
24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Model-Based System Patterns for

Automated Ground Vehicle Platforms

Troy Peterson William D. Schindel

Booz Allen Hamilton ICTT System Sciences

peterson_troy@bah.com schindel@ictt.com

Copyright © 2015 by Troy Peterson and William D. Schindel. Published and used by INCOSE with permission.

Abstract. Automated Ground Vehicle (AGV) platforms are proliferating across commercial,

military, and consumer applications. Beyond diversity of form and application, AGVs can be

manned or unmanned, and exhibit a broad range of automated control, from partial to fully

autonomy, making these vehicles strikingly diverse.

This paper reports on application of Pattern-Based Systems Engineering (PBSE) to

representation of automated ground vehicle platforms. PBSE is based upon reusable,

configurable S*Models conforming to the S*Metamodel, expressed in any modeling language

and toolset. The Patterns Challenge Team of the INCOSE/OMG MBSE Initiative has been

practicing PBSE across applications, reported in this and other IS2015 papers.

A specialized class of Cyber-Physical Systems, AGVs are subject to intense interest, creating

new opportunities, risks, and complexities. To address the diversity and complexity of these

systems, the Embedded Intelligence (EI) Pattern, another S*Pattern, is being applied by the

team to illustrate its applicability to an AGV Platform Pattern.

Automated Ground Vehicle Platforms

AGVs are rapidly and dramatically increasing in complexity which is changing the way we

develop, manage and interact with these systems. A primary driver for this change is the

increase in vehicular automation, which offers many benefits to include increased efficiency,

safety and improved situational awareness among others. However, it also places significant

demands on organizations to ensure rigor and trustworthiness by appropriately improving

safety, security and reliability.

The rapid evolution of autonomy in ground vehicles is also driving competition and

accelerating innovation in a reinforcing loop. The Boston Consulting Group’s 2013 report on

the most innovative companies noted that for the first time, there were more automakers than

tech companies listed the top 20 (BCG, 2013). One surprise, not noted in the study however,

was that every company listed in the top 10 is involved with ground vehicle automation.

The increased demand for automation and innovation brings with it risks which parallel the

challenges outlined by the National Science Foundation (NSF) in regard to Cyber Physical

Systems (CPS). Challenges which they state are both significant and far-reaching. The NSF

defines CPS as “engineered systems that are built from, and depend upon, the seamless

integration of computational algorithms and physical components” (NSF, 2014). They are

systems which tightly intertwine computational elements with physical entities within

aerospace, automotive, energy, healthcare, manufacturing and other sectors.

mailto:peterson_troy@bah.com
mailto:schindel@ictt.com

As an especially complex type of cyber physical system, Automated Ground Vehicle (AGV)

platforms call for specialized methods to conceptualize and design for the deep

interdependencies inherent within them. This paper will introduce Pattern-Based Systems

Engineering (PBSE), the emergence and use of the Embedded Intelligence (EI) Pattern for

systems with forms of embedded human or automated intelligence, and highlight some key

implications and benefits as applied to AGV Platforms.

Model Based System Patterns

PBSE Overview

As a Model-Based Systems Engineering (MBSE) methodology, Pattern-Based Systems

Engineering (PBSE) can address more complex systems, with reduction in modeling effort,

using people from a larger community than the “systems expert” group, and producing more

consistent and complete models sooner. These dramatic gains are possible because projects

using PBSE get a “learning curve jumpstart” from an existing model-based pattern and its

previous users, rapidly gaining the advantages of its content, and improving the pattern with

what is learned, for future users. The major aspects of PBSE have been defined and practiced

for many years across a number of enterprises and domains, including ground systems, but in a

limited community. To increase awareness of the PBSE approach, in 2013 INCOSE started a

Patterns Challenge Team within the OMG/INCOSE MBSE Initiative (INCOSE Patterns Team,

2014).

The term “pattern” appears repeatedly in the history of design, such as civil architecture

(Alexander et al, 1977), software design (Gamma et al, 1993), and systems engineering

(Cloutier, 2008). These are all loosely similar in the abstract, in that they refer to regularities

that repeat, modulo some variable aspects, across different instances in space or time. However,

the PBSE methodology referred to by this paper, based on S*Models and S*Patterns, is

distinguished from those cases by the following important differences:

1. S*Patterns are Model-Based: We are referring here to patterns represented by formal

system models, and specifically those which are re-usable, configurable models based on

the underlying S*Metamodel. By contrast, not all the historical “patterns” noted above are

described by MBSE models. It is for this reason that the current INCOSE PBSE

Challenge Team effort is a part of the INCOSE/OMG MBSE Initiative.

2. Scope of S*Patterns: We are referring here to patterns which will usually cover entire

systems, not just smaller-scale element design patterns within them. For this reason, the

typical scope of an S*Pattern applications may be thought of as re-usable, configurable

models of whole domains or platform systems—whether formal platform management is

already recognized or not. By contrast, most of the historical “patterns” noted above

describe smaller, reusable subsystem or component patterns. S*Patterns are similar to

architectural frameworks, although they potentially contain more information.

Fundamental to Pattern-Based Systems Engineering is the use of the S*Metamodel

(summarized by Figure 1), a relational / object information model. The S*Metamodel is

intended to describe the “smallest possible model” necessary for the purposes of performing

systems engineering or science. It provides the semantics to describe requirements, designs,

and other information such as verification, failure analysis, etc. (Schindel & Peterson, 2013;

Schindel, 2013a; ICTT, 2013; Schindel, 2011c, Schindel, 2005a, 2005b, 2010). A metamodel

is a model of other models—a framework or plan governing the models that it describes. These

may be represented in SysML™, database tables, or other languages.

Figure 1: A summary view of the S* metamodel

Specifically, an S*Pattern is a re-usable, configurable S*Model of a family of systems (product

line, set, ensemble etc.) as shown in Figure 2 below.

Figure 2: Pattern Hierarchy and Processes

Over several decades, this approach to Pattern-Based Systems Engineering has been practiced

across a range of domains, including carrier grade telecommunications, engines and power

systems, automotive and off road heavy equipment, telecommunications, military and

aerospace, medical devices, pharmaceutical manufacturing, consumer products, and advanced

manufacturing systems. (Schindel and Smith, 2002; Bradley, et al, 2010; Schindel, 2012b).

Engineers in these and many other domains spend resources developing or supporting systems

that virtually always include major content from repeating system paradigms at the heart of

their business (e.g., core ideas about airplanes, engines, switching systems, etc.). In spite of this,

the main paradigm apparent in most enterprises to leverage “what we know” is to build and

maintain a staff of experienced technologists, designers, application engineers, managers or

other human repositories of knowledge.

The physical sciences are based upon the discovery of regularities (patterns), which we say

express laws of nature. Although re-usable content has some history in systems engineering,

there is less recognition of a set of “Maxwell’s Equations” or “Newton’s Laws” expressing the

nature of the physical world, as the basis of those systems patterns. If Electrical Engineering

and Mechanical Engineering disciplines have physical law at their foundation, can this also be

so for Systems Engineering?

In support of that connection, the S*Metamodel is focused on the very physical Interactions

that are the basis of all the observed laws of the physical sciences, and which we assert are at

the heart of the definition of System (in this methodology) as a collection of interacting

components. (Schindel, 2011b, 2013a) The S*Patterns that arise from the explicit

representation of physical Interactions re-form the foundation of system representations to

align more explicitly with the physical sciences.

A method for managing AGV complexity and types

Aspects of this PBSE approach are illustrated for Automated Ground Vehicles (AGVs) in the

following section.

AGV Model-Based Pattern

AGV Diversity – Types/Product Lines

Autonomous ground vehicles are often broadly categorized as manned and unmanned and by

their level or type of control (limited, partial or full autonomy) making the broad class

automated ground vehicles especially diverse (Figure 3.)

0..1

Figure 3: Broad Ground Vehicle Control Type and Manned/Unmanned Classifications

Figure 3 outlines these three types of ground vehicle control as well as manned and unmanned..

Furthermore, those that include partial autonomy can have algorithms and sensors embedded

within the AGV or off-board at a central station, embedded within local infrastructure or

otherwise (not shown in Figure 3). Regardless of how they are allocated the core logical

elements and core function remain the same.

Vehicle Pattern

These broad categorizations of AGVs also span across industrial, military and

performance/remote control and commercial applications. As a family of systems AGVs offer

significant variation in size, mission, cost and many other attributes. Even as a very small

sample set Figure 4 below aptly represents the diversity of Automated Ground Vehicle

Platforms.

Figure 4: Automated Ground Vehicle Platform Diversity

Given the variety of applications the variability in the high level of design and implementation

of such systems is not surprising. The general vehicle pattern represented in Figures

5-10however could represent any one of these diverse sets of platforms. The amount of

information and configurability of this model through the application of PBSE permits rapid

specialization/configuration through selection of required feature sets shown in Figure 5.

Figures 5-10 on the subsequent pages show important features, interfaces and interactions

required for autonomous operation. For instance the Remote Autonomous Operation Feature,

Remote Access Management Feature, and from the Domain Model the Remote Management,

GPS, and Environmental Interfaces.

Of course an elaborated model would be required to eventually arrive at any one of the

platforms shown within Figure 3. To retain configurability the modeling effort would follow

the approach outline in Figure 2 in a recursive fashion to accurately detail the system

architecture of any particular platform family.

Figure 5: Vehicle Features Package

Figure 6: Vehicle Domain Model

Figure 7: Vehicle State Model

Figure 8: Vehicle Interactions Model

Figure 9: Vehicle Logical Architecture Model

Figure 10: Vehicle Physical Architecture Model

Unlike the diversity of physical implementation across these AGV platforms, whether manned

or unmanned, wheeled or tracked, mine, city or wartime environments the means and

allocation of control can have a very high level of commonality well represented by control

patterns. More specifically the Embedded Intelligence (EI) Pattern applies well.

Embedded Intelligence (EI) Pattern

Many S*Patterns are discovered and expressed through PBSE, but the Embedded Intelligence

(EI) Pattern is of particular importance to the subject of AGVs.

In the world of human-engineered systems, the term “embedded system” has come to be

understood to mean a relatively low-level automated control of some sort, typically in

electronic hardware/software form, to be inserted into a mechanical or other physical system.

In its most common usage, this term is not used to describe larger scale automation, such as

would be found for higher-level enterprise information systems or the largest cyber-physical

systems. Since cyber-physical systems include both, this sort of divided perspective tends to

suggest there are more differences between these levels than we believe are necessary.

Accordingly, the EI Pattern returns to the perspective of Norbert Weiner, who first coined the

term “cybernetics” to refer to the study of control and communication in both living and

human-engineered systems. (Weiner, 1965). This seems particularly appropriate as the term

“cyber-physical system” is finding favor in a world in which we seek patterns to advise us at

many different hierarchical levels, including systems in which human beings are “embedded”.

The EI Pattern is an S*Pattern that emerges to describe intelligence in explicit models of

evolving systems in the natural and man-made world—also referred to as the Management

System Pattern. (Schindel and Smith, 2002). It describes the individual elements and overall

systemic framework of embedded intelligence on a total system, whether the agents of that

intelligence are information technology, human, hybrid, or other forms of management.

Norbert Wiener studied the mathematics of feedback control systems in nature generally, and

engineered fire control systems in particular. Although classical feedback control quickly

comes to mind in the management of system performance, more generally there are also other

aspects of management. The four types of Embedded Intelligence Pattern functional roles that

arise are shown graphically in Figure 11:

 Managed System (MDS): Any system behavior whose performance, configuration,

faults, security, or accounting are to be managed--referred to as System Management

Functional Areas (SMFAs) or in ISO terminology fault, configuration, accounting,

performance, security (FCAPS). These are the roles played by the so-called “physical

systems” in a cyber-physical system, providing physical services such as energy

conversion, transport, transformation, or otherwise.

 Management System (MTS): The roles of performing management (active or passive)

of any of the SMFAs of the managed system. These are so-called “cyber” roles in a

cyber-physical system, and may be played by automation technology, human beings,

or hybrids thereof, to accomplish regulatory or other management purposes.

 System of Users (SOU): The roles played by a system which consumes the services of

an managed system and/or management system, including human system users or

other service-consuming systems at higher levels.

 System of Access (SOA): The roles providing a means of interaction between the other

EI roles. Engineered sensors, actuators, the Internet, and human-machine interfaces

have contributed greatly to the emergence of the “Internet of Things”.

In evolving systems, instances of these roles may arise individually, and over time lead to an

emergent web of embedded intelligence. As further shown in Figure 3, these roles are

organized into EI Hierarchies, in which localized EI functions contribute to subsystem

intelligence and effectively higher level EI functions contribute to higher level intelligence. In

engineered systems, such EI hierarchies may be found in automotive, manufacturing, or

aerospace systems, for example.

In the case of the AGV Pattern, the Logical Architecture Diagram of Figure 9 shows the

Vehicle Management System as a logical subsystem. This level of management is concerned

with the vehicle as a whole. For consumer vehicles, it is frequently a hybrid of human operator

(vehicle starting, steering, parking, stopping, etc.) and automation (automatic braking, vehicle

stability control, etc.). Each of the other logical subsystems of the same Figure 9 are likewise

eligible to have their own internal Management System—the next level down in the hierarchy.

This management hierarchy continues downward, but also upward—there is management at

higher levels, including traffic control, fleet management, site management, warehouse

management, mission control, etc.

Like all S*Patterns, the EI Pattern also includes a pattern of Stakeholder Features, Functional

Interactions, States, and other aspects which appear repeatedly in a pattern of relationships

characteristic of embedded intelligence, whether through planned engineering or emergent

evolution. These are not necessarily planned “top down” and the EI Pattern has been used to

reverse engineer and describe complex hierarchies of embedded intelligent systems that

emerged over time as either human-engineered sub-systems or as natural world systems that

include living and other elements.

Within the EI Pattern, States (modes, situations) that arise include Situation Resolution Cycles.

As shown in Figure 12, these reflect the idea that system stability over time requires a form of

system regulation to “resolve” various “situations” that may occur from time to time, driving

the managed system back to a “normal” or nominal state. Examples include:

 Major Mission Resolution Cycles: These proceed through a series of mission states,

from mission initiation to fulfilment, including planning.

 Minor Use Case Resolution Cycles: These similarly resolve various situational use

cases.

 Resolution of Faults: These may include the recognition, diagnosis, repair, and

recovery from system faults.

 Resolution of Service Requests: These may include resolution of requests for such

services as re-configuration, security, or other situations.

If a system is capable of not only traveling a situation resolution cycle trajectory (as in Figure

4), but also recognizing that such a situation has arisen in the first place (as in Figure 13), we

say that the system is “Situationally Aware”.

Figure 11: Emergence of Embedded Intelligence (EI) Pattern Functional Roles

Figure 12: Situation Resolution State Cycles Figure 13: Situational Awareness

Environmental System

Actor 1

Actor 2

Actor 3

Actor 4

Subject System

If an operator interface panel has a “mode switch”, then the system relies on a human operator

to recognize occurrence of a situation and place the system in the appropriate state cycle

(mode). More advanced autonomous systems automate this (situation recognition and

mode-switching) greater sophistication. In all these cases, Attention Models in the EI Pattern

describe ability to recognize and resolve situations which arise within the finite limits of

managed system and management system resources.

An example of this can be found in automated ground vehicles in three incremental levels of

increasing autonomy – from limited to partial and then full autonomy. One can imagine the

potential architectural differences between systems that have planned to evolve to full

autonomy versus those that simply seek to integrate capabilities as they become available. In

the second case the full EI pattern is not considered until after a system often experiences

architectural lock in and it has limited integration opportunities.

An example of the benefits of applying the EI Pattern to CPS is the insight it provides about

emergence of higher level controls and management effects in systems, which we have

observed to be frequently overlooked or misunderstood—especially in high complexity

systems such as autonomous ground vehicles and the larger domain systems they inhabit. The

EI Pattern is based first and foremost on the logical roles of that pattern, not the physical

technologies that perform those roles. A common thinking trap is to associate control system

boundaries or scope with physical controllers or information system platforms. The EI Pattern

teaches us that these boundaries are better understood using the scope of Logical Management

System roles. It is commonplace in engineering of control systems or information systems to

expend effort in “integrating” those information systems so that they can interact with each

other (“talk” to each other). What is often overlooked, and what the EI Pattern enforces in our

understanding, is that a higher level management system emerges logically in any situation in

which two management system roles that have different managed system scopes interact with

each other. This is a powerful way to understand how higher level management effects

(whether positive or negative) emerge even if we did not initially recognize them.

Automated Ground Vehicle and EI Pattern Integration

The need to manage the inherent complexity within AGVs is very relevant today and the

complexity is only accelerating. Google’s driverless cars are expected to hit the markets

between 2017 and 2020. Automakers including GM, Ford, Nissan, Volkswagen, Mercedes

Benz, Volvo, and Volvo Truck all have autonomous programs. As a specific case of AGVs

modern automobiles have begun to incorporate driver assistance technologies that will, under

certain circumstances, take momentary control away from the driver if they get in over their

head including Collision Mitigation Braking, Panic Brake Assist, Electronic Stability Control,

Blind Spot Warning, and Lane Keeping systems, among others. These systems by themselves

can mitigate a significant number of causalities due to vehicle accidents. The rationale for

automating civilian vehicles can be far reaching given: “A third of the American workforce

spends more than an hour a day commuting. It’s boring and dangerous.”[insert reference]

There are 30,000 deaths [insert reference] in a year because of car accidents, of which 90

percent were caused by human error.

To handle the diversity of AGVs which include application, manned and unmanned and level

and types of control the integration of the Vehicle and EI patterns can provide a very powerful

and compact way models these complex cyber physical systems. To accomplish this for an

AGV would require the integration of the Vehicle and EI patterns. This is a straight forward

exercise given both are compliant with the S* metamodel to form S* patterns. For AGVs this

then permits the configuration and reuse of the general vehicle pattern and EI pattern to cover

the diverse range of platforms within the AGV domain. Configuration of a specialized AGV

can be accomplished specifically thorough the selection of features shown in Figure 5 to

ultimately configure systems solutions represented in figure 10. The next thing the PBSE

INCOSE/OMG Challenge Team will do is to incorporate feature selection following the

precepts of ISO 26550.

AGVs to cover specific applications are most easily handled by application feature groups

shown in Figure 5 which could be elaborated if necessary. More specifically, the Personal

Vehicle Application Group, Commercial Vehicle Application Group and Military Application

Group; selection of these features would turn on or off many of the external and internal

interfaces and interactions to specialize the pattern for the particular application. Regarding

manned and unmanned AGV variants this can also be configured from the general vehicle

pattern through the selection (or not) of the Passenger Comfort Feature Group of Figure 5

which in turn would include (or not) the Passenger Interface on the Domain model of Figure 6,

the Ride in Vehicle interaction from the interaction diagram of Figure 8 etc. Ultimately this

would provide configuration options for implementation within the Physical Architecture

Model element of Vehicle Interior shown in Figure 10.

To manage the type of control and ultimately the level of automation use of the EI Pattern and

the chosen implementation of its functional roles (MDS, MTS, SOU and SOA) would

determine the level of human control versus partial (hybrid) or full autonomous control. The

Feature element which would determine much of this is the Vehicle Management Feature of

the Vehicle Pattern shown in Figure 5. Here you can find features like navigation, cruise

control, autonomous operation, remote management etc. Through the use of the EI Pattern

allocations of sensing can be allocated to a driver, to multiple sensors on the platform or to a

mix of these in conjunction with surrounding infrastructure and other vehicles all of which

would fall into very specific roles within the EI pattern (depending upon the features selected).

Selections of roles within the EI pattern ties directly back the vehicle pattern in many places;

for instance: within the Domain Model (Figure 6) the Higher Level Management System, GPS,

Terrian and Remote Management System. Within the Vehicle Interaction Model (Figure 8)

interactions such as Avoid Obstacle, Interact with Nearby Vehicle, Navigate and Manage

Vehicle Performance many be populated with different functional roles and inputs and outputs

in fulfillment of the EI Pattern roles to appropriately meet the necessary features for a specific

AGV.

The task of designing a system that synthesizes the interaction of sensors, software and

electro-mechanical actuators to achieve autonomous mobility safely and reliably is both a

challenge and an opportunity. Multiple layers of complex information must be processed,

understood and communicated at many levels. The demands on component reliability will be

extremely high. When safety or mission critical components do fail, diagnostic systems must

detect failure and switch to backup or “limp home” systems. The complexity involved, while

daunting, provides the opportunity to leverage commercial technical advances in autonomy, as

well as advances in model based methods and more specifically the use PBSE methods to

manage the inherent complexity within AGVs.

Follow on work

Elaboration of this work will be performed within a sub-team of the PBSE INCOSE/OMG

Patterns Challenge Team whose focus is to model an Automated Ground Vehicle Platform.

More specifically the sub-team will focus on the follow items:

 Expand the depth of both the vehicle and embedded intelligence pattern to build an

Automated Ground Vehicle Platform Pattern. Initial work has focused on limited

autonomy in an unmanned remotely controlled platform. In elaborating the model the

sub-team will expand and detail feature selection and optioning using the precepts of

Product Line Engineering (ISO 26550).

 Use the AGV model to further demonstrate the use of Design Structure Matrix (DSM)

and Network Analysis as aids in architecting engineered systems. More specifically to

aid with modularization, partitioning, visualizing allocations across Multi-Domain

Matrices (MDMs) and investigating key network metrics and their ability to aid in

architecting systems.

 Determine the applicability of ongoing standardization efforts affecting AGVs. In

specific either SARTRE semi-automated truck platooning system or the AUTomotive

Open Systems ARchitecture (AUTOSAR) Chassis Control Functional Architecture.

Conclusions

The systemic complexity of AGVs demands a systems engineering approach. It requires a

systems paradigm which is interdisciplinary, leverages principals common to all complex

systems and applies the requisite physics-based and mathematical models to represent them. It

is a methodology which further differentiates the effectiveness of any MBSE approach and its

ability to help manage the complex and interrelated functionality of today’s Cyber Physical

Systems. For the approach discussed in this paper, the “methodology” includes not only

process, but more significantly the very concept of the underlying information those processes

produce and consume, independent of modeling language and tools.

As a model-based systems engineering approach PBSE is particularly well suited to address

cyber physical systems challenges and those of Automated Ground Vehicles. PBSE provides a

data model and framework that is both holistic and compact. It addresses the core system

science needed in designing automated ground vehicle platforms by making interactions, the

heart of Cyber Physical Systems, more visible. PBSE and the EI pattern provides a rapid and

holistic means to identify and manage system risk and failure identification, analysis, and

planning essential to CPS. Both are also essential in establishing patterns of adaptive and

hierarchical control which can be leveraged as a framework for engineering trusted systems.

The Embedded Intelligence Pattern explicitly represents the logical roles which enable planned

evolution and limits architectural lock in, effectively reducing switching costs and speeding

technology integration.

References

1. (Alexander, 1977) Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M.,

Fiksdahl-King, I., and Angel, S., A Pattern Language. Oxford University Press, New

York, 1977.

2. (BCG, 2013) “The Most Innovative Companies 2013 – Lessons from Leaders” 2013

BCG Global Innovators Survey, BCG Analytics.

3. (Berg, 2014) Berg, E., “Affordable Systems Engineering: An Application of

Model-Based System Patterns To Consumer Packaged Goods Products,

Manufacturing, and Distribution”, at INCOSE IW2014 MBSE Workshop, 2014.

4. (Bradley, Hughes, Schindel, 2010) Bradley, J., Hughes, M. and Schindel, W.,

“Optimizing Delivery of Global Pharmaceutical Packaging Solutions, Using Systems

Engineering Patterns” Proceedings of the INCOSE 2010 International Symposium

(2010).

5. (Cloutier, 2008) Cloutier, R., Applicability of Patterns to Architecting Complex

Systems: Making Implicit Knowledge Explicit. VDM Verlag Dr. Müller. 2008.

6. (Estafan, 2008) Estafan, J. 2008. Survey of model-based systems engineering (MBSE)

methodologies. INCOSE MBSE Initiative.

7. (Gamma et al, 1995) Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing

Company, Reading, MA, 1995.

8. (ICTT, 2013) Abbreviated Systematica Glossary, ICTT System Sciences, 2013.

9. (INCOSE Handbook, 2014) INCOSE Systems Engineering Handbook: A Guide for

System Life Cycle Processes and Activities, Version 4, International Council on

Systems Engineering (2014).

10. (INCOSE Patterns Team, 2014) INCOSE/OMG MBSE Initiative: Patterns Challenge

Team 2013-14 Web Site:

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

11. (ISO 15288, 2014) ISO/IEC 15288: Systems Engineering—System Life Cycle

Processes. International Standards Organization (2014).

12. (ISO 26550, 2013) ISO/IEC 26550 “Software and Systems Engineering—Reference

Model for Product Line Engineering and Management”, 2013.

13. (ISO 42010, 2011) ISO/IEC/IEEE 42010 “Systems and Software

Engineering—Architecture Description”, 2011.

14. (NSF, 2014)“NSF-Funded Joint Efforts”, at

www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286

15. (Schindel, 2005a) Schindel, W., “Pattern-Based Systems Engineering: An Extension of

Model-Based SE”, INCOSE IS2005 Tutorial TIES 4, (2005).

16. (Schindel, 2005b) Schindel, W. “Requirements statements are transfer functions: An

insight from model-based systems engineering”, Proceedings of INCOSE 2005

International Symposium, (2005).

17. (Schindel, 2010) Schindel, W., “Failure Analysis: Insights from Model-Based Systems

Engineering”, INCOSE International Symposium, Chicago, 2010.

18. (Schindel, 2011b) Schindel, W. “What Is the Smallest Model of a System?”, Proc. of

the INCOSE 2011 International Symposium, International Council on Systems

Engineering (2011).

19. (Schindel, 2011c) Schindel, W., “The Impact of ‘Dark Patterns’ On Uncertainty:

Enhancing Adaptability In The Systems World”, in Proc. of INCOSE Great Lakes 2011

Regional Conference on Systems Engineering, Dearborn, MI, 2011

20. (Schindel, 2012a) Schindel, W. “Introduction to Pattern-Based Systems Engineering

(PBSE)”, INCOSE Finger Lakes Chapter Webinar, April 26, 2012.

21. (Schindel, 2012 b) Schindel, W., “Integrating Materials, Process, & Product Portfolios:

Lessons from Pattern-Based Systems Engineering”, in Proc. of Society for

Advancement of Materials and Process Engineering (SAMPE), 2012

22. (Schindel, 2013a) Schindel, W. “Interactions: At the Heart of Systems”, INCOSE Great

Lakes Regional Conference on Systems Engineering, W. Lafayette, IN, October, 2013.

23. (Schindel, 2014) Schindel, W. “The Difference Between Whole-System Patterns and

Component Patterns: Managing Platforms and Domain Systems Using PBSE”,

INCOSE Great Lakes Regional Conference on Systems Engineering, Schaumburg, IL,

October, 2014

24. (Schindel, Peterson, 2013) Schindel, W., and Peterson, T. “Introduction to

Pattern-Based Systems Engineering (PBSE): Leveraging MBSE Techniques”, in Proc.

of INCOSE 2013 International Symposium, Tutorial, June, 2013.

25. (Schindel, Peterson, 2014) “Pattern Based Systems Engineering – Leveraging Model

Based Systems Engineering for Cyber-Physical Systems”, Proc. of 2014 NDIA Ground

Vehicle Systems Engineering and Technology Symposium, Systems Engineering

Technical Session, August 12-14, 2014, Novi, MI.

26. (Schindel, Smith, 2002) Schindel, W., and Smith, V., “Results of applying a

families-of-systems approach to systems engineering of product line families”, SAE

International, Technical Report 2002-01-3086 (2002).

27. (Weiner, 1965) Norbert Weiner, Cybernetics: Control and Communication in the

Animal and the Machine, Cambridge, MA, MIT Press, 1965.

Biography

Troy Peterson is a Chief Engineer and Booz Allen Fellow operating as a

firm-wide resource supporting top priority programs. Prior to Booz Allen, he

worked at Ford Motor Company and operated his own engineering

consulting business. He serves on the MSU Mechanical Engineering

Department Advisory Board and INCOSE’s Corporate Advisory Board. He’s

also a past president of INCOSE’s Michigan Chapter and he co-leads the

Patterns Challenge Team of the OMG/INCOSE MBSE Initiative.

William D. (Bill) Schindel is president of ICTT System Sciences. His

engineering career began in mil/aero systems with IBM Federal Systems,

included faculty service at Rose-Hulman Institute of Technology, and

founding of three systems enterprises. Bill co-led a 2013 project on the

science of Systems of Innovation in the INCOSE System Science Working

Group. He co-leads the Patterns Challenge Team of the OMG/INCOSE

MBSE Initiative

