the creation of the system

design

2. The systems architects/modelers should review the system requirements for completeness before they are used to guide the creation of the

system design

3. The system design team should review the system verification test cases and procedures for effectiveness and for "predictable failures"

based on misunderstanding of how the system functions, prior to the start of system verification testing

Examples:

F

igure 11. System Development and Review, Pattern 1

Pattern 3: Train Your Reviewers

Solution 3: Use a formal mechanism to feed back errors detected by other means to

the reviewer in a constructive way that will help them to improve their review

effectiveness.

Pattern 4: Train Your Developers

Solution 4: Use a formal mechanism to feed back the detected errors to the system

developers in a constructive way that will help them to improve their system

development capability.

Loop Group 3Loop Group 2Loop Group 1
Error Introduction

and Detection

Design Verification
System

Requirements Validation
System

Requirements Generation
System

Design Generation System

Problem Reporiting &
Change Management System

Post Design Life Cycle
Processes

Requirements Errors
Detetcted by

Review and Analysis
Requirements

Design Errors
Detetcted by

Review and Analysis

Design
Solution

Requirements Error
Change Requests

Implementation Error
Change Requests

Errors
Detected Later

Requirements Errors
Detetcted by Design

Review and Analysis

Requirements Errors
Detetcted during

Design Generation

Figure 12. Verification and Validation Domain Model

Pattern 5: Danger! Difficult Function

Solution 5: When assigning work to be performed, do not assign development of a

part of the system that is known to be difficult to get right (for instance, a difficult

function in software) to the developer who is most likely to introduce errors or the

reviewer who is most likely to miss errors

Figure 12 shows a Pattern Based Systems Engineering (PBSE) domain model for

Requirements Validation and Design Verification, including the primary pathways by

which errors are introduced and detected. The aim of the five patterns described

above is to try to contain error escapes to the green loops in figure 10, where the

cost of rectification is lowest. The red loop corresponds to errors that escape the

review and analysis process and are detected in system test, where they are

correspondingly more expensive to rectify. The purple loop corresponds to errors

that escape review analysis and test but are detected later, up to and including

during service operation of the system. These are the most expensive to rectify, as

illustrated in figure 3 (shown as a thumbnail in figure 10).

Figure 13 shows a role-based view of reviewer selection, capturing patterns 2 to 5

above. The “Single Review” path is abbreviated and does not show the feedback

paths as this would over-complicate the diagram.

Project Manager

F/B = Feedback

to Creator and

Reviewer(s)

 Higher Risk Options

Artefact Creator 1

(Unknown Defect

Introduction Rate)

Artefact Creator 2

(Low Defect

Introduction Rate)

Artefact Creator 3

(High Defect

Introduction Rate)

Reviewer 1

(Unknown Defect

Detection Rate)

Reviewer 2

(High Defect

Detection Rate)

Reviewer 3

(Low Defect

Detection Rate)

Swim Lane - Reviewer Selection

Or

Or

Complex
Artefact?

Start

Create
Artefact

Create
Artefact

Create
Artefact

Review
Artefact

Create
Artefact

Create
Artefact

Review
Artefact

Review
Artefact

Review
Artefact

End

Single
Review?

Create
Artefact

F/B,
End

F/B,
End

F/B,
End

Double
Review

Review
Artefact

Review
Artefact

Review
Artefact

End

YesYes

No No

F/B

F/B

F/B

F/B

F/B
Option 1

Option 2

Option 1

Option 2

Option 3

Or

(Doesn't need
double review)

Figure 13. Role-Based Model of Reviewer Selection

Conclusions

Figure 14 shows the improvements achieved from applying the methodology to the

requirements review and the design/code reviews. The baseline project did not use

the approach. Projects 2, 3 and 4 applied the approach with refinements over time

that increased overall effectiveness to 90%.

 Previous papers published by Rolls-Royce (9, 10) have shown that the overall cost

effectiveness of performing requirements review, uncertainty assessment and

technical risk management is 100:1 return on investment. The improvement to

defect detection illustrated in this figure is so significant that it is difficult to not justify

the review efforts. The high cost of a defect escape and the review improvements

justify adding more reviewers to an artefact.

If a project is struggling for time, cost and resource, then the method described in

this paper will bring value with no additional impact to the project. However, if a

project has headroom, then we recommend adding as many reviewers as you can.

0

10

20

30

40

50

60

70

80

90

100

Baseline Project 2 Project 3 Project 4

%
 o

f
al

l d
ef

e
ct

s
d

et
e

ct
e

d

Requirement Review effectiveness

Design & code review effectiveness

Figure 14. The effectiveness of the systems and software review processes. The values indicate
the % of total defects detected by all V&V activities. The chart is in time sequence order from left

This paper has used the example of the code review process to illustrate the

concepts. The principle is that there must always be at least one point of strength in

any relationship. But there are other relationships to consider:

 The complexity of the task and the strength of the team developing it

 Mixing designers and testers

 Review of the system design by Systems Engineers, Systems Analysts

and V&V team

 Involving Customer and Suppliers in reviews

 Personal strengths and preferences of the team

Defects do not occur by accident, but as a result of causes. Defects are predictable

and controllable assuming you know the drivers that cause them. This paper

concludes by demonstrating that competency is a key driver in defect escapes. It is

in the interest and capability of a manager to manage the competency of their team.

The Pattern Based Systems Engineering model for Requirements Validation and

Design Verification is in the process of being developed, as part of the INCOSE

“Pattern Based Systems Engineering Challenge” (11) but is already showing some

powerful insights into the Verification and Validation process including detection of

missing feedback loops and information flows.

References

1. RTCA DO-178B, “"Software Considerations in Airborne Systems and Equipment

Certification”, RTCA Inc., December 1992

2. Madden, W.A. and Rone, K.Y. “Design, Development, Integration: Space Shuttle

Primary Flight Software System,” Communications of the ACM 27, No. 9

(September 1984), p. 918

3. Joyce, E.J. “Is Error-Free Software Achievable?” Datamation, 15 February 1989,

pp. 53–56

4. Kolkhorst, B.G. and Macina, A.J. “Developing Error-Free Software”, IEEE AES

Magazine, November 1988, pp. 25–31

5. Macina, A.J. “Independent Verification and Validation Testing of the Space

Shuttle Primary Flight Software System” Houston, Texas, IBM, 28 April 1980

6. Pickard, A.C. and Nolan, A.J. “How Cost Effective is your V&V?”, INCOSE 23rd

International Symposium, Philadelphia, 2013

7. Myers, I.B. and Briggs, P.B. “Gifts Differing: Understanding Personality Type”,

Mountain View, CA. Davies-Black Publishing. ISBN 0-89106-074-X, 1980

8. Russell, J.L. “What color is your nail polish? How to use Myers-Briggs personality

characteristics to identify potential Systems Engineers in your organization”, 24th

INCOSE International Symposium, Las Vegas, 2014

9. Pickard, A.C., Nolan, A.J. and Beasley, R. “Certainty, Risk and Gambling in the

Development of Complex Systems”, 20th INCOSE International Symposium,

Chicago, 2010

10. Nolan, A. J. and Pickard, A.C. “Reducing Scrap and Rework”, 23rd INCOSE

International Symposium, Philadelphia, 2013

11. Web site of the INCOSE Patterns Challenge Team, with references:
http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

Biography

Andrew Nolan joined Rolls-Royce in 1989 after completing a

degree at Sheffield University. He is the Chief of Software

Improvement for Rolls-Royce based in the UK. He is a Fellow of

the British Computer Society and a chartered Engineer in

software engineering. Andrew has spent over a decade

managing large scale software projects as well as a decade

improving the way Rolls-Royce manages projects.

Andrew Pickard joined Rolls-Royce in 1977 after completing a Ph.D.

at Cambridge University in Fatigue and Fracture of Metals and Alloys.

He is a Rolls-Royce Associate Fellow in System Engineering, a

Fellow of the Institute of Materials, Minerals and Mining, a Chartered

Engineer and a member of SAE International and of INCOSE. He is

Vice-Chair of the SAE Aerospace Council and represents Rolls-

Royce on the INCOSE Corporate Advisory Board.

Jennifer Russell, EISE, has 20 years of experience in

transportation, including as a Captain in the U.S. Army for 8 years.

In her 9 years with Parsons Brinckerhoff, Jennifer focused on transit

and rail planning and systems engineering. Jennifer holds a B.S.

in Engineering Psychology from the United States Military Academy

and a M.S. and Engineer Degree (2007) in Industrial and Systems

Engineering from the University of Southern California.

William D. (Bill) Schindel is president of ICTT System Sciences.

His engineering career began in mil/aero systems with IBM

Federal Systems, included faculty service at Rose-Hulman

Institute of Technology, and founding of three systems

enterprises. Bill co-led a 2013 project on the science of Systems

of Innovation in the INCOSE System Science Working Group. He

co-leads the Patterns Challenge Team of the OMG/INCOSE

MBSE Initiative.

