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Abstract.  Automated Ground Vehicle (AGV) platforms are proliferating across commercial, 

military, and consumer applications.  Beyond diversity of form and application, AGVs can be 

manned or unmanned, and exhibit a broad range of automated control, from partial to fully 

autonomy, making these vehicles strikingly diverse. 

This paper reports on application of Pattern-Based Systems Engineering (PBSE) to 

representation of automated ground vehicle platforms.  PBSE is based upon reusable, 

configurable S*Models conforming to the S*Metamodel, expressed in any modeling language 

and toolset.  The Patterns Challenge Team of the INCOSE/OMG MBSE Initiative has been 

practicing PBSE across applications, reported in this and other IS2015 papers. 

A specialized class of Cyber-Physical Systems, AGVs are subject to intense interest, creating 

new opportunities, risks, and complexities.  To address the diversity and complexity of these 

systems,  the Embedded Intelligence (EI) Pattern, another S*Pattern, is being applied by the 

team to illustrate its applicability to an AGV Platform Pattern.   

Automated Ground Vehicle Platforms  

AGVs are rapidly and dramatically increasing in complexity which  is changing the way we 

develop, manage and interact with these systems.  A primary driver for this change is the 

increase in vehicular automation, which offers many benefits to include increased efficiency, 

safety and improved situational awareness among others.  However, it also places significant 

demands on organizations to ensure rigor and trustworthiness by appropriately improving 

safety, security and reliability.  

 

The rapid evolution of autonomy in ground vehicles is also driving competition and 

accelerating innovation in a reinforcing loop. The Boston Consulting Group’s 2013 report on 

the most innovative companies noted that for the first time, there were more automakers than 

tech companies listed the top 20 (BCG, 2013).  One surprise, not noted in the study however, 

was that every company listed in the top 10 is involved with ground vehicle automation. 

 

The increased demand for automation and innovation brings with it risks which parallel the 

challenges outlined by the National Science Foundation (NSF) in regard to Cyber Physical 

Systems (CPS). Challenges which they state are both significant and far-reaching.  The NSF 

defines CPS as “engineered systems that are built from, and depend upon, the seamless 

integration of computational algorithms and physical components” (NSF, 2014). They are 

systems which tightly intertwine computational elements with physical entities within 

aerospace, automotive, energy, healthcare, manufacturing and other sectors.  
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As an especially complex type of cyber physical system, Automated Ground Vehicle (AGV) 

platforms call for specialized methods to conceptualize and design for the deep 

interdependencies inherent within them.  This paper will introduce Pattern-Based Systems 

Engineering (PBSE), the emergence and use of the Embedded Intelligence (EI) Pattern for 

systems with forms of embedded human or automated intelligence, and highlight some key 

implications and benefits as applied to AGV Platforms. 

  

Model Based System Patterns  

PBSE Overview 

 

As a Model-Based Systems Engineering (MBSE) methodology, Pattern-Based Systems 

Engineering (PBSE) can address more complex systems, with reduction in modeling effort, 

using people from a larger community than the “systems expert” group, and producing more 

consistent and complete models sooner.   These dramatic gains are possible because projects 

using PBSE get a “learning curve jumpstart” from an existing model-based pattern and its 

previous users, rapidly gaining the advantages of its content, and improving the pattern with 

what is learned, for future users. The major aspects of PBSE have been defined and practiced 

for many years across a number of enterprises and domains, including ground systems, but in a 

limited community.  To increase awareness of the PBSE approach, in 2013 INCOSE started a 

Patterns Challenge Team within the OMG/INCOSE MBSE Initiative (INCOSE Patterns Team, 

2014). 

 

The term “pattern” appears repeatedly in the history of design, such as civil architecture 

(Alexander et al, 1977), software design (Gamma et al, 1993), and systems engineering 

(Cloutier, 2008). These are all loosely similar in the abstract, in that they refer to regularities 

that repeat, modulo some variable aspects, across different instances in space or time. However, 

the PBSE methodology referred to by this paper, based on S*Models and S*Patterns, is 

distinguished from those cases by the following important differences: 

 

1. S*Patterns are Model-Based: We are referring here to patterns represented by formal 

system models, and specifically those which are re-usable, configurable models based on 

the underlying S*Metamodel. By contrast, not all the historical “patterns” noted above are 

described by MBSE models.  It is for this reason that the current INCOSE PBSE 

Challenge Team effort is a part of the INCOSE/OMG MBSE Initiative.     

 

2. Scope of S*Patterns:  We are referring here to patterns which will usually cover entire 

systems, not just smaller-scale element design patterns within them. For this reason, the 

typical scope of an S*Pattern applications may be thought of as re-usable, configurable 

models of whole domains or platform systems—whether formal platform management is 

already recognized or not. By contrast, most of the historical “patterns” noted above 

describe smaller, reusable subsystem or component patterns. S*Patterns are similar to 

architectural frameworks, although they potentially contain more information. 

 

Fundamental to Pattern-Based Systems Engineering is the use of the S*Metamodel 

(summarized by Figure 1), a relational / object information model. The S*Metamodel is 

intended to describe the “smallest possible model” necessary for the purposes of performing 

systems engineering or science.  It provides the semantics to describe requirements, designs, 

and other information such as verification, failure analysis, etc. (Schindel & Peterson, 2013; 



 

  

Schindel, 2013a; ICTT, 2013; Schindel, 2011c, Schindel,  2005a, 2005b, 2010).  A metamodel 

is a model of other models—a framework or plan governing the models that it describes. These 

may be represented in SysML™, database tables, or other languages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A summary view of the S* metamodel 

 

Specifically, an S*Pattern is a re-usable, configurable S*Model of a family of systems (product 

line, set, ensemble etc.) as shown in Figure 2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pattern Hierarchy and Processes 

 

Over several decades, this approach to Pattern-Based Systems Engineering has been practiced 

across a range of domains, including carrier grade telecommunications, engines and power 

systems, automotive and off road heavy equipment, telecommunications, military and 

aerospace, medical devices, pharmaceutical manufacturing, consumer products, and advanced 

manufacturing systems. (Schindel and Smith, 2002; Bradley, et al, 2010; Schindel, 2012b). 

 

Engineers in these and many other domains spend resources developing or supporting systems 

that virtually always include major content from repeating system paradigms at the heart of 

their business (e.g., core ideas about airplanes, engines, switching systems, etc.). In spite of this, 

the main paradigm apparent in most enterprises to leverage “what we know” is to build and 

maintain a staff of experienced technologists, designers, application engineers, managers or 

other human repositories of knowledge.  

 



 

  

The physical sciences are based upon the discovery of regularities (patterns), which we say 

express laws of nature. Although re-usable content has some history in systems engineering, 

there is less recognition of a set of “Maxwell’s Equations” or “Newton’s Laws” expressing the 

nature of the physical world, as the basis of those systems patterns.  If Electrical Engineering 

and Mechanical Engineering disciplines have physical law at their foundation, can this also be 

so for Systems Engineering?  

 

In support of that connection, the S*Metamodel is focused on the very physical Interactions 

that are the basis of all the observed laws of the physical sciences, and which we assert are at 

the heart of the definition of System (in this methodology) as a collection of interacting 

components. (Schindel, 2011b, 2013a)  The S*Patterns that arise from the explicit 

representation of physical Interactions re-form the foundation of system representations to 

align more explicitly with the physical sciences.   

A method for managing AGV complexity and types 

Aspects of this PBSE approach are illustrated for Automated Ground Vehicles (AGVs) in the 

following section. 

AGV Model-Based Pattern  

AGV Diversity – Types/Product Lines    
 

Autonomous ground vehicles are often broadly categorized as manned and unmanned and by 

their level or type of control (limited, partial or full autonomy) making the broad class 

automated ground vehicles especially diverse (Figure 3.)  
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Figure 3: Broad Ground Vehicle Control Type and Manned/Unmanned Classifications 

 

 

 



 

  

Figure 3 outlines these three types of ground vehicle control as well as manned and unmanned..  

Furthermore, those that include partial autonomy can have algorithms and sensors embedded 

within the AGV or off-board at a central station, embedded within local infrastructure or 

otherwise (not shown in Figure 3).  Regardless of how they are allocated the core logical 

elements and core function remain the same.  

Vehicle Pattern 

These broad categorizations of AGVs also span across industrial, military and 

performance/remote control and commercial applications.  As a family of systems AGVs offer 

significant variation in size, mission, cost and many other attributes.  Even as a very small 

sample set Figure 4 below aptly represents the diversity of Automated Ground Vehicle 

Platforms. 

 

 

Figure 4: Automated Ground Vehicle Platform Diversity 

Given the variety of applications the variability in the high level of design and implementation 

of such systems is not surprising.  The general vehicle pattern represented in Figures 

5-10however could represent any one of these diverse sets of platforms. The amount of 

information and configurability of this model through the application of PBSE permits rapid 

specialization/configuration through selection of required feature sets shown in Figure 5.  

Figures 5-10 on the subsequent pages show important features, interfaces and interactions 

required for autonomous operation. For instance the Remote Autonomous Operation Feature, 

Remote Access Management Feature, and from the Domain Model the Remote Management, 

GPS, and Environmental Interfaces. 

 

Of course an elaborated model would be required to eventually arrive at any one of the 

platforms shown within Figure 3.  To retain configurability the modeling effort would follow 

the approach outline in Figure 2 in a recursive fashion to accurately detail the system 

architecture of any particular platform family. 



 

  

 
 

Figure 5: Vehicle Features Package 

 
 

Figure 6: Vehicle Domain Model 



 

  

 

 

 
 

Figure 7: Vehicle State Model 

 

 
 

Figure 8: Vehicle Interactions Model 

 

 



 

  

 
 

Figure 9: Vehicle Logical Architecture Model 

 

 

Figure 10: Vehicle Physical Architecture Model 

 



 

  

Unlike the diversity of physical implementation across these AGV platforms, whether manned 

or unmanned, wheeled or tracked, mine, city or wartime environments the means and 

allocation of control can have a very high level of commonality well represented by control 

patterns.  More specifically the Embedded Intelligence (EI) Pattern applies well. 

Embedded Intelligence (EI) Pattern  

 

Many S*Patterns are discovered and expressed through PBSE, but the Embedded Intelligence 

(EI) Pattern is of particular importance to the subject of AGVs.  

 

In the world of human-engineered systems, the term “embedded system” has come to be 

understood to mean a relatively low-level automated control of some sort, typically in 

electronic hardware/software form, to be inserted into a mechanical or other physical system. 

In its most common usage, this term is not used to describe larger scale automation, such as 

would be found for higher-level enterprise information systems or the largest cyber-physical 

systems. Since cyber-physical systems include both, this sort of divided perspective tends to 

suggest there are more differences between these levels than we believe are necessary.  

 

Accordingly, the EI Pattern returns to the perspective of Norbert Weiner, who first coined the 

term “cybernetics” to refer to the study of control and communication in both living and 

human-engineered systems. (Weiner, 1965). This seems particularly appropriate as the term 

“cyber-physical system” is finding favor in a world in which we seek patterns to advise us at 

many different hierarchical levels, including systems in which human beings are “embedded”.  

 

The EI Pattern is an S*Pattern that emerges to describe intelligence in explicit models of 

evolving systems in the natural and man-made world—also referred to as the Management 

System Pattern. (Schindel and Smith, 2002).  It describes the individual elements and overall 

systemic framework of embedded intelligence on a total system, whether the agents of that 

intelligence are information technology, human, hybrid, or other forms of management. 

 

Norbert Wiener studied the mathematics of feedback control systems in nature generally, and 

engineered fire control systems in particular.  Although classical feedback control quickly 

comes to mind in the management of system performance, more generally there are also other 

aspects of management. The four types of Embedded Intelligence Pattern functional roles that 

arise are shown graphically in Figure 11: 

 

 Managed System (MDS): Any system behavior whose performance, configuration, 

faults, security, or accounting are to be managed--referred to as System Management 

Functional Areas (SMFAs) or in ISO terminology fault, configuration, accounting, 

performance, security (FCAPS).  These are the roles played by the so-called “physical 

systems” in a cyber-physical system, providing physical services such as energy 

conversion, transport, transformation, or otherwise. 

 

 Management System (MTS): The roles of performing management (active or passive) 

of any of the SMFAs of the managed system. These are so-called “cyber” roles in a 

cyber-physical system, and may be played by automation technology, human beings, 

or hybrids thereof, to accomplish regulatory or other management purposes.  

 



 

  

 System of Users (SOU): The roles played by a system which consumes the services of 

an managed system and/or management system, including human system users or 

other service-consuming systems at higher levels.  

 

 System of Access (SOA): The roles providing a means of interaction between the other 

EI roles.   Engineered sensors, actuators, the Internet, and human-machine interfaces 

have contributed greatly to the emergence of the “Internet of Things”. 

 

In evolving systems, instances of these roles may arise individually, and over time lead to an 

emergent web of embedded intelligence.  As further shown in Figure 3, these roles are 

organized into EI Hierarchies, in which localized EI functions contribute to subsystem 

intelligence and effectively higher level EI functions contribute to higher level intelligence. In 

engineered systems, such EI hierarchies may be found in automotive, manufacturing, or 

aerospace systems, for example. 

 

In the case of the AGV Pattern, the Logical Architecture Diagram of Figure 9 shows the 

Vehicle Management System as a logical subsystem. This level of management is concerned 

with the vehicle as a whole. For consumer vehicles, it is frequently a hybrid of human operator 

(vehicle starting, steering, parking, stopping, etc.) and automation (automatic braking, vehicle 

stability control, etc.).  Each of the other logical subsystems of the same Figure 9 are likewise 

eligible to have their own internal Management System—the next level down in the hierarchy. 

This management hierarchy continues downward, but also upward—there is management at 

higher levels, including traffic control, fleet management, site management, warehouse 

management, mission control, etc.  

 

Like all S*Patterns, the EI Pattern also includes a pattern of Stakeholder Features, Functional 

Interactions,  States, and other aspects which appear repeatedly in a pattern of relationships 

characteristic of embedded intelligence, whether through planned engineering or emergent 

evolution.  These are not necessarily planned “top down” and the EI Pattern has been used to 

reverse engineer and describe complex hierarchies of embedded intelligent systems that 

emerged over time as either human-engineered sub-systems or as natural world systems that 

include living and other elements.  

 

Within the EI Pattern, States (modes, situations) that arise include Situation Resolution Cycles. 

As shown in Figure 12, these reflect the idea that system stability over time requires a form of 

system regulation to “resolve” various “situations” that may occur from time to time, driving 

the managed system back to a “normal” or nominal state. Examples include:  

 

 Major Mission Resolution Cycles: These proceed through a series of mission states, 

from mission initiation to fulfilment, including planning. 

 

 Minor Use Case Resolution Cycles: These similarly resolve various situational use 

cases. 

 

 Resolution of Faults: These may include the recognition, diagnosis, repair, and 

recovery from system faults. 

 

 Resolution of Service Requests: These may include resolution of requests for such 

services as re-configuration, security, or other situations.  

 



 

  

 

If a system is capable of not only traveling a situation resolution cycle trajectory (as in Figure 

4), but also recognizing that such a situation has arisen in the first place (as in Figure 13), we 

say that the system is “Situationally Aware”. 

 

 

Figure 11: Emergence of Embedded Intelligence (EI) Pattern Functional Roles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Situation Resolution State Cycles                              Figure 13: Situational Awareness  
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If an operator interface panel has a “mode switch”, then the system relies on a human operator 

to recognize occurrence of a situation and place the system in the appropriate state cycle 

(mode). More advanced autonomous systems automate this (situation recognition and 

mode-switching) greater sophistication. In all these cases, Attention Models in the EI Pattern 

describe ability to recognize and resolve situations which arise within the finite limits of 

managed system and management system resources.   

 

An example of this can be found in automated ground vehicles in three incremental levels of 

increasing autonomy – from limited to partial and then full autonomy.  One can imagine the 

potential architectural differences between systems that have planned to evolve to full 

autonomy versus those that simply seek to integrate capabilities as they become available.  In 

the second case the full EI pattern is not considered until after a system often experiences 

architectural lock in and it has limited integration opportunities. 

 

An example of the benefits of applying the EI Pattern to CPS is the insight it provides about 

emergence of higher level controls and management effects in systems, which we have 

observed to be frequently overlooked or misunderstood—especially in high complexity 

systems such as autonomous ground vehicles and the larger domain systems they inhabit. The 

EI Pattern is based first and foremost on the logical roles of that pattern, not the physical 

technologies that perform those roles. A common thinking trap is to associate control system 

boundaries or scope with physical controllers or information system platforms. The EI Pattern 

teaches us that these boundaries are better understood using the scope of Logical Management 

System roles. It is commonplace in engineering of control systems or information systems to 

expend effort in “integrating” those information systems so that they can interact with each 

other (“talk” to each other).  What is often overlooked, and what the EI Pattern enforces in our 

understanding, is that a higher level management system emerges logically in any situation in 

which two management system roles that have different managed system scopes interact with 

each other. This is a powerful way to understand how higher level management effects 

(whether positive or negative) emerge even if we did not initially recognize them.  

 

 

Automated Ground Vehicle and EI Pattern Integration 

The need to manage the inherent complexity within AGVs is very relevant today and the 

complexity is only accelerating. Google’s driverless cars are expected to hit the markets 

between 2017 and 2020. Automakers including GM, Ford, Nissan, Volkswagen, Mercedes 

Benz, Volvo, and Volvo Truck all have autonomous programs.  As a specific case of AGVs 

modern automobiles have begun to incorporate driver assistance technologies that will, under 

certain circumstances, take momentary control away from the driver if they get in over their 

head including Collision Mitigation Braking, Panic Brake Assist, Electronic Stability Control, 

Blind Spot Warning, and Lane Keeping systems, among others. These systems by themselves 

can mitigate a significant number of causalities due to vehicle accidents. The rationale for 

automating civilian vehicles can be far reaching given: “A third of the American workforce 

spends more than an hour a day commuting. It’s boring and dangerous.”[insert reference] 

There are 30,000 deaths [insert reference] in a year because of car accidents, of which 90 

percent were caused by human error.  
 



 

  

To handle the diversity of AGVs which include application, manned and unmanned and level 

and types of control the integration of the Vehicle and EI patterns can provide a very powerful 

and compact way models these complex cyber physical systems.  To accomplish this for an 

AGV would require the integration of the Vehicle and EI patterns.  This is a straight forward 

exercise given both are compliant with the S* metamodel to form S* patterns.  For AGVs this 

then permits the configuration and reuse of the general vehicle pattern and EI pattern to cover 

the diverse range of platforms within the AGV domain.  Configuration of a specialized AGV 

can be accomplished specifically thorough the selection of features shown in Figure 5 to 

ultimately configure systems solutions represented in figure 10. The next thing the PBSE 

INCOSE/OMG Challenge Team will do is to incorporate feature selection following the 

precepts of ISO 26550. 

  

AGVs to cover specific applications are most easily handled by application feature groups 

shown in Figure 5 which could be elaborated if necessary.  More specifically, the Personal 

Vehicle Application Group, Commercial Vehicle Application Group and Military Application 

Group; selection of these features would turn on or off many of the external and internal 

interfaces and interactions to specialize the pattern for the particular application.  Regarding 

manned and unmanned AGV variants this can also be configured from the general vehicle 

pattern through the selection (or not) of the Passenger Comfort Feature Group  of Figure 5 

which in turn would include (or not) the Passenger Interface on the Domain model of Figure 6, 

the Ride in Vehicle interaction from the interaction diagram of Figure 8 etc.  Ultimately this 

would provide configuration options for implementation within the Physical Architecture 

Model element of Vehicle Interior shown in Figure 10. 

 

To manage the type of control and ultimately the level of automation use of the EI Pattern and 

the chosen implementation of its functional roles (MDS, MTS, SOU and SOA) would 

determine the level of human control versus partial (hybrid) or full autonomous control.  The 

Feature element which would determine much of this is the Vehicle Management Feature of 

the Vehicle Pattern shown in Figure 5.  Here you can find features like navigation, cruise 

control, autonomous operation, remote management etc. Through the use of the EI Pattern 

allocations of sensing can be allocated to a driver, to multiple sensors on the platform or to a 

mix of these in conjunction with surrounding infrastructure and other vehicles all of which 

would fall into very specific roles within the EI pattern (depending upon the features selected).  

Selections of roles within the EI pattern ties directly back the vehicle pattern in many places; 

for instance: within the Domain Model (Figure 6) the Higher Level Management System, GPS, 

Terrian and Remote Management System.  Within the Vehicle Interaction Model (Figure 8) 

interactions such as Avoid Obstacle, Interact with Nearby Vehicle, Navigate and Manage 

Vehicle Performance many be populated with different functional roles and inputs and outputs 

in fulfillment of the EI Pattern roles to appropriately meet the necessary features for a specific 

AGV.  

 

The task of designing a system that synthesizes the interaction of sensors, software and 

electro-mechanical actuators to achieve autonomous mobility safely and reliably is both a 

challenge and an opportunity. Multiple layers of complex information must be processed, 

understood and communicated at many levels. The demands on component reliability will be 

extremely high. When safety or mission critical components do fail, diagnostic systems must 

detect failure and switch to backup or “limp home” systems. The complexity involved, while 

daunting, provides the opportunity to leverage commercial technical advances in autonomy, as 

well as advances in model based methods and more specifically the use PBSE methods to 

manage the inherent complexity within AGVs. 



 

  

Follow on work  

Elaboration of this work will be performed within a sub-team of the PBSE INCOSE/OMG 

Patterns Challenge Team whose focus is to model an Automated Ground Vehicle Platform.  

More specifically the sub-team will focus on the follow items: 
 

 Expand the depth of both the vehicle and embedded intelligence pattern to build an 

Automated Ground Vehicle Platform Pattern. Initial work has focused on limited 

autonomy in an unmanned remotely controlled platform.  In elaborating the model the 

sub-team will expand and detail feature selection and optioning using the precepts of 

Product Line Engineering (ISO 26550). 

 

 Use the AGV model to further demonstrate the use of Design Structure Matrix (DSM) 

and Network Analysis as aids in architecting engineered systems.  More specifically to 

aid with modularization, partitioning, visualizing allocations across Multi-Domain 

Matrices (MDMs) and investigating key network metrics and their ability to aid in 

architecting systems. 

 

 Determine the applicability of ongoing standardization efforts affecting AGVs.  In 

specific either SARTRE semi-automated truck platooning system or the AUTomotive 

Open Systems ARchitecture (AUTOSAR) Chassis Control Functional Architecture.  

Conclusions  

The systemic complexity of AGVs demands a systems engineering approach. It requires a 

systems paradigm which is interdisciplinary, leverages principals common to all complex 

systems and applies the requisite physics-based and mathematical models to represent them. It 

is a methodology which further differentiates the effectiveness of any MBSE approach and its 

ability to help manage the complex and interrelated functionality of today’s Cyber Physical 

Systems. For the approach discussed in this paper, the “methodology” includes not only 

process, but more significantly the very concept of the underlying information those processes 

produce and consume, independent of modeling language and tools.  

 

As a model-based systems engineering approach PBSE is particularly well suited to address 

cyber physical systems challenges and those of Automated Ground Vehicles.  PBSE provides a 

data model and framework that is both holistic and compact.  It addresses the core system 

science needed in designing automated ground vehicle platforms by making interactions, the 

heart of Cyber Physical Systems, more visible.  PBSE and  the EI pattern provides a rapid and 

holistic means to identify and manage system risk and failure identification, analysis, and 

planning essential to CPS. Both are also essential in establishing patterns of adaptive and 

hierarchical control which can be leveraged as a framework for engineering trusted systems.  

The Embedded Intelligence Pattern explicitly represents the logical roles which enable planned 

evolution and limits architectural lock in, effectively reducing switching costs and speeding 

technology integration.   
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