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Abstract
MBSE Patterns have been applied over the years across a variety of
domains, in advanced manufacturing, automotive, telecommunication,
medical/health care, mil/aerospace, and other domains. MBSE Patterns
describe recurring system situations using system models, including
stakeholder fitness spaces and markets, required behaviors, design
solution families, platforms, and product lines, risks and failures, and
other aspects. Because of this recurring nature, these MBSE Patterns
are attractive to use within an enterprise, but for the same reason are
also attractive across enterprises, to describe shared industry domain
frameworks for supply chains, standards or practices, other system
subjects that must be communicated across different enterprises,
institutions, government agencies and authorities. 2



Abstract, continued

Commercial enterprises and defense agencies naturally want to 
protect enterprise or national Intellectual Property (IP), but also have 
an interest in other cases that descriptions be shared or even public 
agreements. So, given these interests in Patterns in Private and 
Patterns in the Public Square, how do we navigate the challenges of 
reaching agreement on and sharing public or shared content while 
clearly protecting private or proprietary value, and how can these two 
interests be managed within the framework of a single product, 
system, product line, or domain? This talk will explore these issues in 
more detail, including how model-based methods help answer these 
otherwise challenging questions. Brief case examples will be included. 
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The INCOSE MBSE Patterns Working Group, part of the INCOSE/OMG 
MBSE Initiative, pursues the discovery, expression, and exploitation 
of re-usable, configurable MBSE models, called S*Patterns:

• http://www.incose.org/ChaptersGroups/WorkingGroups/transformational/mbse-patterns

• http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns
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S*Metamodel: The smallest underlying framework of ideas found over the 
years to be necessary for practice of engineering and science:

Independent of specific modeling languages or tools, but has been mapped into the 
popular contemporary modeling and engineering toolsets and modeling languages.
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• An S*Model is any model, in any language or tool, that conforms to the S*Metamodel.  

• An S*Pattern is a re-usable, configurable S*Model representing a family of systems.

• S*Patterns permit the rapid generation and use of validated MBSE Models, for any of the 
ISO15288 system life cycle processes.
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S*Patterns have been created and applied across 
diverse system domains, over 3 decades:
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Patterns Improve MBSE Leverage: First in Time and Effort, 
but More Importantly in Risk and Credibility
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Credibility of Models: 
Patterns and the History of Science 

Over the last three centuries, the triumph of the physical sciences in 
lifting human life is based on discovery, community validation, and 
shared application of recurring, configurable patterns that describe the 
world’s behavior and structure:

11



Credibility of Models: 
Patterns and the History of Science 

• Establishing the credibility of models is at the center of the sciences, but . . . 

• We observe that in the systems engineering community, “how to create models” 
seems to get more attention than “how to perform model verification, 
validation, and uncertainty quantification (VVUQ)”

• Efforts of recent years, such as the ASME Model VVUQ Standards activity, 
illustrate that the cost of model-based “virtual system verification” includes 
establishing model VVUQ—thereby raising the bar and the cost of models. 
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Enthusiasm for Models

The INCOSE systems community has shown growing 
enthusiasm for “engineering with models” of all sorts:

• Historical tradition of math-physics engineering models

• A World in Motion: INCOSE Vision 2025

• Growth of the INCOSE IW MBSE Workshop

• Growth in systems engineers in modeling classes 

• INCOSE Board of Directors’ objective to accelerate transformation 
of SE to a model-based discipline

• Joint INCOSE activities with NAFEMS
13



If we expect to use models to support critical decisions, then 
we are placing increased trust in models:
• Critical financial, other business decisions

• Human life safety

• Societal impacts 

• Extending human capability  

• MBSE Maturity  requires that we characterize the structure 
of that trust and manage it:
• The Validation, Verification, and Uncertainty Quantification (VVUQ) 

of the models themselves.
14



8

System of 
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Describes Some 
Aspect of Model

Do the System Requirements describe 
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Don’t forget: A model (on the left) may be used for 
system verification or validation (on the right!)
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Quantitative Credibility, including 
Uncertainty Quantification (UQ)

General structure of uncertainty / confidence tracing:
• Do the modeled external Interactions qualitatively cover the modeled Stakeholder 

Features over the range of intended situations of interest?

• Quantify confidence / uncertainty that the modeled Stakeholder Feature Attributes 
quantitatively represent the real system concerns of the Stakeholders with sufficient 
accuracy over the range of intended situation envelopes.

• Quantify confidence / uncertainty that the modeled Technical Performance Attributes 
quantitatively represent the real system external behavior of the system with 
sufficient accuracy over the range of intended situation envelopes.

• There is a body of literature on a mathematical subset of the UQ 
problem, in ways viewed as the heart of this work.

• But, some additional systems work is needed, and in progress, as 
to the more general VVUQ framework, suitable for general 
standards or guidelines.
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INCOSE 
ASELCM Pattern

• System 1:  Target system of interest, to be engineered or improved.

• System 2:  The environment of (interacting with) S1, including all the 
life cycle management systems of S1, including learning about S1.

• System 3:  The life cycle management systems for S2, including 
learning about S2.
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• Trusted shared MBSE Patterns for classes of systems 

• Configurable for vendor-specific products

• With Model VVUQ frameworks lowering the cost of model trust for 
regulatory submissions
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An emerging special case: Regulated markets
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An emerging special case: Regulated markets

• Increasing use of computational models in safety-critical, other 
regulated markets is driving development of methodology for 
Model VVUQ:
• See, for example, ASME V&V 10, 20, 30, 40, 50, 60.

• Models have economic advantages, but the above can add new 
costs to development of models for regulatory submission of 
credible evidence:
• Cost of evidentiary submissions to FDA, FAA, NRC, NTSB, EPA, OSHA, 

when supported by models—includes VVUQ of those models.

• This suggests a vision of collaborative roles for engineering 
professional societies, along with regulators, and enterprises:
• Trusted shared MBSE Patterns for classes of systems 
• Configurable for vendor-specific products
• With Model VVUQ frameworks lowering the cost of model trust for 

regulatory submissions

• Further emphasizes the issue of trust in models . . . 
19



Protecting and Sharing IP in S*Pattern Families

Consider an innovative, competitive, and possibly regulated, market, where 
competitive product suppliers A and B create model-described products: 
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Protecting and Sharing IP in S*Pattern Families

Speed and effectiveness of innovation may 
be enhanced by sharing; e.g.:

• Descriptions of interfaces that appear on 
competitive systems but must interact with 
each other or with other common actors

• Descriptions of regulatory expectations as to 
safety, and evidence of its achievement

• Guidelines or standards as to credibility of 
model-based descriptions of the above
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Protecting and Sharing IP in S*Pattern Families

• But some aspects of the competitive 
systems will involve market-differentiating 
proprietary IP, that the competitors want 
to keep confidential.

• So, how do we:

1. Share some content, while . . . 

2. Keeping other content confidential, but . . . 

3. Making sure the integrated system described 
works as expected (that is, the two partitions 
of data are not in conflict)?
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Protecting and Sharing IP in S*Pattern Families

• The work load on the regulatory 
process, and ability of regulators and 
businesses to avoid  getting bogged 
down, depend on whether 
submissions arrive looking very 
unique,  versus very related.

• Can the regulator and submitter 
establish common expectations 
about overall regulated parameters 
and credibility of related evidence?
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Protecting and Sharing IP in S*Pattern Families

Larger questions: How do we--

1. Create innovative market 
differentiating content, while . . . 

2. Describing it in a regulatory context 
of what is still fixed, and . . . 

3. Create sufficient confidence in 
related models (at low enough 
model VVUQ cost) to trust them for 
evidence of that performance?
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Production Operational Application Domain
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Protected IP, Coordinated with Shared Public IP
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Examples of Public Square Shared Model Activity

• Consortium-generated technical standards, frameworks: Not new. 

• But, expressing them as system models emerging more recently.

• Examples of related efforts:
• Trustable models: ASME Model VVUQ Standards activity

• Domain specific example: EPRI CIM Electrical Power Industry Model

• Harvesting patterns from legacy descriptions

• V4 Institute: expanding capabilities in virtual verification

• Model-Based Standards Authoring (MBSA)

28



Trustable models: 
ASME Model VVUQ Standards activity

• ASME has an active set of industry teams writing guidelines and standards on the 
Verification and Validation of Computational Models:

• Inspired by the proliferation of computational models (FEA, CFD, Thermal, 
Stress/Strain, etc.)

• Includes regulator participants (FDA, FAA)

• It could fairly be said that this historical background means that effort was not 
focused on what most systems engineers would call “system models”

• ASME also conducts annual Symposium on Validation and Verification of 
Computational Models, in May.  

• To participate in this work, in 2016 the speaker joined the ASME VV50 Committee:  

• With the idea that the framework ASME set as foundation could apply well to 
systems level models;  and . . . 

• with a pre-existing belief that system level models are not as different from 
discipline-specific physics models as believed by systems community.
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Trustable models: 
ASME Model VVUQ Standards activity
• V&V 10: Verification & Validation in Computational Solid Dynamics

• V&V20: Verification & Validation in Computational Fluid Dynamics 
and Heat Transfer

• V&V 30: Verification and Validation in Computational Simulation of 
Nuclear System Thermal Fluids Behavior

• V&V 40: Verification and Validation in Computational Modeling of 
Medical Devices

• V&V 50: Verification & Validation of Computational Modeling for 
Advanced Manufacturing

• V&V 60:  Verification and Validation in Modeling and Simulation in 
Energy Systems and Applications 30



Domain specific example: 
EPRI CIM Electrical Power Industry Model
• Industry-defined configurable model of electrical utility 

network, related systems, originated in 1990’s, substantial 
subsequent growth and applications added.

• Neutral model-based core (in UML), diverse applications 
across network planning and engineering, operations and 
restoral, sales and commercial aspects, across generation, 
transmission, distribution, and customer premises.

• Originated by industry consortium (EPRI), now basis of 
several global IEC standards:
• IEC 61970 (network model, equipment profile, schematics, 

analog measurement profile, discrete measurement profile, 
state variable profile, SCADA, energy, XML file exchange) WG 13

• IEC 61968 (assets, metering, GIS, messaging) WG 14

• IEC 62325 (energy markets) WG 16
31
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Synchronous Generator Models 
 

For conventional power generating units (e.g., thermal, hydro, combustion turbine), a synchronous 

machine model represents the electrical characteristics of the generator and the mechanical 

characteristics of the turbine-generator rotational inertia.  The standard interconnection  variables 

between a synchronous generator model and other models are shown in the following figure and 

table:   

 

Efd

Synchronous

Generator

Pmech

Network 

Equations

Turbine-

Governor

Excitation 

System Ifd

speed

Id, Iq*

E”d, E”q*

* Network interface variables may differ among application programs

angle

 

Synchronous Generator Interconnection Variables 

The interconnection with the electrical network equations may differ among application programs.  

The program only needs to know the terminal bus and generator ID to establish the correct 

interconnection. 

 

Synchronous Generator Interconnection Variables 

Model Type Synchronous Generator 

  

 Inputs: 

 Name 

 
Units Description Source 

 Efd p.u. Field voltage on base of Ifag * Rfd (field resistance) Exciter 

 Pmech p.u. Mechanical shaft power to the generator Turbine 
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Survey of average number of applications of CIM, 
in survey of utilities using it (2013)
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Harvesting Patterns from Legacy Descriptions
• We do not have to “model from scratch” to create MBSE Patterns that describe 

systems in which we have shared industry domain & public interests:
• CIM illustrates that we need to ask the subject matter experts in these domains for what 

their current agreements look like.

• The Method of Projections illustrates that we can also “harvest” formal MBSE S*Patterns 
from legacy documentation:

Joint project of the 
INCOSE Patterns Working Group and 
INCOSE PLE Working Group
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Standards and Shared Trusted MBSE Patterns

Comparing Shared Trusted MBSE Patterns to Standards is more than an analogy:

• Formal models are appearing as part of formal standards, providing a more 
direct way to implement standards, and . . . 

• Models are starting to be used to generate standards (Model-Based 
Standards Authoring, or MBSA).
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2017Conclusions 
1. The long-term leverage power of shared model-based patterns is a relentless 

force over time—competing enterprises, societies, take note.

2. This leverage has three power components: advantages in economics, speed, 
and reduction of risk.

3. Sharing such content does not preclude protecting other market-differentiating 
IP, and model-based patterns can specifically provide means of doing this.

4. The cost (in money, time, and risk) of establishing model credibility (Model 
VVUQ) is a key force for the benefit of shared, collaborative Patterns in the 
Public Square.
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Discussion

•

•

•

•

•
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