
 26
th

 Annual INCOSE International Symposium (IS 2016)

Edinburgh, Scotland, UK, July 18-21, 2016

Introduction to the Agile Systems Engineering

Life Cycle MBSE Pattern

Bill Schindel

ICTT System Sciences

schindel@ictt.com

Rick Dove

Paradigm Shift, International Inc.

rick.dove@parshift.com

Copyright © 2015 by Bill Schindel and Rick Dove. Published and used by INCOSE with permission.

Abstract. Engineered and other systems are under pressure to adapt, from opportunities or

competition, predators, changing environment, and physical or cyberattack. Ability to adapt

well enough as conditions change, especially in presence of uncertainty, is valued. Systems

(including developmental and life cycle management) that adapt well enough, in time, cost,

and effectiveness, are sometimes called “agile”. As environmental change or uncertainty

increase, agility can mean survival. Agile systems and agile systems engineering are subjects

of an INCOSE 2015-16 discovery project, described elsewhere. This paper introduces the

underlying MBSE-based Agile Systems Engineering Life Cycle Pattern being used to capture,

analyze, and communicate key aspects of systems being studied. More than an ontology, this

model helps us understand necessary and sufficient conditions for agility, different approaches

to it, and underlying relationships, performance couplings, and principles. This paper

introduces the framework, while specific findings about methods and practicing enterprises

studied will be reported separately.

Agile Systems, Agile Systems Engineering, and Why They Matter

Agile systems-engineering and agile-systems engineering are two different concepts

(Haberfellner and de Weck 2005), but both are designed for change. They can be augmented

with new functional capability. They can be restructured with different internal relationships

among their subsystems. They can be scaled up or down for economic delivery of functional

capability. They can be reshaped to regain compatibility or synergy with an environment that

has changed shape. These types of changes are structural in nature, and require an architecture

that accommodates structural change.

Agility is the ability of a system or process to thrive in a dynamic operating environment;

facilitating the deployment of effective response to both opportunity and threat, within mission.

A useful framework (Dove and LaBarge 2014) for characterizing the nature of a targeted

operating environment considers five categories of potential dynamics. An agile system or

process is appropriate when a UURVE environment is anticipated:

 Unpredictability: randomness among unknowable possibilities.

 Uncertainty: randomness among known possibilities with unknowable probabilities.

 Risk: randomness among known possibilities with knowable probabilities.

 Variation: randomness among knowable variables and knowable variance ranges.

 Evolution: gradual (relatively) successive environmental developments.

Central to agile systems-engineering is continuous learning and subsequent modification of

work in process, as new knowledge is revealed. Consequently it is counterproductive to

employ an agile systems-engineering process that doesn’t design and develop an agile system

mailto:author.one@gmail.com
mailto:rick.dove@parshift.com

to facilitate time- and cost-affordable modification of work in process. Figure 1 depicts this

interaction of agile systems-engineering and engineered agile-systems. The family of agile

software development practices

frequently obtain this necessary

relationship by employing an

object-oriented development

platform. Although hardware

development practices have not

yet embraced an equivalent

change-enabling development

platform, related opportunities

are demonstrated in rapid

additive mechanical

prototyping (3D printing),

electronic FPGA methods, and

variations of so-called live-virtual-constructive (LVC) platforms that can intermix human,

simulated, and instantiated system components.

The INCOSE Agile Systems Engineering Life Cycle Model Discovery Project

An INCOSE project-in-process is analyzing and building case studies of agile systems

engineering in a variety of systems engineering applications, collectively covering agile

software, firmware, and hardware systems engineering processes in experienced practice. The

objective of the project is to discover and justify process principles as repetitively employed

patterns, which are necessary and sufficient for any system engineering process that must

contend effectively with an unpredictable, uncertain, and evolving engineering environment;

and to document case studies that show how those principles are employed in the context of

different engineering process environments.

The project is analyzing systems

engineering process activities as

outlined in ISO/IEC 15288 System

Life Cycle Processes. Figure 2

represents the life cycle model

framework employed in agile

systems engineering practices, and is

consistent with ISO/IEC TR 24748-1

Guide for life cycle management:

“…one applies, at any stage, the

appropriate life cycle processes, in

whatever sequence is appropriate to

the project, and repeatedly or

recursively if appropriate. While this

may seem to be a total lack of

structure, indeed it is not. Rather the

structure has well defined parts that

can be juxtaposed as needed to get

the job done, flexibly but still in a

disciplined manner, just as a real

structure would be created.”

Figure 1: Two different operational environments defining

necessary agile counterpoint for the systems they encompass.

Figure 2: Seven asynchronously-invoked stages

can be engaged repetitively and simultaneously

The Agile Architecture Pattern

In (Dove and LaBarge 2014) the fundamental Agile Architecture Pattern (AAP) for agile

systems of any kind employed the metaphor of an Erector/Meccano construction kit; showing

modular components that can be used to compose and reconfigure a variety of target systems

enabled by an interconnection and operation infrastructure. The focus in this paper, however, is

on agile systems-engineering rather than agile-systems. The same AAP prevails in both cases,

but here we employ the more apt example of the game of American football, as depicted in

Figure 3.

The AAP graphic depiction typically shows a variety of assembled system configurations

needed for different system-response situations. In the football example, each play (aka down)

is an iteration toward a completed effort. Every play/iteration is a learning experience that is

expected to inform strategy, resource configuration, and action for subsequent iterations. The

customer, of course, is ever-present to feed back performance evaluation against expectations.

Offensive plays are proactive and defensive plays are reactive. A series of offensive plays are

intended to result in achieving the goal, but are often interspersed with needs for defensive

plays. There are people with a variety of responsibilities, other than players, that are necessary

to achieve the goal.

Agile Architecture Pattern Elements

There are three basic elements in the AAP: a roster of drag-and-drop encapsulated modules

(resources), a passive infrastructure of minimal but sufficient rules and standards that enable

and constrain plug-and-play interconnection, and an active infrastructure that designates five

specific responsibilities for sustaining agile operational capability. The coverage here of these

elements is necessarily brief, but explained further in (Dove and LaBarge 2014).

 Resources—Resources are self-contained encapsulated units complete with

well-defined interfaces which conform to the plug-and-play passive infrastructure.

Figure 3: American football depicted as an agile-process architecture pattern,

structured to pursue goals in an unpredictable, uncertain, evolving environment.

 Passive Infrastructure—The passive infrastructure provides drag-and-drop

connectivity between resources.

 Active Infrastructure—An agile system is not something designed and deployed in a

fixed event and then left alone. Agility is most active as new configurations are

assembled in response to new requirements. In order for new configurations to be

enabled when needed, five responsibilities are required:

o Resource Mix Evolution—Who (or what process) is responsible for ensuring that

existing modules are upgraded, new modules are added, and inadequate modules

are removed, in time to satisfy response needs?

o Resource Readiness—Who (or what process) is responsible for ensuring that

sufficient modules are ready for deployment at unpredictable times?

o Situational Awareness—Who (or what process) is responsible for monitoring,

evaluating, and anticipating the operational environment in relationship to

situational response capability.

o System Assembly—Who (or what process) assembles new system configurations

when new situations require something different in capability?

o Infrastructure Evolution—Who (or what process) is responsible for evolving the

passive and active infrastructures as new rules and standards become appropriate to

enable next generation capability.

MBSE Formalization: Introduction to the ASELCM Pattern

This project includes creation of an MBSE representation of the configurable model (pattern)

that formalizes the above metaphorically-described aspects as well as more extensive

information, at multiple levels of detail, learned through the project’s host site studies and

analysis. That MBSE formalization is the ASELCM Pattern, introduced in sections below.

How Are Agile Systems Related (Or Not) to MBSE?

Agile Systems Engineering (ASE) and Model-Based Systems Engineering (MBSE) are not

synonymous. How are they related or different? MBSE enters into this project in several ways:

ASE as a system. The current project is creating an MBSE description of ASE as a system,

without assuming that ASE processes are themselves MBSE-based.

Definition: A System is a set of interacting components. (Fig. 4) By “interact”, we mean

exchange of energy, force, mass, or information, resulting in component change of state.

By “state”, we mean the condition of a thing that influences its behavior in subsequent

interactions.

Figure 4: The System Perspective

We are using model-based representations to add clarity to the descriptions of ASE being

uncovered by this project. Recognizing that there are multiple approaches to, and degrees of,

agility, this reference is a configurable model (a formal pattern), that can be configured to

System

System

Component

External

“Actors”

represent different cases for examination. The resulting reference model is intended to be

descriptive, not prescriptive, and should be usable to describe, from the point of view of its

relative agility, any Systems Engineering / Life Cycle Management process, good, bad or

otherwise. For targeted users of this model, it should help us answer questions about Agile

Systems Engineering, such as: What systems are involved? What are the nature, form, and

behavior of those systems? Do we understand why they “work” or not? In what situations are

various approaches to agile systems engineering of value (or not), and what are those values

(capabilities)? What principles and practices support the ASELCM, and in what way? What

quantitative relationships exist in this life cycle? How is this model informed by the current

descriptions of ISO/IEC 15288 and current descriptions of various agile engineering

practices? How does this model inform future versions of these standards and descriptions?

ASE consumes and produces information. As shown in Figure 5, we know that information

is a large part of what is produced and consumed by SE and other Life Cycle Management

processes, whether agile or not. ASE asks us to re-think what information is really needed, and

emphasizes discovery and validation of certain information by agile iterations. Systems

engineers steeped in more traditional SE methods may understandably question the optionality

of some traditionally valued SE information, discussed further in this project.

Figure 5: Engineering Produces and Consumes Information—Four Perspectives

Figure 5 provides four progressive views of information in the life cycle management system

context. The progression from the first to the second view is to suggest that we will shift the

historical emphasis, from mostly SE process description plus some SE information description,

to a greater emphasis on the information itself, modeled in this study to understand its

progression. The third and four views in this figure remind us that the Life Cycle Management

Process (including its SE subset) is not just a simple set of interacting components—it is a

complex network, with potentially highly varied interconnections and sequences, for which the

underlying content of the information consumed and produced may be easier to understand

than the structure of the processes. For these and other reasons, this project uses information

models, not just process models, to examine the related questions about information in an ASE

setting—but without necessarily assuming the use of MBSE in a given ASE.

Agile trajectories in target system configuration space. Have you ever experienced the

following? Technical staff reports that all the procedural steps have been completed, but the

resulting design is nevertheless found to be flawed. This common experience illustrates why an

emphasis shift from process space to information space is important, and characteristic of ASE.

Historically, in describing SE, more ink was always spent describing details of SE processes

than the amount spent to describe details of the SE information those processes produce and

consume. (The INCOSE SE Handbook [Walden et al 2015] and ISO15288 serve as examples.)

It has been pointed out that this is at odds with the other engineering disciplines, in which

information representing underlying phenomena is emphasized over procedure (Schindel

2015a). The “destination” that an ASE project seeks to reach is not the completion of a set of

Life Cycle Management
Process (Iterative)

Life Cycle Management
Process (Iterative)

Life Cycle

Management

Process (Iterative)

Information Passing

Through Life Cycle

Processes

Life Cycle

Management

Process (Iterative)

Information Passing
Through Life Cycle

Processes

Information Passing
Through Life Cycle

Processes

Information Passing
Through Life Cycle

Processes

process steps, but reaching an acceptable location in the configuration space of its system of

interest, to be discovered. As emphasized by Figure 6, ASE projects seek agile paths through

subject system configuration space, but have not had a way to fully conceptualize this space

until the arrival of strong enough system model foundations. Note the “information” in Figure

5 above describes points in the subject system configuration space emphasized in Figure 6.

Figure 6: Systems Coevolve in System Configuration Space, Not Work Process Space

Although system configuration space sounds abstract, major progress occurred twice in the

history of STEM from exactly such a formalization. The geometrization of algebra by

Descartes and the geometrization of function space by Hilbert both made possible practical

methods of modern engineering, discussed in (Schindel, 2015b). Recent anthropological

studies similarly report an earlier shift in human conceptualization of geographic space,

marked by movement from travel itineraries (analogous to SE process documents) to spatial

maps (analogous to target system configuration space). (Schindel 2015a)

ASE emphasis on learning. ASE emphasizes learning in the presence of uncertainty and

change. Some may be human learning by individuals and teams, but we know that the

accumulation of experience in an organization can take a number of forms, symbolized in

Figure 7. Accordingly, part of our project is examining how “information debt” can be

managed to support sustained agility on a balanced basis, and this includes our investigation of

MBSE-based Patterns in a role similar to their history in science—as repositories of

accumulated (improving) knowledge about systems of interest. To the extent that we find that

MBSE has a place within the practice of ASE, we know that MBSE processes can be made

more agile by their retaining and efficiently re-using what we know as MBSE Patterns, thereby

limiting MBSE overhead to new learning. Composable knowledge, like composable

architecture, improves agility. Through learning, agile systems may accumulate formidable

amounts of information, such as complex situation-based configuration rules, appearing

intelligent, but in fact riding on a static accumulated base of learned knowledge:

Figure 7: Experience Accumulates in Different Forms, for Later Uses

“Fixed” Agents Capable of

Applying What Was Learned
“Learning” Agents Capable

of Extraction of New

Knowledge

ASELCM Pattern Hierarchy and ASE Configurations. Because it is about system

innovation and management of life cycles, the ASELCM Pattern inherits model content from

several existing patterns (Fig. 8), thereafter configurable for different Agile SE approaches:

Figure 8: ASELCM Pattern inherits content from parent patterns, then is further specialized

At the top (most general) levels, Figure 8 shows that S*Metamodel, containing the minimum

conceptual content necessary to model any system for purposes of engineering or science. This

framework includes representation of elementary systems, emergence, and material cause,

along with provisions for concepts (e.g., Stakeholder Value) that emerge later in Figure 8.

The ASELCM Domain Model: Key System Boundaries

The ASELCM Pattern establishes a set of system reference boundaries. Whether the systems

of interest are small or large, human or inanimate, flying through the air or performing business

processes, all these start with the S*Model definition of System, depicted in Figure 4.

This ASELCM Pattern particularly refers to three major system reference boundaries, and

within those, six subsystem reference boundaries. These are all logical boundaries (defined by

the behavior, not the identity, of systems), and are depicted by the iconic diagram of Figure 9:

System 1: The Target System (and Components): (Refer to Figure 9.) The logical system of

interest, which results from, or is subject to, innovation:

– Its behavior, characteristics, or performance are targets of the life cycle innovation

(change, adaptation) process we’ll introduce later.

– It is potentially agile. Assertion: for Systems Engineering to be fully agile, so must its

target system also be agile—or else a competing SE system with an agile target system

will out-perform it.

– Examples include aircraft, automobiles, telephones, satellites, the human immune

system, software, restaurants, birds, and the health care delivery system.

Evolutionary Project

Management

(EVO) Pattern

Open System

Architecture

(OSA) Pattern

Incremental

Commitment Spiral

Model (ISCM) Pattern

S*Metamodel

Core

Entity-

Relationship

Paradigm

RE

Minimal System S*Metamodel:
Definition of (Elementary) System,

Material Cause

Definition of
Relational Modeling

S*Pattern Class Hierarchy

General
ASELCM Pattern

Quick Reaction

Capability

(QRC) Pattern

Live-Virtual-

Constructive

(LVC) Pattern

Scrum Pattern Wave Pattern

Rapid Development/

Fielding

(RD) Pattern

Product Line

Engineering

(PLE) Pattern

 EI Pattern,
SOI Pattern

Emergence & Definition of Intelligence,
Purpose, Stakeholders, Innovation, Final

Cause, Formal Cause, Efficient Cause

Emergence &
Definition of Agile

Systems

 3. System of Innovation (SOI)

 2. Target System (and Component) Life Cycle Domain System

 1. Target System

LC Manager of Target System

(and Components)

 (substantially all ISO15288 processes)

Learning & Knowledge Manager for

LC Managers of Target System

 (substantially all ISO15288 processes)

Life Cycle Manager of LC Managers

 (substantially all ISO15288 processes)

Learning & Knowledge Manager for

Target Systems (and Components)

 (substantially all ISO15288 processes)

Target

Environment

EI Pattern

MTSC

SOUC

MDSC

SOAC

Mtmt

Interac

tion

Management

System (MTS)

System of

Users (SOU)

Managed

System (MDS)

System of

Access (SOA)

Manages

System of Innovation (SOI) Pattern Logical Architecture

(Adapted from ISO/IEC 15288:2015)

Technical Processes

Realization: Subsystem 3

Realization: Subsystem 2

Design: Subsystem 3

Component Level Design,
Acquisition, Fabrication

Realization: Top System

Realization: Subsystem 1

Design: Top System

Project Processes

Project Planning
Project Assessment

and Control
Decision Management

Risk Management
Configuration
Management

Information
Management

Measurement

Stakeholder Needs,
Requirements

Definition

System
Requirements

Definition

Requirements
Validation

Verification
(by Analysis &

Simulation)

Implementation

Integration

Verification
(by Test)

Organizational

Project-Enabling

Processes

Project Portfolio

Management

Infrastructure

Management

Life Cycle Model
Management

Human Resource
Management

Quality
Management

Agreement

Processes

Acquisition

Supply

Solution Validation

Integration

Verification
(by Test)

Solution Validation

Knowledge
Management

Process

Quality Assurance
Process

Business, Mission
Analysis

Design Definition

Architecture
Definition

Design: Subsystem 2

Design: Subsystem 1

Stakeholder Needs,
Requirements

Definition

System
Requirements

Definition

Requirements
Validation

Verification
(by Analysis &

Simulation)

Business, Mission
Analysis

Design Definition

Architecture
Definition

System
Analysis

System
Analysis

Service Life

Transition

Operation Maintenance

Disposal

More Abstract/General

More Specific

Figure 9: Iconic view of the ASELCM reference boundaries

System 2: The Target System (and Component) Life Cycle Domain System: (Refer to

Figure 9.) The logical system within which the Target System will exist during its life cycle,

when “in service” or otherwise. This domain includes all actors with which the Target System

will directly interact any time during its life cycle: This includes (among others) any system

that directly manages the life cycle of an instance of a Target System (or a

Component)—development, production and integration systems, maintenance and operations

systems, and others. The System 2 model (Figure 9) recognizes three sub-systems besides the

Target System:

Target System Life Cycle Domain Actors: All actors with which the Target System will

directly interact during its life cycle—those in its operational domain (demanding agility)

as well as all other direct actors. The next sub-system is a special case of those actors.

LC Manager of Target System: Manages all life cycle aspects of the Target System, as

recognized by ISO 15288. Note that this is more than just development or systems

engineering—it includes manufacturing or acquisition, operations, maintenance, security,

configuration management, and all the ISO 10040 System Management Functional Areas

(SMFAs). However, it manages only “already known” aspects of System 1 and its Target

Environment—it does not include responsibility of learning new things about them, which

is allocated elsewhere.

Learning & Knowledge Manager for Target System (and Components): Responsible for

learning new things about the Target System, its Components, and its Environment. This

may include extraction of patterns or other knowledge from observations, planning

experiments and extracting conclusions from their results, and other forms of learning. It

also includes responsibility for accumulation and persistent memory of those learnings, and

for providing the resulting knowledge for use by the LC Managers of the Target System.

Remember that these are logical (behavioral) roles. In realized physical systems, a single

physical system may behave as both a Target System and a system that produces, modifies,

reconfigures, or otherwise manages a Target System, by having roles from each allocated to it.

For purposes of this logical roles description, they have been identified separately.

System 3: The System of Innovation: (Refer to Figure 9.) The logical system that includes

System 1 and System 2, and that is additionally responsible for managing the life cycles of

instances of any (System 2) Target System LC Manager. Recall that those System 2 Target

 3. System of Innovation (SOI)

 2. Target System (and Component) Life Cycle Domain System

 1. Target System

LC Manager of

Target System

Learning & Knowledge

Manager for LC Managers

of Target System Life Cycle Manager of

LC Managers

Learning & Knowledge

Manager for Target

Systems

Target

Environment

 (Substantially all the ISO15288 processes are included in all four Manager roles)

System LC Managers include Target System development, production, integration,

maintenance, operations, and other management systems.

Why are the learning capabilities of System 2 and System 3 differentiated from other

capabilities in System 2 & 3 models? Especially for understanding two aspects of Agility:

 We want to understand what capabilities (Figure 7, right side) can exist for “agile

movement within what is already known”, for both System 2 and System 3, in nearly all

of the ISO 15288 process areas, and . . .

 We also want to explicitly understand what is meant by “learning” (Figure 7, left side)

in nearly all of the ISO 15288 process areas.

Learning includes observation, experimental discovery, questioning, noticing differences

between what is observed and what is believed, and extracting patterns from instances.

The Formal Domain Model. Supporting the simple “iconic” diagram of Figure 9, there is a

formal MBSE model that describes the ASELCM Pattern. A top level view of its formal

domain model is shown in Figure 10. In this model, the disk icons represent the responsibility

for persistent state information—whether by human memory, automated databases, or

otherwise—concerning listed system descriptions of the following systems:

 The Target System, its Components, and its Environment

 The LC Managers of the Target System.

Figure 10: Top Level ASELCM Formal Domain Model

How ISO 15288 LC Management Processes Participate in the ASELCM Pattern

There are four subsystems of ASELCM Systems 2 and 3 that deal in the life cycle management

of other systems. The (system life cycle management) processes of ISO 15288 are therefore

within the scope of those systems. Likewise, the processes of ASE, even if believed distinct

from the ISO 15288 processes, are also within the scope of those ASELCM Pattern systems.

The (agile or not) equivalents of the ISO15288 Technical Processes (see Appendix III) appear

four times in the ASELCM Pattern, as shown in Figure 11.

3. System of Innovation (SOI)

Learning & Knowledge

Manager for LC Managers

of Target System

2. Target System (and Component) Life Cycle Domain System

 1. Target System

Target

System

Target System

Life Cycle

Domain Actor

LC Manager of

Target System

 Configured Models
Repository,

Configured Instances of:

Pattern Repository
Knowledge of Families of:

Life Cycle Manager of

LC Managers

LC Managers of

Target System

Learning & Knowledge

Manager for Target Systems

Pattern Repository
Knowledge of Families of:

Target System

Component

Target

System

Target System

Life Cycle Domain

Actor

Configured Models
Repository,

Configured Instances of:

Manages
Life Cycle of

Observes

Provides
Knowledge to

Provides
Knowledge to

Manages
Life Cycle of

Target System

Component
Observes

Provides
Observations to

Observes

Provides
Observations to

Manages
Life Cycle of

Observes

 Substantially all the ISO15288 processes

are included in all four Manager roles.

Logical only: Some Manager roles may be allocated

to the same physical system as the Target System

LC Managers of

Target System

Target System

Component

Target

System

Target System

Life Cycle Domain

Actor

Figure 11: Four Instances of the LC Management Processes, Across the ASELCM Pattern

We believe that the ISO 15288 and ASE processes will be demonstrated by this project to be

potentially alternate views of the same underlying reality, with ISO15288 traditionally

emphasizing process management, and ASE processes typically emphasizing effective

discovery, learning, and response in the presence of change and uncertainty, through rapid

iteration. The configurability of the underlying pattern is driven by its Stakeholder Feature

level optimization for different situations and different stakeholder objectives.

For example, Figure 18 of Appendix IV provides an alternate view of processes, configured in

an Agile Scrum configuration, emphasizing agile sprint iteration cycles, and depicted in a form

more likely to be recognized by the current Agile community.

Figure 16 is an informal representation of the ISO15288 processes, distributed across a “Vee”

diagram easing its recognition by the traditional SE community, but depicted as potentially

concurrent processes not meant to suggest any specific sequence or interdependence. Rather

than suggest that the ISO 15288 processes are interconnected or sequenced in some single

fixed way, Figure 16 illustrates them as a network of processes, interconnected only by the fact

that all these processes produce and consume shared information about the target systems they

manage. See also the fourth case of Figure 5 and (Braha and Bar-Yam 2007).

Agile Trajectories in Target System Space. Moving to a view of target system configuration

space trajectories (Schindel 2015b) enables recasting the problem of managing the life cycle

process as a problem of optimal control (of trajectory) in the presence of uncertainty, for which

a large base of experience and literature exists. However, as noted in that reference, this

requires a strong enough underlying metamodel to adequately represent the system

configuration space for that purpose. To further illustrate that this is a realistic goal, it should

be noted that ASE practice has already developed a less formal approach of that same nature,

and at least one heuristic algorithm, that are informally in the spirit of such optimal control:

 The Backlog: A hallmark of ASE is establishment and management of “the backlog”

of incremental tasks, from which next jobs are selected in such a fashion as to make the

“best” progress in potentially shippable agile deliverables along an agile trajectory.

(Leffingwell 2011)

 WSJF Algorithm: In the context of the backlog, ASE offers the Weighted Shortest Job

First (WSJF) algorithm. This is an heuristic method by which a human strategist selects

perceived highest value, shortest effort to deliver (note the potential conflict) as the

next backlog task to perform. (Leffingwell 2011).

It is therefore reasonable to suggest that, in a configuration space that is strongly enough

modeled, this may be further formalized as the optimal control problem noted. A key part of

that space, described by the S*Metamodel (Appendix I), is the Stakeholder Feature subspace,

which describes the fitness landscape of all stakeholder value, and which includes risk. That

this can be cast as such a problem in dynamics is further supported by (Schindel, 2015c).

Agile Trajectories Include Learning

Agile trajectories in target system configuration space may occur without learning, when the

trajectory is only applying what is already known to a current situation, as in managing the

production, configuration, security, or operational performance of System 1. This in itself can

still be very valuable to agile system stakeholders. However, agile trajectories can also extract

new learning, as when System 2 extracts new information about either System 1 or its

Environment. This can include, for example, discovery of requirements, characteristics of

technologies, behavior of the environment, changes to any of those, or other new information.

Information Debt. This leads to a conundrum that might be perceived as a fault line between

traditional SE and current ASE practice. In this project, we have called this the issue of

“Information Debt”, to contrast it to the “Technical Debt” more frequently referenced by ASE

(Leffingwell 2011). Whereas Technical Debt refers to gaps in what is available to be delivered

(System 1), we have used Information Debt to refer to gaps between what the (System 2) team

has learned about System 1 versus information captured in a form suitable to sustain System 1

over its life cycle.

For example, ASE emphasizes team discovery and learning of what System 1 stakeholders

want, and this it turned into potential deliverable System 1 solution content. But what else

happens to what team members learned, other than it flowing into the delivered product? Some

members of the traditional SE community may believe that they detect an ASE intention to not

create a record of what was learned, as system technical documentation or otherwise, when

they hear the Agile Software Manifesto statement of valuing “working software over

comprehensive documentation”. (Fowler and Highsmith 2001) Will a delivered System 1 that

travels an extensive learning trajectory be sustainable over its subsequent life cycle?

Members of the traditional SE community might agree that there have been times when the

traditional process failed because of emphasis on comprehensive documentation over testable

product. Likewise, members of the ASE community might agree that complex, long-lived

software that is undocumented except for its source code might at times present a support

longevity problem. A concern in this project is to identify middle-ground principles in the

ASELCM Pattern that might be used to balance between these two extremes. This territory has

been at least partially explored by others (Ambler 2015).

Initial study of this area has also suggested it may help to resolve the perceived gap between

defense acquisition contractual review event policies and ASE approaches.

Emergence of Purpose. Another important learning case involves what has been termed the

“emergence of purpose” (Schindel 2013). ASE should support a high level of innovation, and

some learning can potentially include discovery of the existence stakeholders and purposes that

lead to entirely new, unanticipated Target Systems. Learning is not just the extraction of

patterns from signals. It also includes setting up conditions for those signals, such as being

curious, asking challenging questions, designing experiments, constant observation,

networking, and other skills. These “innovation competencies” are further catalogued in

(Schindel, Peffers, et al 2011).

 Additional ASELCM Pattern Content

The ASELCM Pattern as a whole contains more than the space of a single paper

allows—Appendices II-IV and the References sample the additional scope of this S*Pattern:

 Stakeholder Features, Feature Attributes: System fitness (trade) space for S1, S2, S3

 Functional Interactions, Roles, Role Attributes: What actually happens

 States / Modes: Temporal aspects

 Attribute Couplings: Representing quantitative relationships, impacts, principles

 Configuration, Reconfiguration, and Adaptation

Initial Observations, Work to Follow, Participation

The purpose of this paper has been to introduce some of the high level structures and approach

to the ASELCM MBSE Pattern. As the related project workshops continue and modeling work

proceeds, observations are accumulating and will be the subject of separate papers and reports,

such as (Dove, Scrapper, Schindel 2016). Some of the interesting observations already being

pursued for such other reports include:

1. Risk allocation, sharing, and spreading techniques

2. Product Line Engineering (PLE) aspects

3. Impacts of transparency, awareness, and communications, by culture and technology

4. Information debt versus technical debt

5. Coupling ASE approaches with defense or other traditional acquisition contracting

This is an INCOSE community project, with heavy involvement from the Agile Working

Group and the Patterns Working Group, and an open invitation to INCOSE members and

enterprises to consider participating as discovery host sites or individual participants in 2016,

by contacting the authors.

Appendix I: Applying the S*Metamodel to MBSE and PBSE

The ASELCM Pattern is being constructed as an S*Model. This means that it is an MBSE

model which conforms to the underlying S*Metamodel, summarized in Figure 12 (Schindel

2005b, 2011), defining the minimal underlying concepts necessary to describe any system for

engineering or scientific purposes. This does not prescribe a MBSE modeling language or

modeling tools to use, and S*Models can be expressed using a number of contemporary

modeling languages and toolsets. We expect to provide two such language-specific renderings

of the ASELCM Pattern, for appeal to different groups.

Figure 12: Summary Extract of S*Metamodel

An S*Pattern is an S*Model that describes a family (or platform or product line) of systems

that can be configured differently for different situations, applications, or uses. Because we are

describing a general reference model for Agile Systems Engineering Life Cycles, there are

multiple possible configurations (Figure 13). This is further illustrated by Figure 8.

Figure 13: An S*Pattern is an S*Model that can be configured for different needs

Patterns Methodology has been summarized by the INCOSE Patterns Working Group,

supporting this project (Schindel et al 2015; Schindel 2005a; Schindel and Peterson 2013).

Appendix II: Applying the Embedded Intelligence (EI) Pattern

Embedded Intelligence (EI) Pattern. The Embedded Intelligence (EI) Pattern (Peterson and

Schindel 2014; Schindel and Smith 2002) contributes model-based representation of System

Life Cycle Management across the System Management Functional Areas (SMFAs) of ISO

10404. This includes management of system Performance, Configuration, Security, Faults, and

Accounting. Stakeholder Features associated with those capabilities describe what

stakeholders value, summarized in Figure 14:

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix

Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

S*Metamodel for

Model-Based Systems

Engineering (MBSE)

S*Pattern Hierarchy for

Pattern-Based Systems

Engineering (PBSE)

System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Configure,

Specialize

Pattern

Improve

Pattern

General
System
Pattern

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix

Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

Figure 14: Major Stakeholder Features and Roles of the Embedded Intelligence (EI) Pattern

The EI Pattern describes a situation-based system regulatory framework for “handling” or

“resolving” management situations in the five SMFAs, maintaining a form of dynamic system

equilibrium as situations arise that demand resolution. The types of situations are reflected in

the types of ISO SMFAs. Classical controls, for example, typically fall in the Performance

Management SMFA. As these dynamic situations arise and are resolved, Situation Resolution

States Models of the EI Pattern describe the rise and resolution of various conditions, such as:

 Major mission cycles, from mission start to completion

 Fault resolution cycles, including prevention

 Configuration change cycles, including adaptations

 Fulfillment of requests for services

 Security condition resolution cycles

 Other situation resolution cycles

Figure 15 illustrates the cyclic form of Situation Resolution State Model that the EI Pattern

uses to represent these capabilities in time.

Figure 15: EI Management State Model

A backlog of situations of various priorities requiring management may arise, and this may at

times exceed the time and resources capacity of the management system. For that reason, the EI

Pattern includes an Attention Management Feature (Figure 14) that represents the required

EI (Management)

Feature

CONFIG MGMT CAPABILITY

Performance Attribute

FAULT MGMT CAPABILITY

Performance Attribute

SECURITY MGMT CAPABILITY

Performance Attribute

PERF MGMT CAPABILITY

Performance Attribute

ACCOUNTING MGMT CAPABILITY

Performance Attribute

Performance

Management Feature

Security Management

Feature

Accounting

Management Feature

Fault

Management Feature

Configuration

Management Feature

Attention

Management Feature

ATTN MGMT CAPABILITY

Performance Attribute

Environmental System

Actor 1

Actor 2

Actor 3

Actor 4

Subject System

EI Pattern

MTSC

SOUC

MDSC

SOAC

Mtmt

Interac

tion

Management

System (MTS)

System of

Users (SOU)

Managed

System (MDS)

System of

Access (SOA)

Manages

ability to queue and priority manage situations exceeding the resource (attention) capacity of

the system.

Some EI systems may have to be informed of the occurrence of a situation requiring resolution.

A system that is capable of not only traversing a situation resolution cycle, but also recognizing

that a triggering situation has arisen in the first place is said to be “Situationally Aware”:

If a human operator control panel has a “mode switch”, the system relies on the human

to be aware of situations, launching the appropriate cycles

More advanced systems recognize these situations autonomously, as in right side of

Figure 15.

Appendix III: Applying the System of Innovation (SOI) Pattern

System of Innovation (SOI) Pattern: This pattern contributes model-based representation of

the Life Cycle Management Processes of ISO 15288. At its top level, the Logical Architecture

of this system pattern is summarized by Figure 16, where for recognition purposes the logical

processes are spread across a “Vee” background that is not part of the formal model.

There are no inter-process architectural relationships shown in Figure 16, reflecting

communication between processes, or any kind of sequence shown there for these potentially

concurrent activities. This represents a complex network of nodes that interact with each other

through produced/consumed information shown in the right side of Figure 5. Arranging these

to provide “agility” is the goal of the ASELCM Pattern, which inherits this composable

structure from the SOI Pattern, as shown in Figure 8.

Figure 16: SOI Life Cycle Management Processes, Following ISO 15288

System of Innovation (SOI) Pattern Logical Architecture

(Adapted from ISO/IEC 15288:2015)

Technical Processes

Realization: Subsystem 3

Realization: Subsystem 2

Design: Subsystem 3

Component Level Design,

Acquisition, Fabrication

Realization: Top System

Realization: Subsystem 1

Design: Top System

Project Processes

Project

Planning

Project

Assessment

and Control

Decision

Management

Risk

Management

Configuration

Management

Information

Management
Measurement

Stakeholder Needs,

Requirements

Definition

System

Requirements

Definition

Requirements

Validation

Verification

(by Analysis &

Simulation)

Implementation

Integration

Verification

(by Test)

Organizational

Project-Enabling

Processes

Project

Portfolio

Management

Infrastructure

Management

Life Cycle Model

Management

Human

Resource

Management

Quality

Management

Agreement

Processes

Acquisition

Supply

Solution

Validation

Integration

Verification

(by Test)

Solution

Validation

Knowledge

Management

Process

Quality

Assurance

Process

Business,

Mission Analysis

Design

Definition

Architecture

Definition

Design: Subsystem 2

Design: Subsystem 1

Stakeholder Needs,

Requirements

Definition

System

Requirements

Definition

Requirements

Validation

Verification

(by Analysis &

Simulation)

Business,

Mission Analysis

Design

Definition

Architecture

Definition

System

Analysis

System

Analysis

Service Life: Top System

Transition

Operation Maintenance

Disposal

The related SOI Stakeholder Features, shown in Figure 17, represent capabilities of the

ISO15288 process areas, further specialized in the ASELCM Pattern.

Figure 17: SOI Stakeholder Features

Appendix IV: MBSE Model of an Agile Scrum Iteration Process

Figure 18: Agile Scrum Loops for Sprints and Releases

Stakeholder

Needs Analysis

System

Requirements

Analysis

System Design

Stakeholder

Satisfaction

Validation

Requirements

Satisfaction

Verification

Construction-

Fabrication

System

Integration

Technical

Process

Feature

Installation

PROJECT PLANNING

CAPABILITY

Risk Management

Feature

RISK MANAGEMENT

CAPABILITY

Project

Assessment &

Control Feature
PAC CAPABILITY

Configuration

Management Feature

CONFIGURATION

MANAGEMENT CAPABILITY

Decision

Management

Feature
DECISION MANAGEMENT

CAPABILITY

Information

Management Feature

INFORMATION

MANAGEMENT CAPABILITY

Quality Assurance

Feature

QUALITY ASSURANCE

CAPABILITY

Measurement

Feature

MEASUREMENT

CAPABILITY

Acquisition

Feature

ACQUISITION CAPABILITY

Supply

Feature

SUPPLY CAPABILITY

Business or

Mission Analysis

Disposal

Agreement

Process

Feature

Organizational

Feature

Technical

Management

Process Feature

Portfolio

Management Feature

Effectiveness

PORTFOLIO MANAGEMENT

CAPABILITY

Life Cycle Model

Management Feature

LIFE CYCLE MODEL

MANAGEMENT CAPABILITY

Infrastructure

Management Feature

INFRASTRUCTURE

MANAGEMENT CAPABILITY

Human Resources

Management Feature

HUMAN RESOURCES

MANAGEMENT CAPABILITY

Quality Management

Feature

QUALITY MANAGEMENT

CAPABILITY

Knowledge

Management Feature

KNOWLEDGE MANAGEMENT

CAPABILITY

Project

Planning

Feature

System Transition

Feature

System

Operations

Feature

System

Maintenance

Feature

Project Outcomes

Feature

INCREMENT IDENTITY

Financial Risk

Schedule Risk

Performance Risk

Completion Date

Completion Cost

Incremental Value

Selection Status

Execution Status

Increment Type

Starting Configuration

Ending Configuration

Starting Date

MISSION ANALYSIS

CAPABILITY
STAKEHOLDER

ANALYSIS CAPABILITY
Effectiveness

Effectiveness

REQUIREMENTS

ANALYSIS CAPABILITY

Effectiveness

DESIGN CAPABILITY

Effectiveness

CONSTRUCTION

CAPABILITY

Effectiveness

INTEGRATION

CAPABILITY

Effectiveness

INSTALLATION

CAPABILITY

Effectiveness

TRANSITION

CAPABILITY

Effectiveness

VALIDATION

CAPABILITY

Effectiveness

OPERATIONS

CAPABILITY

Effectiveness

MAINTENANCE

CAPABILITY

Effectiveness

VERIFICATION

CAPABILITY

Effectiveness

DISPOSAL

CAPABILITY

Effectiveness

Effectiveness Effectiveness Effectiveness

EffectivenessEffectiveness
EffectivenessEffectiveness

Effectiveness

Effectiveness

Effectiveness

Effectiveness

Effectiveness
Effectiveness

Effectiveness Effectiveness

Attention

Management Feature

ATTN MGMT CAPABILITY

Performance Attribute

 Planning Project

 Performing a Sprint (Time Limited)

 Planning Sprint

 Performing Sprint Development

 Refining Future Sprint Backlog

 Conducting Sprint Product Review

 Conducting Sprint Process Retrospective

Traditional Scrum Sprint Perspective
(Activity Diagram, with Swim Lane Roles)

 Performing Product Release

 Subsequent Life Cycle of Product Release

Project
Planned

Retrospective
Completed

Project
Initiated

Sprint
Planned Sprint Time

Window Ends

Sprint Time
Window Ends

Inspected Product
Not Ready for Release

(not “Done”) Inspected Product
Ready for Release

(“Done”)

Product
Released

Release
Life Cycle

Ended

 Initiate Product Backlog

 Review Priority Items & Set Sprint Thematic Goal

 Forecast Sprint Content Items

 Attend Daily Scrum

 Perform Developmental Task

 Track Daily Progress

 Analyze Future Item Requirements

 Split, Merge, Rescope Future Items

 Estimate Future Items

 Inspect Product

 Update Product Backlog

 Review Process & Environment

 Adapt Process & Environment

 Release Product

 Perform Target Interaction

 Provide In-Service Feedback

Product

Owner

Scrum

Master

Development

Team

Development

Environment

Target

System

Target

System

Environment

Stakeholder

(incl. Customer)

Scrum-Scrum
Feedback Loop

Release-Release
Feedback Loop

Copyright 2015, ICTT System Sciences

References

Ambler, S., “Agile/Lean Documentation: Strategies for Agile Software Development”,

retrieved 2015 from http://agilemodeling.com/essays/agileDocumentation.htm

Beihoff, B., and Schindel, W., “Systems of Innovation I: Models of Their Health and

Pathologies”, Proc. of INCOSE International Symposium, 2012.

Braha, D., Bar-Yam, Y., “The Statistical Mechanics of Complex Product Development:

Empirical and Analytical Results”, Management Science, V53, No7, July2007, pp. 1127–1145.

Dove, R, and LaBarge, R., “Fundamentals of Agile Systems Engineering—Part 1” and “Part

2”, INCOSE IS2014, July, 2014.

Dove, R., INCOSE Agile Systems Engineering Life Cycle Model Discovery Project, project

web site, loaded 2015 from: http://www.parshift.com/ASELCM/Home.html

Dove, R., Scrapper, C., and Schindel, W., “Agile Systems Engineering Process Features

Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned Systems

Group”, to appear in Proceedings of INCOSE 2016 International Symposium, 2016.

Fowler, M., and Highsmith, J., “The Agile Manifesto”. Dr. Dobb's Journal, August, 2001.

www.drdobbs.com/open-source/the-agile-manifesto/184414755 .

Haberfellner, Reinhard and Olivier de Weck. 2005. Agile SYSTEMS ENGINEERING versus

AGILE SYSTEMS engineering. INCOSE International Symposium, Rochester, NY, 10-15

July. http://strategic.mit.edu/docs/3_59_INCOSE-2005-AGSEvsEAGS.pdf.

Highsmith, J., Agile Software Development Ecosystems. Addison-Wesley Professional, 2002.

INCOSE/OMG Patterns Working Group 2015,

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

ISO/IEC 15288: Systems Engineering—System Life Cycle Processes. ISO 2015.

ISO/IEC TR24748-1: Systems and software engineering — Life cycle management — Part 1:

Guide for life cycle management, ISO 2010.

Leffingwell, Dean, Agile Software Requirements: Lean Requirements Practices for Teams,

Programs, and the Enterprise. Addison-Wesley 2011

Peterson, T., and Schindel, W., “Pattern Based Systems Engineering – Leveraging Model

Based Systems Engineering for Cyber-Physical Systems”, Proc. of NDIA GVSETS, 2014.

Schindel, W., “Pattern-Based Systems Engineering: An Extension of Model-Based SE”,

INCOSE IS2005 Tutorial TIES 4, 2005a.

-----------, “Requirements statements are transfer functions: An insight from model-based

systems engineering”, Proceedings of INCOSE 2005 International Symposium, 2005b.

-----------, W., “What Is the Smallest Model of a System?”, Proc. of the INCOSE 2011

International Symposium, International Council on Systems Engineering 2011.

-----------, W., “Systems of Innovation II: The Emergence of Purpose”, Proceedings of

INCOSE 2013 International Symposium 2013

-----------, W., “Maps or Itineraries?: A Systems Engineering Insight from Ancient

Navigators”, Proc. of INCOSE International Symposium, July, 2015a.

-----------, W., “System Life Cycle Trajectories: Tracking Innovation Paths Using System

DNA”, Proc. of INCOSE International Symposium 2015, July, 2015b.

http://agilemodeling.com/essays/agileDocumentation.htm
http://www.parshift.com/ASELCM/Home.html
http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

-----------, W., "Got Phenomena? Science-Based Disciplines for Emerging Systems

Challenges”, Proc of INCOSE Great Lakes Regional Conference, Cleveland, OH, 2015c.

Schindel, W., and Peterson, T., “Introduction to Pattern-Based Systems Engineering (PBSE):

Leveraging MBSE Techniques”, in Proc. of INCOSE IS2013, Tutorial, June, 2013.

Schindel, W., and Smith, V., “Results of applying a families-of-systems approach to systems

engineering of product line families”, SAE International, TR 2002-01-3086 (2002).

Schindel, W., et al, “MBSE Methodology Summary: Pattern-Based Systems Engineering

(PBSE), Based On S*MBSE Models”, V1.5.5A, INCOSE Patterns Working Group, retrieved

2015 from: http://www.omgwiki.org/MBSE/doku.php?id=mbse:pbse

Schindel, W., Peffers, S., Hanson, J., Ahmed, J., Kline, W., “All Innovation is Innovation of

Systems : An Integrated 3-D Model of Innovation Competencies ”, Proc. of ASEE 2011

Conference, American Association for Engineering Education, (2011).

Walden, D., et al, INCOSE Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities, Version 4, International Council on Systems Engineering (2015).

Biography

Bill Schindel is president of ICTT System Sciences. His engineering career

began in mil/aero systems with IBM Federal Systems, included faculty service at

Rose-Hulman Institute of Technology, and founding of three systems enterprises.

Bill co-led a project on Systems of Innovation in the INCOSE System Science

Working Group, co-leads the Patterns Working Group, and is a member of the

lead team of the INCOSE Agile Systems Engineering Life Cycle Project.

Rick Dove is CEO of Paradigm Shift International, specializing in agile systems

research, engineering, and project management; and an adjunct professor at

Stevens Institute of Technology teaching graduate courses in agile and

self-organizing systems. He chairs the INCOSE working groups for Agile

Systems and Systems Engineering, and for Systems Security Engineering, and is

the leader of the INCOSE Agile Systems Engineering Life Cycle Model

Discovery Project. He is author of Response Ability, the Language, Structure, and

Culture of the Agile Enterprise.

http://www.omgwiki.org/MBSE/doku.php?id=mbse:pbse

