
MMS 5 Architecture
Created by chris delp
Last updated: Jun 16, 2021 by Blake Regalia • 4 min read

Technology Layer Cake
This diagram locates the involved technologies into or across logical layers that describes how

certain components are further abstracted from the underlying RDF triplestore as each task

demands more specialized features.

Versioning With Graphs
The proposed versioning mechanism is designed to store consecutive commits as a series of

deltas where each commit points to its parent to form a linked tree of commit histories.

Additionally, the root commit and the latest HEAD commit are cached such that a copy of the

complete project’s graph is stored within a dedicated named graph. Optionally, commits that are

/OpenMBEE MMS 5 Architecture

https://openmbee.atlassian.net/wiki/people/557058:faa9354e-a123-4931-b7a9-22afa901a77b?ref=confluence&src=profilecard
https://openmbee.atlassian.net/wiki/pages/diffpagesbyversion.action?pageId=320765953&selectedPageVersions=7&selectedPageVersions=8
https://openmbee.atlassian.net/wiki/people/6009251be2a13500697904fc?ref=confluence&src=profilecard
https://openmbee.atlassian.net/wiki/spaces/OPENMBEE/overview?homepageId=196635

the junction of multiple commit histories, as well as commits that are explicitly tagged by the

user, can also be cached in their entirety to improve the performance of certain operations such

as comparing branches or querying older commits.

To give a concrete example, for those familiar with RDF and Turtle, the following code snippet

shows the raw triples for what a hypothetical commit might store to represent a delta in a SysML

model.

Model Management with Named Graphs

/OpenMBEE MMS 5 Architecture

https://openmbee.atlassian.net/wiki/spaces/OPENMBEE/overview?homepageId=196635

There are three distinct types of named graphs in MMS 5. The first is the cluster-wide “Global”

graph (shown in blue) which stores information about which projects exist on the database, the

organization they belong to, the users, access rules, and so on. This named graph has a known IRI

and provides an entry-point for project discovery. Each project has its own Metadata graph

(shown in lavender) which stores all the versioning information such as commit history, deltas,

and refs. Finally, a Snapshot object stored in the Metadata graph associates a Ref to a

materialized Model graph (shown in green) which stores exclusively the entire model data for a

given commit. Most user queries will likely focus on the Model graph, while some use cases will

also involve the Metadata graph (for example building time-series diagrams or querying the

commit history for certain changes).

Access Control
For multi-tenant installations, MMS must ensure that users are only able to query data from the

projects they are authorized to access. This is accomplished via SPARQL query rewriting for ASK,

SELECT and DESCRIBE queries. At the moment, MMS does not yet plan to support arbitrary

UPDATE queries from users, although the same mechanism would still apply.

The process for restricting access to certain project data via SPARQL query rewriting is simple.

The SPARQL query is parsed, and a set of rules is applied on the resulting abstract syntax tree.

/OpenMBEE MMS 5 Architecture

https://openmbee.atlassian.net/wiki/spaces/OPENMBEE/overview?homepageId=196635

There are three distinct cases which must be rewritten to enforce access control, and all three can

be combined without exclusion and applied in any order.

1. When using FROM NAMED with IRIs to query specific graphs, named graphs that the user does

not have access to are rewritten as <void://access-denied/?to=$GRAPH> :

2. When using GRAPH with variables to query an arbitrary graph, a VALUES clause is added to

restrict the bindings that the graph variable can take:

3. When using the default graph to perform an implicit union, a list of graphs the user can access

is added to the select clause using the FROM keywords:

Any combination of the above operations will still work and the rewriting process is not order-

dependent. The service only needs to know about the finite set of projects the current user has

access to.

No labels

/OpenMBEE MMS 5 Architecture

https://openmbee.atlassian.net/wiki/spaces/OPENMBEE/overview?homepageId=196635

/OpenMBEE MMS 5 Architecture

https://openmbee.atlassian.net/wiki/spaces/OPENMBEE/overview?homepageId=196635

