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Abstract

ASME teams are pioneering the generation of guidelines and standards concerning
verification and validation of computational models and modeling, helping the
related practitioner communities establish a shared view of this important and
advancing practice. The INCOSE sister engineering society for general systems
illustrates the interest of the systems community in this advance, attracting
contributions to the effort, and learning from it. INCOSE has seen explosive growth
in generation and use of general system models across many domains, including
aerospace, automotive, medical and health care, advanced manufacturing, and
infrastructure systems.

As these models are consulted for managing risks and opportunities and making
decisions that include safety-critical and large financial issues, questions of trust in
the models themselves rapidly become critical. In the systems community, those
guestions are only part of the rapidly evolving context, which also includes the rise
of standards-based systems modeling languages, advanced modeling tools, and
integrated executable models and simulations as a part of the overall systems
model fabric. The ASME efforts in model V&V, although originally targeting a
narrower class of models, is surfacing and describing many principles of model V&V
that can also be made to apply to more general classes of system models. This talk
reflects the perspective of INCOSE Model-Based Systems Engineering community
leadership, concerning the need for V&V of systems models in general, and the
opportunity to learn from and contribute to the related ASME standards committee
efforts.



V&YV of Models,
Per Emerging ASME Model V&V Standards

Does the Model adequately describe
what it is intended to describe?

Model
Validation

V&YV of Systems,
Per ISO 15288 & INCOSE Handbook

Do the System Requirements describe
what stakeholders need?

System
Validation

Requirexnents
validgted?

Describes Some
Aspect of

System of
Interest

Model
verified?

Model
Verification

Does the Model implementation
adequately represent what the
Model says?

System
Verification

Does the System Design define a solution
meeting the System Requirements?

The idea in a nutshell . .. 3
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Model enthusiasm

AWORLDIN. 4

The INCOSE systems community has shown growing
enthusiasm for “engineering with models” of all sorts:
— Historical tradition of math-physics engineering models
— A World in Motion: INCOSE Vision 2025
— Growth of the INCOSE IW MBSE Workshop
— Growth in systems engineers in modeling classes

— INCOSE Board of Directors’ objective to accelerate
transformation of SE to a model-based discipline

— Joint INCOSE activities with NAFEMS




Models for what purposes?
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If we expect to use models to support critical decisions,
then we are placing increased trust in models:

— Critical financial, other business decisions

— Human life safety

— Societal impacts

— Extending human capability

o

R i R
z Naval Research Lab. Monterey — Marine Meteorology Divis .i

* This talk is about efforts to characterize the structure

of that trust (confidence in models) and manage it:

— The Validation, Verification, and Uncertainty Quantification
(VVUQ) of the models themselves. 7




Kinds of models
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Kinds of models

For purposes of this talk, by “Model” we mean an explicit
data structure that effectively describes, to a Model
Interpreter, aspects of a Modeled Thing useful for the

purposes of engineering or science:

Model .. Modeled Thing

::: descrlbes

Model Infterpreter

0 = i ﬁ)

= \\ /
— = | T E %\\ %
= 2::18 ‘“‘ Kﬁ/ \

(Machine Interpreters) (Human Interpreters) 9




Kinds of models

Even within that restricted notion of “Model”, current
engineering practice may include an evolving mix of different
kinds of models, known by differing names, sometimes for the
same thing, sometimes for the same things:

e “System models”, “MBSE models”

* “Physics-based models”

* “Data-driven models”

* “Executable” or “Computational” models (simulations)
* Other types or other names for the same types

 Two above refer in part to how the models are developed. ..



Physics-Based Model

e Predicts the external behavior of the System of Interest,
visible externally to the external actors with which it
interacts.

e Models internal physical interactions of the System of
Interest, and how they combine to cause/explain externally
visible behavior.

e Model has both external predictive value and phenomena-
based internal-to-external explanatory value.

e Overall model may have high dimensionality.

From: Huanga, Zhanga, Dinga, “An analytical =
model of residual stress for flank milling of Ti-
6Al-4V”, 15th CIRP Conference on Modelling
of Machining Operations

Data Driven Model

e Predicts the external behavior of the System of Interest,
visible to the external actors with which it interacts.

e Model intermediate quantities may not correspond to
internal or external physical parameters, but combine to
adequately predict external behavior, fitting it to
compressed relationships.

e Model has external predictive value, but not internal
explanatory value.

e Overall model may have reduced dimensionality.

WL R
g o

ut:

e Physical scientists and phenomena models from
their disciplines can apply here.

eThe hard sciences physical laws, and how they
can be used to explain the externally visible
behavior of the system of interest.

predicys,
explain

'."o Data scientists and their math/IT tools can apply
’ here (data mining, pattern extraction, cognitive
s Al tooling).

e Tools and methods for discovery / extraction of
recurring patterns of external behavior.

predicts
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Component
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Real Target System Being Modeled
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V&YV of Systems versus V&V of Models

 The INCOSE systems community has a strong tradition

of using the terms Verification and Validation to refer
to System of Interest being engineered.

* Returning to industry efforts to characterize and

manage trust in models, we find that these same two
terms and ideas appear again:

— but pointed to a different target;

— This framework is what caused the speaker, in 2016, to join
the related ASME effort;

— Observation: There is some lack of awareness, on both the

INCOSE (Systems V&V) and ASME (Model V&V) sides of the
respective other side of the practice;

— it is important to keep the related ideas clear . ..



V&YV of Models,
Per Emerging ASME Model V&V Standards

Does the Model adequately describe
what it is intended to describe?

Model
Validation

V&YV of Systems,
Per ISO 15288 & INCOSE Handbook

Do the System Requirements describe
what stakeholders need?

System
Validation

Requirexnents
validgted?

Describes Some
Aspect of

System of
Interest

Model
verified?

Model
Verification

Does the Model implementation
adequately represent what the
Model says?

Don’t forget: A model (on the left) may be used for

System
Verification

Does the System Design define a solution
meeting the System Requirements?

13

system verification or validation (on the right!)



Scientific heritage

* This activity is recapitulating the scientific heritage of
models and related feedback correction loops (learning):

— For thousands of years, humans recognized “external
patterns”--models that could be used to predict similar
future behavior, but lacked explanatory content (e.g.,
movement of the Sun, Moon, Stars, Planets)—these
observed patterns were subject to validation.

— During the last 300 years, these were joined by
explanatory patterns—models that additionally explain
external behavior as arriving from internal
interactions—these theoretical models were subject to
verification.

— In both, learning is represented by improving models.



Scientific heritage

* Eventual flowering of the physical sciences depended upon

the emergence of strong enough underlying model
constructs (of math, physics) to better represent Nature.

e Specifically, the System Phenomenon:

External .-
“Actors” _

System
Component

A traditional view Our view

Emerging Engineering

Systems Engineering Disciplines
t Traditional Engineering

Traditional Engineering Disciplines

Disciplines
i Systems Engineering
Discioli
Graditional Physical Phenomena Iscipline

Ghe System PhenomenorD



For general systems models, this has likewise meant
that we needed to strengthen ideas like prose

requirements and interaction models in order to gain
full adwa e.of MBSE:
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Related ASME activities and resources 7%5ME

SETTING THE STANDARD

ASME, has an active set of teams writing guidelines and standards on the
Verification and Validation of Computational Models.

— Inspired by the proliferation of computational models (FEA, CFD, Thermal,
Stress/Strain, etc.)

— It could fairly be said that this historical background means that effort was not
focused on what most systems engineers would call “system models”

Also conducts annual Symposium on Validation and Verification of Computational
Models, in May.

To participate in this work, in 2016 the speaker joined the ASME VV50
Committee:

— With the idea that the framework ASME set as foundation could apply well to
systems level models; and. ..

— with a pre-existing belief that system level models are not as different from
discipline-specific physics models as believed by systems community.

Also invited sub-team leader Joe Hightower (Boeing) to address the INCOSE
IW2017 MBSE Workshop, on our related ASME activity.



ASME Verification & Validation Standards Committee

V&V 10: Verification & Validation in Computational Solid Dynamics

* V&V20: Verification & Validation in Computational Fluid Dynamics
and Heat Transfer

* V&V 30: Verification and Validation in Computational Simulation of
Nuclear System Thermal Fluids Behavior

* V&V 40: Verification and Validation in Computational Modeling of
Medical Devices

V&V 50: Verification & Validation of Computational Modeling for
Advanced Manufacturing

V&V 60: Verification and Validation in Modeling and Simulation in
Energy Systems and Applications

https://cstools.asme.org/csconnect/CommitteePages.cfim?Committee=100003367

TTTTTTTTTTTTTTTTTT



https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100003367
https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100003367

Modeling the Model Situation and Life Cycle:
We are applying the System of Innovation Pattern (*)

3. System of Innovation (SOI)

Learning & Knowledge 2. Target System (and Component) Life Cycle Domain System
Manager for LC Managers
of Target System Life Cycle Manager of
P LC Managers
. (gjf 8 > 3
Learning & Knowledge '
o g - Manager for Target
Systems LC Manager of
/,v;“ R 8 Target System

8 % 1. Target System
[ *_a% 2

(Substantially all the ISO15288 processes are included in all four Manager roles) q\ Target

Environment

« System 1. Target system of interest, to be engineered or improved.

« System 2: The environment of (interacting with) S1, including all the life cycle
management systems of S1, including learning about S1.

« System 3: The life cycle management systems for S2, including learning about S2.

(*) used in the INCOSE Agile SE Life Cycle Model Discovery Project 19
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(Substantially all the ISO15288 processes are included in all four Manager roles) Target

" Environment

System 1. Target system of interest, to be engineered or improved.

System 2: The environment of (interacting with) S1, including all the life cycle
management systems of S1, including learning about S1.

System 3: The life cycle management systems for S2, including learning about S2.
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Model V&V: We are modeling the

learning aspect of System 2
(key to adaptability, agility)

* The Overall Model System is itself being modeled,
covering the Life Cycle for a Model.
* Beginning with the Requirements for a Model:

— These form the foundation for the model validation
and verification that follow.

— Includes many types of models, covering Physics-
Based and Data-Driven Models

 The Requirements for a Model include:

— Model System Stakeholder Requirements
— Model System Technical Requirements



Model Stakehold

er Features (1/2)

Feature Stakeholder Model Type
= -]
| B _E = 'E 2 5
Feature - . - o gl | 8| 8|8 = =
Grou Feature Name Feature Definition Feature Attribute Attribute Definition 2 ElE|=|8 " =
’ 5| 5|2| k|2 i 3
=g |5 || 5 2| =
s (7} = (=]
Model Identity | Modeled System of Identifies the type of system this model describes. System of Interest Name of system of interest,or | X | X X | X
and Focus Interest class of systems of interest
Modeled Identifies the type of external environmental domain(s) that this model Domain Type(s) Name(s) of modeled domains X x X | X
Environmental includes. (manufacturing, distribution,
Domain use, etc.)
Model Content | Modeled The capability of the model to describe fitness or value of the System of Stakeholder Type Classes of covered X | x X | X
and Capability Stakeholder Value Interest, by identifying its stakeholders and modeling the related stakeholders (may be
Stakeholder Features. multiple)
Modeled System The capability of the model to represent the objective external (“black X | x X | X
External (Black Box) | box”) technical behavior of the system, through significant interactions
Behavior with its environment, based on modeled input-output exchanges through
external interfaces, quantified by technical performance measures, and
varying behavioral modes.
Fitness Couplings The capability of the model to represent quantitative (parametric) X x X | X
couplings between stakeholder-valued measures of effectiveness and
objective external black box behavior performance measures.
Explanatory The capability of the model to represent the decomposition of its external X x X | X
Decomposition technical behavior, as explanatory internal (“white box”) internal
interactions of decomposed roles, further quantified by internal technical
performance measures, and varying internal behavioral modes.
Model Envelope The capability of the model to meet its Model Fidelity requirements overa | Model Application Envelope XTx | x| x|x
stated range (envelope) of dynamical inputs, outputs, and parameter
values.
Model The capability of the model to serve as a configurable framework, XPx | x| x|x
Configurability parameterized or otherwise configurable to different specific models
Validated The validated capability of the conceptual portion of the model to Quantitative Accuracy Reference X X | X
Conceptual Model represent the System of Interest, with acceptable fidelity. Qualitative Accuracy Reference X
Fidelit
v Uncertainty Quantification (UQ) XPx | x| x| x
Reference
Model Validation Reference XIx | x| x| x
Verified Executable | The verified capability of the executable portion of the model to represent | Quantitative Accuracy Reference XX | X | X |X
Model Fidelity the System of Interest, with acceptable fidelity. Qualitative Accuracy Reference XX | X | X |X
Uncertainty Quantification (UQ) XX x| x X
Reference
Speed X [x [x [x [x
Quantization X | X X X X
Stability XX X | X |X
Model Validation Reference X[ X | X | X |X
The type of modeling language X X | X | X

Model
Representation

Conceptual Model
Representation

The capability of the conceptual portion of the model to represent the
system of interest, using a specific type of representation.

Model Representation Type

or metamodel used.

N
1S2]




Model Stakeholder Features (2/2)

Feature Stakeholder Model Type
N 3 s
Feature - . . S gl & |8| S| & & 2
Grou Feature Name Feature Definition Feature Attribute Attribute Definition 2 g E|lE g o E
P IR AR 21 G
= = ) o 1
=15 % 3 g 8
A
Model Utility Perceived Model The relative level of value ascribed to the model, by those who use it for its | User Group Segment The identify of using group X | X X | X
Value and Use stated purpose. segment (multiple)
Level of Annual Use The relative level of annual X | X X X
use by the segment
Value Level The value class associated X | X X X
with the model by that
segment
Third Party The degree to which the model is accepted as authoritative, by third party | Accepting Authority The identity (may be multiple) X | x X | X
Acceptance regulators, customers, supply chains, and other entities, for its stated of regulators, agencies,
purpose. customers, supply chains,
accepting the model
Model Ease of Use The perceived ease with which the model can be used, as experienced by Perceived Model Complexity High, Medium Low X | x X | X
its intended users
Model Life Model Versioning The capability of the model to provide for version and configuration CM Capability Type The type(s) of CM capabilities X x| x| x|x
Cycle and Configuration management. included (may be multiple)
Management Management
Managed Model The capability of the model to include managed datasets for use as inputs, | Dataset Type The type(s) of data sets (may X X | X | X
Datasets parametric characterizations, or outputs be multiple)
Executable Model The capability of the model to be compatibly supported by specified IT Environmental Component The type(s) of IT XTx | x| x| x
Environmental information technology environment(s), indicating compatibility, environments or standards
Compatibility portability, and interoperability. supported
Model Design Life The capability of the model to be sustained over an indicated design life, Design Life The planned retirement date X| X | X | X | X
and Retirement and retired on a planned basis.
Model The relative ease with which the model can be maintained over its Maintenance Method X
Maintainability intended life cycle and use, based on capable maintainers, availability of
effective model documentation, and degree of complexity of the model
Model Deployability | The capability of the model to support deployment into service on behalf Deployment Method X | x
of intended users, in its original or subsequent updated versions
Model Cost The financial cost of the model, including development, operating, and Development Cost The cost to develop the model, X
maintenance cost including its validation and
verification, to its first
availability for service date
Operational Cost The cost to execute and X
otherwise operate the model,
in standardized execution load
units
Maintenance Cost The cost to maintain the X | x
model
Deployment Cost The cost to deploy, and x| x
redeploy updates, per cycle
Retirement Cost The cost to retire the model X
from service, in a planned
fashion
Model Availability The degree and timing of availability of the model for its intended use, First Availability Date X | X | X D7/
including date of its first availability and the degree of ongoing availability Availability Code x | x| x

thereafter.




Not a specification of a modeling

Model Technical Requirements i.zaze. remember it must

cover all the requirements for all

(Sa m p | E) the types of models—FEA, etc.

* “The model shall identify all the external Domain Actors with which the subject system
significantly interacts.”

* “The Model shall identify the external Input-Outputs exchanged during interactions with
Domain Actors, and the external Interfaces through which they are exchanged.”

* “The model shall identify and define all the types and instances of Stakeholders with a
stake in the System of Interest.”

* “For each Stakeholder, the model shall identify and define all the Stakeholder Features
of the System of Interest, representing packages of stakeholder value or fitness for
intended use of the System of Interest.”

* “For each identified Stakeholder Feature, the model shall identify and define all the
Feature Attributes that parameterize or quantify the degree or type of value or fitness.”

* “The model shall identify the different modes (states) of the system of interest that are
significant to the intended use of the model.”

)

* “The model shall identify the possible (state) transitions between those system modes.

* “For each of its modeled modes (states), the model shall identify which external
interactions the system of interest can have with its environmental actors, from the list
of possible interactions.”
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V&V of configurable, re-
usable models (e.g.,
S*Patterns) has even
greater impact
economically, esp. in
regulated (think FAA,
FDA) markets.

S*Pattern Hierarchy for
Pattern-Based Systems
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Quantitative Fidelity, including  FSe# 8
Uncertainty Quantification (UQ) | e

ASSESSING THE RELIABILITY
OF COMPLEX MODELS

* There is a large body of literature on a mathematical subset
of the UQ problem, in ways viewed as the heart of this work. &=

* But, some additional systems work is needed, and in
progress, as to the more general VVUQ framework, suitable
for general standards or guidelines.

General structure of uncertainty / confidence tracing:

* Do the modeled external Interactions qualitatively cover the modeled
Stakeholder Features over the range of intended S1 situations of interest?

* Quantify confidence / uncertainty that the modeled Stakeholder Feature
Attributes quantitatively represent the real system concerns of the S1
Stakeholders with sufficient accuracy over the range of intended situation
envelopes.

* Quantify confidence / uncertainty that the modeled Technical Performance
Attributes quantitatively represent the real system external behavior of the
S1 system with sufficient accuracy over the range of intended situation

envelopes. .



Related activities, communities

 ASME Computational Model V&V Committee / Working Groups:

V&YV 10: Verification & Validation in Computational Solid Dynamics
V&V20: Verification & Validation in Computational Fluid Dynamics and Heat Transfer

V&V 30: Verification and Validation in Computational Simulation of Nuclear System
Thermal Fluids Behavior

V&YV 40: Verification and Validation in Computational Modeling of Medical Devices

V&V 50: Verification & Validation of Computational Modeling for Advanced
Manufacturing

V&V 60: Verification and Validation in Modeling and Simulation in Energy Systems and
Applications

* INCOSE:

Model-Based Engineering Transformation Initiative
INCOSE-NAFEMS Joint Working Group on Simulation

MBSE Patterns Working Group

Risk Management Working Group

Decision-Management Working Group

Tools Interoperability and Model Life Cycle Management Group
INCOSE-OMG MBSE Initiative



Opportunities--what you can do

INCOSE community can learn from ASME efforts, about model V&V
ASME community can learn from INCOSE, about systems-level models
Other professional societies also have an interest at stake in this work

Engineering professional societies (more than trade groups) are in a
good position to collaborate between regulators (e.g., FDA, FAA, etc.)
and enterprises/trade groups, as ethical advocates for effective model
V&YV practice

How is this related to your enterprise and your own interests?

Do you need to trust models? What models? From suppliers? For
Customers? Others?

Help is needed in this effort—join our communities and effort, or at
least give us feedback
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