
INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 1

Version 1.9.1

June 24, 2022

INCOSE Patterns Working Group Report:

Semantic Technologies for Systems Engineering (ST4SE) Project

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 2

INCOSE Patterns WG Report--ST4SE Project

Decorated Cover Copyright, Access, and Legends Project Team

Contents
In a Nutshell: The ST4SE Project: What Problem Are We Solving, and How? What Value to Me? 3

1 Report Purpose, Scope, Intended Readership 4

2 Background and Pre-Requisite Knowledge 4

2.1 INCOSE MBSE Patterns Working Group and the Value of Model-Based Patterns 4
2.2 Basics of Semantic Technologies, Ecosystem Models, S*Models, and S*Patterns 5
2.3 How to Learn More about Semantic Technologies 12
2.4 How to Learn More about S*Models and the S*Metamodel 13
2.5 How to Learn More about MBSE S*Patterns 13
2.6 How to Learn More About Innovation Ecosystems 13

3 Summary of the Project 15

3.1 Consistency Management as a Paradigm for Engineering and Life Cycle Management 15
3.2 The Interface Pattern; Use in the Traveler Power Converter Pattern 17
3.3 Enhanced Generation of a Model Consistent with a Trusted Pattern 18
3.4 Enhanced Checking of a Model for Consistency with a Trusted Pattern 25

3.5 Teams, Scale, and Trust: Implications in the Larger Innovation Ecosystem Environment 26

4 Tooling and Technologies Utilized 27

4.1 Semantic Technologies Applied, Placed in the Larger Information Ecosystem 27
4.2 Modeling Languages and Representations Utilized 28
4.3 Modeling, Semantic, and Pattern Configuring Tools Utilized 30

5 Project Results Demonstrated 34

5.1 Enhanced Generation of a Model from a Trusted Pattern 34
5.2 Enhanced Checking of a Model Against the Same Trusted Pattern 37
5.3 Gaining Access to the Project’s Tooling and Information 41

6 Observations, Conclusions, and Implications for Action 42

6.1 Observations During the Project 42
6.2 Project Conclusions 45
6.3 Explore and Gain from this Project: Suggested Incremental Actions You Can Take 45
6.4 Additional Questions for Future Work 45

7 Engaging with the S*Patterns Community 46

8 Definitions 46

9 References 48

10 Document Change History 49

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 3

In a Nutshell: The ST4SE Project: What Problem Are We Solving, and How? What Value to Me?

The purpose of the Semantic Technologies for Systems Engineering (ST4SE) Project is to demonstrate:

1. the integrated capability to perform two Model-Based Systems Engineering (MBSE) tasks of value;

2. with both tasks making use of the same reusable, configurable MBSE “Pattern”;

3. Task 1: generate a specific MBSE model that is a configuration of that MBSE Pattern;

4. Task 2: inspect a separately provided MBSE model for conformance to the MBSE Pattern;

5. with both tasks performed by a systems engineer aided by contemporary modeling languages and

tooling, bridging “semantic technologies” and MBSE. See Figure 1.

Why is this of value?

A. Generating models that conform to a pre-existing pattern (for a product line, an architectural

framework, an ontology, a standard, etc.) can improve the efficiency, quality, consistency, and

completeness of new models, and provide a pattern-based point of accumulation (through

incremental updates) of organizational learning to impact future models.

B. Checking models for consistency against a pre-existing pattern addresses those same values, for

models that were not generated by method (A), or which are modified versions of models generated

by method (A).

C. If the same pattern is used for both tasks, the resulting “loop closure” further increases value.

This project can be of value to your understanding of how to accomplish similar tasks, advancing technical

skills or team performance.

This project has been performed under a Technical Project Plan of the International Council on Systems

Engineering (INCOSE) MBSE Patterns Working Group. INCOSE has a long history of providing its membership

with technical publications for advancing the practice of systems engineering, but these publications have

ordinarily been in the form of traditional “document-style” publications. A secondary purpose of this project

has been for INCOSE to gain experience in the publication and distribution of model-based information, using

contemporary systems and methods that apply to models. A portion of this project involved configurable

patterns for system interfaces, based on an earlier Patterns Working Group Interface Patterns Project.

 Figure 1: ST4SE Project Overview

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 4

The following sections explain this project, including necessary background, in greater detail.

1. Report Purpose, Scope, Intended Readership

The purpose of this report is to explain the INCOSE Patterns Working Group ST4SE Project conducted during

2018-2021. That includes the motivation for the project, its technical approach, resulting observations and

conclusions, how to access the technical deliverables of the project to allow it to be repeated with variation,

and implied future work.

This report is meant to be used along with the technical project deliverables package described in the

references.

This report is not a “primer” on the underlying subject matter of Semantic Technologies such as OWL DL

language, the Pellet reasoner and other Semantic Technologies, Model-Based S*Patterns, Semantic

Technologies, the Innovation Ecosystem, the OMG SysML modeling language, or other technologies and

methodologies used by the project. However, it does briefly introduce each of those subjects and provide

references that may be consulted to learn enough to understand this project.

The intended readership for this report includes:

(a) Practicing systems engineers who would like to learn more about, and possibly practice, the tasks,

methods, and technology applications described;

(b) Technical leaders or other members of the systems community who are not hands-on practitioners

but who need to gain perspective on the intended uses and values of the related technologies and

approaches.

2. Background and Pre-Requisite Knowledge

This section introduces the background subject matter and pre-requisite knowledge areas necessary to

understand the other sections of this report, for the purposes indicated. Each of the following background

sections very briefly introduces the purpose and nature of each subject area, then cites items in the

References which may be used to learn more.

2.1. INCOSE MBSE Patterns Working Group and the Value of Model-Based Patterns

The INCOSE MBSE Patterns Working Group [Reference

https://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns] is a component of the INCOSE/OMG

Model-Based Systems Engineering (MBSE) Initiative [Reference http://www.omgwiki.org/MBSE/doku.php].

As used here, “System Patterns” are configurable, re-usable System Models that would otherwise be like

those expected and found in the practice of MBSE (not limited to, but including, OMG SysML models). Through

the availability and use of System Patterns, the outcomes targeted by MBSE models are made more

accessible, in terms of ease (and skill) of generation and use, associated modeling cost, schedule, risk,

completeness, and consistency, etc. Over time, updated System Patterns become points of accumulation of

organizational learning and expertise. Because they are configurable and re-usable models of families or

classes of systems, model-based System Patterns involve some additional methods and disciplines that extend

the ideas of MBSE (e.g., Pattern Management, Configuration Rules, model minimality, etc.).

https://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns
http://www.omgwiki.org/MBSE/doku.php

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 5

This model-based PBSE approach has been in use for a number of years, applied across enterprises and

domains that include mil/aerospace, communications, automotive, medical/health care, advanced

manufacturing, consumer products, along with business processes including sales, engineering, production,

and general innovation. The first INCOSE PBSE tutorial was provided at IS2005.

For detailed background on the INCOSE Patterns Working Group and the value of model-based patterns, refer

to Section 2.5.

2.2. Basics of Semantic Technologies, Ecosystem Models, S*Models, and S*Patterns

2.2.1. Semantic Technologies Basics

Semantics refers to the meaning of information, within or relative to some domain of discourse (that is, for

the range of valid statements within or about that domain). While data may be collected for a given domain

for many business or engineering purposes, it is only after such data is interpreted and given meaning (by

humans or automated agents) that decision-making can be made enhanced by that data. Thus, associating

our data with the intended meaning or semantics facilitates interpretation and decision-making consistency

and precision. In the case of semantic technology, that “meaning” is strictly limited to the formal descriptions

provided to the technology, and it is only within that formal description that the notion of “meaning” applies.

An early example of information technology based on semantics would be the mid-Twentieth Century

automated generation and subsequent processing of airline flight and seat reservations. Semantics in this

domain include the meaning of concepts of Air Carrier, Flight Number, Flight Origin, Flight Destination,

Departure and Arrival Time and Date, Passenger Name, Ticket Price, Available and Reserved Seats, along with

meaningful relationships between these, as well as values of related parameters. A “closed” view of such a

formally encoded domain is that the meaning of the “things” in this domain are fully described by the valid set

of relationships between those things. Additionally, nothing else can be “said” about those things that are

relevant to the domain of interest except through those relationships. It is possible to “say” (assert) and “ask”

(inquire, query) many things within that domain of discourse in order to share information or support decision

making. However, it is not possible to describe a recipe for cooking a chocolate cake using those same

semantics, because such descriptions would come from a different domain with different semantics. Formally

defined relational database technologies such as ANSI Standard SQL, Entity-Relationship Modeling, and

Relational Database Management System (RDBMS) platforms were early semantic technologies used in

various domains to automate a range of business, technical, and personal domain specific information

interactions across enterprises, government, institutions, and personal life—within the limits of those

technologies.

With the rise of the World Wide Web, linked information across a vastly greater range of domains became

more universally accessible—initially for interactions with humans. Initially, those links were not given formal

semantic meaning, with reasoning left to the humans navigating the web. To increase capabilities for using

information that included automated reasoning agents interacting with the data of the World Wide Web, the

standards-making work of the World Wide Web Consortium (W3C) established standards for an extended

vision for information enabling more automated reasoning. Called the Semantic Web, this well-specified vision

included more structured semantic relationships linking data according to formalized domain descriptions.

This included formalization of Web Ontology Language (OWL) for the description of the semantics of

ontologies characterizing various domains. It also included the notion of “Triple Stores” of three-part

“information atoms,” which describe the nature of the relationship between some subject relative to another

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 6

object. For some, reference to “semantic technologies” particularly refers to the technologies of the Semantic

Web, including OWL and other languages, triple-stores, model authoring tools, and automated query and

reasoning agents.

Efforts to establish formal ontologies, semantic frameworks, model-based patterns, and schema have also

grown up in other environments, so that Semantic Technologies may be understood to include but extend

beyond those associated with the Semantic Web. To learn more about Semantic Technologies, consult the

references cited in Section 2.3.

2.2.2. S*Model Basics

This project involved use of S*Models, expressed in OMG SysML and W3C OWL modeling languages.

S*Models are models (may be MBSE models, but not required to be) in any modeling language and tooling

(may be SysML, but not required to be) which satisfy a minimum model content that is described by the

S*Metamodel. That reference framework sets forth a “smallest possible model” lower bound on semantics

that has emerged over generations of practice as a minimal content required for the purposes of engineering

or science, performed over the life cycle of a system.

Mapped to whatever modeling language and tooling are in use, S*Models focus on modeled content that

includes: Functional Interactions; the Functional Roles engaged in those interactions; the selectable

Stakeholder Features that express selectable stakeholder value, measures of effectiveness or optimality, trade

space, impacts of risk, or configurability; the system States; Input-Outputs and Interfaces; system Requirement

Statements; Design Components; Failure Modes; Attribute Couplings (parametric couplings) and other key

modeled elements.

An informal representation of a key subset of the formal S*Metamodel is shown in Figure 2.

Figure 2: Informal Representation of a Subset of the S*Metamodel

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 7

The example S*Model illustrated in this project is an example MBSE model of an international traveler’s

electrical power converter, used by the traveler in different countries with different public utility electrical

standards, and the traveler’s personal electrically-powered devices. See Figure 3 and Table 1.

Figure 3: International Power Converter Domain Diagram / System Context Diagram

Table 1: Sampling of S*Model Elements of International Power Converter Model

S*Metamodel
Element Type

S*Model Element S*Metamodel
Element Type

S*Model Element

Features

Power Mains Compatibility
Systems,
Functional Roles

International Power Converter

Powered Devices Compatibility Local Power Distribution System

Ease of Use Electrically Powered Device

Portability Device and Converter User

Reliability and Durability Local Environment

Safety
Input-Outputs

Input Power

Functional
Interactions

Consume Electrical Power Output Power

Convert Electrical Power Heat

Set Configuration EMI

Resist Contamination Contaminants

Tolerate Moisture Moisture

Display Status and Information Configuration Setting

Interfaces

Power Input Interface Device Status and Information

Power Output Interface Handling Force

Handling Interface

Configuration and Information Interface

Environmental Interface

To learn more about S*Models, refer to the resources listed in Section 2.4.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 8

2.2.3. S*Pattern Basics

This project involved use of S*Patterns, expressed in OMG SysML and W3C OWL modeling languages.

S*Patterns are reusable, configurable S*Models (see the above section) that describe system families or

classes of systems. S*Patterns are therefore parameterized, general S*Models that include variability or

degrees of freedom; those variable aspects include the ability to populate or depopulate (including multiply

populate) various components of the S*Pattern, subject to configuration rules expressed as part of the

pattern, and the ability to set the value of Attributes (parameters, properties, variables) provided as part of

the S*Pattern, subject to configuration rules of the S*Pattern.

Figure 4: S*Patterns Permit Generation of Configured S*Models

The use of S*Patterns in an engineering or other environment of innovation includes the practice of

accumulating learned experience in the form of S*Patterns. Those patterns may then be “configured”

(populated) for specific applications or projects, rapidly yielding a first draft configured model instead of

requiring “from scratch” modeling. For example, a generalized lawnmower system pattern may be configured

to rapidly produce a specific case model of requirements, design, or other aspects of specific riding

lawnmower, walk-behind lawnmower, or autonomous lawnmower.

Figure 5: Configurable Systems--Product Line Example

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 9

An S*Pattern is itself an S*Model of a family of differently configured systems at different levels of

abstraction. The S*Pattern includes model-based configuration rules about generation of configured S*Models

from it. This configuration process may be automated so that a stakeholder representative chooses desired

configurations of the Stakeholder Features, and the rest of the S*Model is generated from that input and the

S*Pattern’s effective model-based “IF-THEN” configuration rules. During this generation process, a “cascade”

through the S*Pattern uses already configured elements to generate additional configured elements, as

shown in Figure 6:

Figure 6: A Pattern-Specified Cascade Populates a Configured S*Model from Features

To learn more about S*Patterns, refer to the resources listed in Section 2.5.

2.2.4. Ecosystem Model Basics

Because of the explicit “learning” or accumulative IP (Intellectual Property, intellectual assets, etc.) nature of

S*Patterns (see the Section 2.2.3) when using pattern-based methods the overall business or ecosystem

model shifts to something different than what is seen in many traditional “project-oriented” environments. In

those traditional cases, it is more likely to see models created “from scratch”, from personal experience, or

from “desk drawer files”, to satisfy a work procedure that calls for all the information items needed about a

system to manage its life cycle. In an S*Patterns approach, design evolution or other learning can be

characterized as introducing new variants or other aspects into the pattern while retaining other general

aspects.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 10

This means that patterns can reduce enterprises repeating the same work, or more importantly the same

expensive or time-consuming errors. It facilitates group learning, in which IP assets have impact beyond a few

individuals who originate them. It is closer to the information sharing ecosystem of the historical physical

sciences, in which shared patterns of discovered phenomena advance group knowledge. While the use of

patterns thus has advantages, it may also be less familiar than the traditional “from scratch” approach to

models. For this reason, the INCOSE MBSE Patterns Working Group makes use of the related Innovation

Ecosystem Pattern to describe the environment of the enterprise or supply chain ecosystem and how it may

be different in the case of pattern-based versus non-pattern activities—both of which can exist together.

The Innovation Ecosystem Pattern is itself an S*Pattern. However, it is not a model-based description of the

engineered product (such as a lawnmower or power converter). Instead, it is a model-based description of the

organization, processes, enterprise, or supply chain ecosystem that is performing any kind of innovation, and

how it learns, whether using formal patterns or not. It is a reference model that incorporates historical models

such as ISO15288 and the INCOSE SE Handbook, but with special emphasis on how learning is performed and

exploited. It helps to explain the use of S*Patterns. Refer to Figure 7, which defines three top-level reference

boundaries.

Figure 7: ASELCM Innovation Ecosystem Pattern Level 1, Reference Boundaries for Systems 1, 2, and 3

• System 1: The Engineered System.

• System 2: The Life Cycle Domain System, containing all the things that System 1 will interact with over

its life cycle, and in particular the systems of engineering, production, distribution, operation and

sustainment of System 1. System 2 is responsible to observe and learn about System 1 and its

environment and use that learning in life cycle management of System 1.

• System 3: The Innovation Ecosystem: Responsible for life cycle management of System 2. Responsible

to observe, learn about, and deploy the management processes of System 2.

System 2: Life Cycle Domain System

System 3. Innovation Ecosystem

Feedback

Learnings

Deployments

Deployments

Learnings

Deployments

Learning & Knowledge
Management Processes
for System 2 Processes

Learning & Knowledge
Management Processes

for System 1
Life Cycle Management

Processes
for System 1

Life Cycle Management
Processes

for System 2 Processes

Environment 1

Environment 3

System 1:
Engineered System

Observations

Observations

Observations

Feedback

O
b
se
rv
a
ti
o
n
s

(ISO15288 processes are included
in all four Management roles)

ASELCM Level 1 Reference Model

Observations
Environment 2

Learn

Apply

Learn

Apply

Learn
Apply

Pattern

Model

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 11

The next level of decomposition of the reference pattern is Level 2, shown in Figure 8:

Figure 8: ASELCM Ecosystem, Reference Boundaries / Logical Roles for Level 2

There are eight interacting roles identified in Figure 8. The upper three represent business process roles and

the lower five represent persistent information roles.

• System Life Cycle Business Process: Instance of this role are responsible to perform local enterprise

processes of System 2. ISO15288 processes of the INCOSE SE Handbook or “Vee Diagram” are typical.

• System 1 Stakeholder Advocate: Instances of this role are responsible to represent the interests of

System 1 stakeholders to the life cycle management processes.

• Consistency Management Role: Instances of this key role are important to the ST4SE Project, and are

further described in Section 3.1. This role is concerned with all types of “consistency” concerning the

information roles.

• Specific Model: Instances of this role are “models” of System 1, whether they are MBSE models,

simulation models, or more general “models” such as manufacturing drawings, schematics, or other

data structures.

• Deployed Generic Model (Pattern): Instances of this role are more general models (such as S*Patterns,

architectural frameworks, PLE models, ontologies, or other frameworks that can be used to generate

or at least check the Specific Model for conformance.

• Observed or Generated Datasets and Artifacts: Instances of this role can be datasets of empirical data

observed or measured from the real System 1, or data generated by simulation from the Specific

Model, or information captured from the System 1 Stakeholder Advocate, or documents or other

artifacts of a traditional nature.

P
ro
ce
ss

In
fo
rm

a
ti
o
n

Level 1

Level 2

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 12

• Metadata (Descriptor): Instances of this role are information that explains the nature and content of

the other three information roles (Specific Model, Deployed Generic Model, and Observed or

Generated Datasets and Artifacts).

• Trusted Model Repository: Instance of this role are responsible for the providing persistent, secured

access to the four information roles.

In this project, the demonstration illustrated shows how semantic technologies can enhance the digital

engineering ecosystem Consistency Management role described by the Innovation Ecosystem Pattern.

Advanced model generation from patterns, and model checking against patterns, are key enhancements.

To learn more about the Innovation Ecosystem Pattern, consult the resources listed in Section 2.6.

2.3. How to Learn More about Semantic Technologies

• “Ontology Development 101: A Guide to Creating Your First Ontology”, Natalya F. Noy & Deborah L.
McGuinness, 2000,
see http://ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
and https://protegewiki.stanford.edu/wiki/Ontology101
Brief introductory guide on the basic principles of ontology development.

• “Ontology Engineering”, Elise Kendall & Deborah L. McGuinness, Morgan & Claypool Publishers, 2019,
ISBN: 978-1681733081
Full textbook with examples and best practices.

• “Semantic Web for the Working Ontologist: Effective Modeling for Linked Data, RDFS, and OWL (ACM
Books) 3rd Edition”, James Hendler, Fabien Gandon & Dean Allemang, 2020, ISBN: 978-1450376143
Full textbook with many application examples and best practices.

• “W3C Standards”, W3C,
https://www.w3.org/standards/

• “The Semantic Web”, W3C,
https://www.w3.org/standards/semanticweb/
A general introduction to the semantic web framework, for which RDF and OWL are major enablers.

• “Web Ontology Language (OWL)”, W3C,
https://www.w3.org/OWL/
A general overview of OWL.

• “OWL 2 Web Ontology Language Primer (Second Edition)”, W3C,
https://www.w3.org/TR/owl2-primer/
The primer provides an approachable introduction to OWL 2, including orientation for those coming from
other disciplines, a running example showing how OWL 2 can be used to represent first simple information
and then more complex information, how OWL 2 manages ontologies, and finally the distinctions between
the various sublanguages of OWL 2.

• “Ontological Modeling Language (OML) 1.1”, California Institute of Technology,
http://www.opencaesar.io/oml/
OML has been developed by JPL / CalTech and published as open source under the Apache license.
OML is inspired by the Web Ontology Language 2 (OWL2) and the Semantic Web Rule Language (SWRL)
and can be considered a gentler and more disciplined way of using these standards in the context of
Systems Engineering. By mapping the OML constructs to a number of patterns expressed in subsets of
OWL2 and SWRL, OML inherits its expressivity, modularity, extensibility, and description logic (DL)
semantics, but also provides a concise and user-friendly syntax. Moreover, OML is implemented using the
Eclipse Modeling Framework (EMF), which gives it a Java API and integration with a large ecosystem of

http://ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
https://protegewiki.stanford.edu/wiki/Ontology101
https://www.w3.org/standards/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/OWL/
https://www.w3.org/TR/owl2-primer/
http://www.opencaesar.io/oml/

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 13

modeling frameworks that has been used to develop useful tools, many of which are provided by the
openCAESAR project.

• “Pellet Reasoner”, Clark & Parsia,
https://www.w3.org/2001/sw/wiki/Pellet
and http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.6784&rep=rep1&type=pdf
Leading RDF/OWL2 automated reasoner.

• “SPARQL 1.1 Overview”, W3C,
https://www.w3.org/TR/sparql11-overview/
Overview of the SPARQL query language to query and manipulate RDF/OWL graph data.

• “SWRL: A Semantic Web Rule Language Combining OWL and RuleML”, W3C,
https://www.w3.org/Submission/SWRL/
Contributed submission to W3C. Not an adopted W3C recommendation yet, but implemented and already
useful in practice.

• “Protégé”, Stanford University,
https://protegewiki.stanford.edu/wiki/Main_Page
Leading open source desktop and web-based tool for development of RDF/OWL ontologies.

2.4. How to Learn More about S*Models and the S*Metamodel

“What Is the Smallest Model of a System?”, INCOSE International Symposium.

“https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:what_is_the_smallest_model_of_

a_system_v1.4.4.pdf

“System Interactions: Making the Heart of Systems More Visible”, INCOSE Great Lakes Symposium.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:system_interactions--

making_the_heart_of_systems_more_visible_v1.2.2.pdf

“S*Metamodel, Release 5.0”.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:systematica_5_metamodel_v7.1.6a

.pdf

2.5. How to Learn More about MBSE S*Patterns

Patterns WG. 2019b. “Methodology Summary: Pattern-Based Systems Engineering (PBSE), Based On S*MBSE

Models” https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_extension_of_mbse-

-methodology_summary_v1.6.1.pdf

Patterns WG. 2021. INCOSE MBSE Patterns Working Group Web Site:

https://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

2.6. How to Learn More About Innovation Ecosystems

Schindel, W., Dove, R. 2016. “Introduction to the Agile Systems Engineering Life Cycle MBSE Pattern”. Paper

presented at INCOSE International Symposium. Edinburgh, UK, 18-21 July.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:is2016_intro_to_the_aselcm_patte

rn_v1.4.8.pdf

Patterns WG. 2020a. “ASELCM Reference Pattern: Reference Configuration Stages for Models, Model Patterns,

and the Real Systems They Represent”.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:configuration_stages_v1.4.5.pdf

https://www.w3.org/2001/sw/wiki/Pellet
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.6784&rep=rep1&type=pdf
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/Submission/SWRL/
https://protegewiki.stanford.edu/wiki/Main_Page
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:what_is_the_smallest_model_of_a_system_v1.4.4.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:what_is_the_smallest_model_of_a_system_v1.4.4.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:system_interactions--making_the_heart_of_systems_more_visible_v1.2.2.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:system_interactions--making_the_heart_of_systems_more_visible_v1.2.2.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:systematica_5_metamodel_v7.1.6a.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:systematica_5_metamodel_v7.1.6a.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_extension_of_mbse--methodology_summary_v1.6.1.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_extension_of_mbse--methodology_summary_v1.6.1.pdf
https://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:is2016_intro_to_the_aselcm_pattern_v1.4.8.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:is2016_intro_to_the_aselcm_pattern_v1.4.8.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:configuration_stages_v1.4.5.pdf

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 14

Patterns WG. 2020b. “Consistency Management as an Integrating Paradigm for Digital Life Cycle Management

with Learning”.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_--

_consistency_management_as_a_digital_life_cycle_management_paradigm_v1.2.2.pdf

Patterns WG. 2020c. “Example Use of ASELCM Pattern for Analyzing Current State, Describing Future State,

and Constructing Incremental Release Roadmap to Future”.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:example_evolutionary_roadmap_v

1.3.3a.pdf

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_--_consistency_management_as_a_digital_life_cycle_management_paradigm_v1.2.2.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_--_consistency_management_as_a_digital_life_cycle_management_paradigm_v1.2.2.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:example_evolutionary_roadmap_v1.3.3a.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:example_evolutionary_roadmap_v1.3.3a.pdf

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 15

3. Summary of the Project

3.1. Consistency Management as a Paradigm for Engineering and Life Cycle Management

This project, as summarized in earlier sections above, is about (1) generating system models from, and

therefore consistent with, general system patterns, and (2) checking the consistency of systems models with

general system patterns. Consistency management has deep historical roots in engineering and life cycle

management, although usually traveling under diverse other names. This project illustrates basic examples of

how consistency management is enhanced by semantic technologies and related methods.

The traditional systems engineering “Vee diagram”, along with other defense and commercial enterprise

models, all remind us that all engineering methods in one way or another inherently manage a series of “gaps”

into acceptable “consistencies” across system life cycles:

● Consistency of system requirements with stakeholder needs

● Consistency of system designs with system requirements

● Consistency of virtual simulations with empirical measurements (model VVUQ)

● Consistency of system component production with system design

● Consistency of system performance with system requirements

● Consistency of system operation with system requirements and design

● Consistency of system sustainment with system requirements and design, operation, and
maintenance

● Consistencies of many aspects with applicable technical standards, regulation, and law

● Consistencies of many aspects with learned experiences, formal patterns of requirements and design,
physical science, product line rules, architectural frameworks, shared ontologies, domain specific
languages, and model semantics

● Managed consistencies of the Digital Thread and Digital Twin

● Many other types of consistencies

Nearly all of these were also required consistencies in the traditional, more “tolerant” human-performed

ecosystems lacking as much digital technology, even if not recognized as so.

The Consistency Management Role in Figure 8 represents the configurable set of process roles responsible for

that consistency management—whether performed by humans or automated, and whether effectively

performed or not. It is understandable that much of this role has historically been performed by humans,

because of the required skills, judgement, and experience.

The digital engineering and modeling community finds itself in frequent conversations about a perceived need

for a “single source of truth” or “authoritative source of truth” (even if multiple), reflecting concerns with

diverse and inconsistent information about systems. Figure 9 reminds us this situation is not as simple as

might be assumed, showing the three main sources of information in any ecosystem:

1. What the stakeholders say (market and sponsor truths);

2. What experience says (accumulated, hard-won past discoveries, physical science);

3. What empirical observation says (scientific experiment, observation, measurement).

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 16

Figure 9. Roots of the consistency management challenge

The challenge is that these three sources will frequently be inconsistent (disagree with each other). The

Figures 8 and 9 Consistency Management Roles of engineering and other life cycle management processes

historically must recognize those inconsistencies and reconcile them.

The rise of interest in digital thread and digital twin methods aims to mitigate this consistency management

challenge . This is currently being applied in a series of industry case studies by AIAA with INCOSE support.

In the case of the digital twin, it reminds us of the importance of (1) managing both consistency between the

virtual simulation model and the real system it simulates, and (2) managing the consistency of business

processes and their information with what the trusted digital twin virtual model tells them. In the case of the

digital thread, the central issue of the “thread” is managed consistency between a range of information

objects along that thread. The historical predecessors to the digital thread bring important perspective to this

evolution. Depending on industry domain, these include (SAE 2016), (AIAG 2006), (ISO 2016).

Because consistency gaps are often rooted in conflicting or competing interests of different parties, the

Consistency Management role presents an opportunity for impactful multi-party collaboration across the

ecosystem or supply chain. Enabling this collaboration with explicit models of the respective parties’

collaboration configuration spaces makes it easier to understand this setting. MBSE models and semantic

technologies address the consistency of semantic structures, and can also provide the structure of

quantitative relationships (for example, structure of attributes and their parametric couplings, shown in Figure

2). With that structure consistently identified, other types of automated agents (e.g., solvers and simulators)

can check quantitative consistencies.

Many benefits sought through transformation to Digital Engineering have been discussed widely, such as basic

issues of improved information accessibility, early virtual verification through simulation, and other gains. The

Innovation Ecosystem Pattern reminds us, through the Consistency Management Role, of the wider promise

that a variety of Consistency Management issues at the heart of every life cycle stage may ultimately be

attacked more effectively through the aid of digital information technologies that assist in Consistency

Management. These include semantic web technologies, machine learning, consistency thread signatures,

T3

T1

T2

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 17

configurable patterns, and pattern-based model metadata. (Herzig and Paredis 2014), (Herzig, Qamar and

Paredis 2014), (Kerstetter and Woodham 2014), (Redman, 2014), (Patterns WG 2020b).

3.2. The Interface Pattern; Use in the Traveler Power Converter Pattern

The Interface Pattern is a subset pattern of the S* Metamodel concerned directly with Interfaces, or with the

larger context of Interfaces—such as would be seen in a traditional Interface Control Document. In this

project, the Interface Pattern, along with other S* Metamodel elements, were applied to represent an

international traveler’s power converter as discussed in Section 2.2.2. This project also included an initial stage

that was called the Interface Patterns Project. The subsequent semantic technologies portion of this project

resulted in refinements to the Interface portion of the S*Metamodel, summarized here.

The Interface Pattern portion of the S* Metamodel consists of three segments including: System Topologies,

Interface Implementation, and Modeled Relationship Reification (See Figure 10). The unifying element of the

System Topologies is the Interface Element Relationship, which is up to a 4-way relationship among the

Functional Interactions, Architectural Relationships, Input/Outputs, and Systems. It is up to a 4-way

relationship because not all four elements are necessarily populated for each Interface Element Relationship.

An example in the power converter pattern is the Interface Element Relationship among the Power Converter

System and Local Environment (Systems) during the “Consume Electrical Power” interaction while dissipating

Heat (I/O). A more complete set of examples for the System Topologies segment of the power converter

pattern follows in Section 3.3.

The Interface Implementation portion of Figure 10 describes the connection among the Interface, its Port(s),

Input/Outputs, and the System of Access (SOA). In this segment, the Port is the 3-way relationship among the

Interface, I/O, and SOA. There is a 1:1 cardinality between the I/O and Port, but because a single I/O can occur

in more than one Functional Interaction, the Port is coarser in granularity than the Interface Element

Relationship. An example is the Port that relates the Power Output Interface with Output Power across a

Device Power Connector System of Access. A more complete set of examples for the Interface Implementation

segment of the power converter pattern is shown in Section 3.3.

The Modeled Relationship Reification portion of Figure 10 distinguishes between Simple Architectural

Relationships and Reified Architectural Relationships. Simple Ars involve only 2 roles, whereas Reified Ars

involve more than 2 roles. For example, the Converts Electrical Power Architectural Relationship among the

Power Converter, the Powered Device, and the Local Power Distribution System. A more complete set of

examples for the Modeled Relationship Reification segment of the power converter pattern is shown in

Section 3.3

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 18

Figure 10: S*Metamodel Interface Context Segment

3.3. Enhanced Generation of a Model Consistent with a Trusted Pattern

The example trusted S*Pattern illustrated in this project is a configurable S*Model of an international

traveler’s electrical power converter, used by the traveler in different countries with different public utility

electrical standards, and the traveler’s personal electrically-powered devices. Figure 1 provides an overview

which shows how the pattern and configurable model fit within the scope of the project. Figure 3 shows the

domain of the power converter used as the system of interest in this project. Figures 11-21 show the S*

Pattern as SysML views in Cameo Systems Modeler (CSM) tooling, with its various elements including

Features, Feature Primary Keys, Feature Attributes, Interactions, Roles, Interfaces, Input/Outputs, Ports,

Architectural Relationships, and Design Components. Figure 4 provides a summary of how a portion of these

classes fit together to describe a system.

Additionally, the trusted S* Pattern has relationships in it between the classes/elements. Example instances of

these SysML modeled relationships are also shown in Figures 11-21. These relationships not only explicate

which specific pattern elements are related; they also detail the configuration rules for populating specific

instances of the classes in the configured S* Model. Figure 6 details the cascade of which general pattern

classes drive instantiation of the related configured model classes.

Figure 11 illustrates the S* Pattern Stakeholder Features for the power converter. These Features describe the

selectable Stakeholder value space that causes the configuration cascade. The Pattern’s Configuration Rules

include indicating whether a given Feature has to be populated or not (e.g., Mandatory or Optional). Such

Feature Configuration Rules can be more detailed by describing groups of Features whose population is

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 19

mutually inclusive or exclusive. Additionally, the Feature Attributes shown (FTA Icon) are populated repeatedly

for each populated Feature instance, and further describe quantitative or qualitative details about the

Features. The Feature Primary Keys (FPK Icon) are special Feature Attributes that can be multiply instantiated

to create multiple specialized (differentiated) instances of a Feature type for each distinct FPK value. These

FPK values can either come from a preset list or can be manually entered at configuration time.

Figure 11: Stakeholder Features in the S*Pattern

Figure 12 illustrates the list of Functional Interactions for the power converter. Functional Interactions

describe the interaction of the power converter with domain actors as they exchange material, energy flows,

forces, or information.

Figure 12: Functional Interactions in the S*Pattern

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 20

Figure 13 illustrates the relationships between Features and Interactions in the example pattern, including the

related Configuration Rules. An Interaction relates to a Feature when the Interaction directly describes the

system behavior delivering the value of the Feature. During the configuration of a specific model from a

pattern, configuration rules built into the pattern are automatically invoked to determine what to populate,

and may be thought of as “IF-THEN” rules: IF a given Feature is populated (say, by stakeholder need/request),

THEN a given Interaction should be auto-populated. The population can be further refined by the details

shown in the FPK Value and IPK Rule columns. For the example shown in Row 9 with an FPK Value of “*ANY*”

and an IPK Rule of “FPK”, any Feature Primary Key Value will be passed along to the Interaction as its

Interaction Primary Key Value and differentiate it from the same Interaction type with a different primary key

value.

Figure 13: Feature-Interaction Relationship and Configuration Rules in the S*Pattern

Figure 14 illustrates the example pattern’s relationships between its modeled Interactions and Roles, including

the related configuration rules for Roles. A Role is shown related to an Interaction when the Role participates

in the Interaction. During configuration, IF a given Interaction is populated THEN a given Role will be

populated. The population can be further refined by the details shown in the IPK Value and RPK Rule columns.

For the example shown in Row 3 with an IPK Value of “*ANY*” and an RPK Rule of “IPK”, any already

populated Interaction of the type Convert Electrical Power will cause population of an Electrical Powered

Device role; also, per the “IPK” rule shown, the Primary Key Value of the Interaction will be passed along to

the Role as its Role Primary Key Value and differentiate it from the same Role type with a different primary key

value. For the example shown, this differentiates multiple Electrically Powered Device instances from each

other (see Figure 3).

Figure 14: Interaction-Role (I-R) Relationships and Configuration Rules in the S*Pattern

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 21

Figures 15-17 illustrate example pattern configuration rules for the three Segments of the Interface Context

Pattern as described in Section 3.2. (The three segments are administered by the pattern owner as separate

tables in SysML, but they are automatically joined during configuration as a single table describing the

patterns entire Interface Context space.)

Similar to the above, an IF-THEN perspective also applies to the pattern’s configuration rules for the Interface

Context components. For these components, the main “IF” part is related to the incoming configured

Interaction-Role pairs (already populated from the upstream selected Features, Interactions, Roles, as

described above). Refer to Figure 18. IF an incoming populated Interaction-Role pair (Functional Interaction-

System pair) matches a Pattern ICT entry, THEN the ICT classes may be populated as configured components,

if they are found in the same Pattern ICT entry (See Figure 18). The relationships between the modeled classes

are automatically populated during configuration, based on the S*Metamodel and their appearance together

in the Pattern and Configured Interaction-Role Pair. PK Values for the populated items are determined by PK

Rules in the Pattern as follows: When there is a match of a configured model Interaction-Role pair with a

Pattern ICT entry, then the references below to “Interaction PK Value” and “Role PK Value” refer to the PK

values of that Interaction and Role.

• For Interface PK Values: If Interface PK Rule = “IPK”, then Interface PK value = Interaction PK Value, else

blank.

• For Input/Output PK Values: If Input/Output PK Rule = “IPK”, then Input/Output PK value = Interaction PK

Value, else blank.

• For Port PK Values: Port PK Value same as Interface PK Value (independent of Port PK Rule).

• For SOA PK Values: If SOA PK Value = “IPK”, then SOA PK Value = Interaction PK Value, else blank.

• For Reified Architectural Relationship PK Values: If AR PK Rule = “IPK”, then AR PK value = Interaction PK

Value, else blank.

• For Reified Architectural Relationship Role PK Values: If AR Role PK Rule = “IPK”, then AR Role PK value =

Interaction PK Value, else blank.

• For Simple (2-way) Architectural Relationship PK Values: If AR PK Rule = ““, then AR PK Value = blank. If AR

PK Rule = “IPK “, then AR PK Value = Interaction PK Value. If AR PK Rule = “R1PK”, then AR PK Value =

Subject System role RPK value. If AR PK Rule = “R2PK”, then AR PK Value = Object System role RPK value. If

AR PK Rule = “R12PK”, then AR PK Value = composite (Subject role RPK value)-(Object role RPK value). If

AR PK Rule = “IR12PK”, then AR PK Value = composite (Interaction PK value)-(Subject role RPK value)-

(Object role RPK value)

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 22

Figure 15: Interface Context: System Topologies Segment & Configuration Rules in S*Pattern

In Figure 16, the column with heading “Name” represents the Port.

Figure 16: Interface Implementation Segment and Configuration Rules in the S*Pattern

In Figure 17, the column with Heading “Name” represents the name of the Architectural Relationship Role.

Figure 17: Modeled Relationship Reification Segment and Configuration Rules in the S*Pattern

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 23

Figure 18: Details of IF-THEN Configuration Population in

Interface Context Part of S*Metamodel

Figure 19 illustrates the list of Input-Outputs for the power converter pattern. (Input-Outputs are material,

energy, force, or information exchanged through Interactions, by the power converter interacting with domain

actors.)

Figure 19: Input-Outputs in the S*Pattern

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 24

Figure 20 illustrates the list of Design Components for the power converter. Design components are the target

of behavioral roles and requirement allocation.

Figure 20: Design Components in the S*Pattern

Figure 21 illustrates the pattern’s described allocation relationships between Roles and Design Components,

including the related configuration rules. A Design Component relates to a Role when the former is allocated

the responsibility of meeting the behavior of the latter. During configuration, IF a given Role is populated

THEN a given Design Component will be populated. The population can be further refined by the details of the

Value and Rule columns. For example, an RPK Value of “*ANY*” and an DCPK Rule of “RPK” means for any

Role Primary Key Value it will be passed along to the Design Component as its Design Component Primary Key

Value and differentiate it from the same Design Component type with a different primary key value.

Figure 21: Logical Systems – Design Components Allocations and Configuration Rules in S*Pattern

While the above figures and discussion describe the simple example Trusted S*Pattern utilized in the project,

Section 5.1 describes the resulting S*Model configured from this pattern.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 25

3.4. Enhanced Checking of a Model for Consistency with a Trusted Pattern

Refer to Section 5.2

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 26

3.5. Teams, Scale, and Trust: Implications in the Larger Innovation Ecosystem Environment

Shared trust in a given model, theoretical law, engineering design, domain specific language semantic

framework, or standard is a key enabler of scaled-up use of that intellectual asset. When such shared trust in a

model worthy of such trust is missing, healthy growth that could have occurred is inhibited. When such shared

trust is awarded to a model not worthy of such trust, problems lie ahead.

How can a large community best manage the awarding, conveyance, and management of trust in a candidate

model? For simpler models, a basic approach of the physical sciences and business is to “start anew” by

testing the model in real situations. For simple cases, this empirical approach also has the advantage of being

repeatable by others, thereby spreading confidence. For more complex, higher expense or risk situations, this

approach may be at least partly replaced by activities solely in the model domain. This project explored two

means of advancing the ability of a community to do so:

1. Model Generation: Generating such a candidate model from an already trusted model of a more

general nature. This requires a trusted means to generate (synthesize) a new model, suited to a

specific need, from a more general trusted model or models already available. If the more generic

existing model is trusted, and the method of specializing it is trusted, then trust may be awarded to

the generated model.

2. Model Checking: Checking such a candidate model against an already trusted model of a more general

nature. The second of these requires a trusted means to check a candidate model against a more

general trusted model or models already available. Physics-based numerical simulation represents a

large class of this type. The current project was concerned not with numerical calculation but with

semantic reasoning about the non-quantitative aspects of a modeled system. If the more generic

existing model is trusted, and a method is trusted for reasoning about a new candidate model

compared to the generic model, then trust may be awarded to the new candidate model.

Both of the above means are also historical paths through which human scientists, mathematicians, and

engineers have applied human analysis and synthesis skills to create proofs or derivations that bridge from

more familiar trusted knowledge to new candidate knowledge. The current project has explored expansion of

this capability into the realm of automated or semi-automated reasoning, using trusted computational

technologies (the “methods” referenced in (1) and (2) above) holding the promise of greater capacities of

certain types.

In the present state of the art, considerable large-scale impact has been enjoyed by the trust awarded in

numerical models of engineered systems. Even this has been limited by many factors, as evidenced by the

state of regulatory evidence for “certification by analysis simulation” in flight and medicine. Awarding trust in

model semantics is at a much earlier stage, but semantic technologies offer candidates for the “trustable

methods” referenced above. This project has provided a simple awareness demonstration of what is involved

in both cases.

Related, but outside the scope of this demonstration project, is how the trust results of such methods may be

conveyed across a large community interested in awarding or denying such trust. More can be learned about

this by consulting the literature concerned with model metadata generated by numerical model VVUQ,

Credibility Assessment Frameworks, and Model Credibility Life Cycle Management. (See the References

Section.)

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 27

4. Tooling and Technologies Utilized

This section describes the specifics of the automated tools and technologies used in this project. Goals of this

project include enabling others to repeat the demonstrations themselves.

4.1. Semantic Technologies Applied, Placed in the Larger Information Ecosystem

At its core, the Semantic Web is a set of specifications for representing knowledge, storing and retrieving

those representations, drawing inferences, etc. At a low level, the specifications define how a simple fact like

“the Washington Monument is 169 m high” in terms of naming and identification conventions for arbitrary

resources as subjects, (e.g., Washington Monument), predicates (e.g., has height), and objects (e.g., the tuple

(169, metre)). This so-called Resource Description Framework prescribes a simple, largely syntactic convention

for cooperating parties to exchange assertions. The meaning of such assertions, that is, their correspondence

to the state of the world is outside the scope of the framework; within the framework they are simply symbol

triples that conform to conventions ensuring global uniqueness, interoperability, etc.

At a somewhat higher level, RDF Schema introduces notions of class and subclass, property and subproperty,

along with entailment schemes to allow simple deductions such as “x is a Car; Car subclass of Vehicle” implies

“x is a Vehicle” and “y has brother z; has brother subproperty of has sibling” implies “x has sibling y”.

At a higher level still, OWL (Web Ontology Language) introduces a set of axiom types from Description Logic

[ref] that permit more complex entailments, e.g., every girl with at least one parent with at least one sibling is

a niece.

It is well-established in logic that the more expressive the language, the more computationally complex the

reasoning required to extract entailments. Description Logic (DL) is intermediate in expressivity between

Propositional Logic and First-Order Logic. It represents a practical compromise in that not only can it be shown

that reasoning for DL is tractable in principle, but algorithms for such reasoning have been implemented in

multiple programming languages. That is, DL is the most expressive general logic for which practical reasoning

codes exist.

It should be obvious that a great many assertions of interest in engineering in general and in systems

engineering in particular are well beyond the expressivity of DL. DL, reasoners, for example, cannot solve

orbital mechanics problems, although such solutions are entailed consequences of assertions about the

underlying physics, particularly Newton’s Second Law (which is a second-order differential equation). This is

not a fatal flaw; in fact, it is not a flaw at all. It is merely a limitation we must bear in mind. The strength of DL

reasoners is in deduction and inference.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 28

Integrated analysis of complex systems, if it is to be trustworthy at all, must proceed from principled

construction. The leaf-level (or atomic) components are described by analytic expressions (e.g., equations)

that specify their intrinsic behaviors. As atoms, some of these expressions may have unbound terms that

correspond to interconnections, environments, command inputs, etc. At higher levels, composites specify how

their constituent components are arranged and interconnected. Analysis scenarios further specify

environments, commands, etc. Principled construction in this context means that the assembly of a set of

analysis equations proceeds by instantiating canonical expressions for atoms, interconnections, environments,

etc. The information that drives this construction is a set of assertions about the system, its compositional

structure, its interconnection structure, the environments it inhabits and their pertinent properties, inputs,

etc. This information is generally well within the expressivity of Description Logic. Consequently, reasoning can

provide assurance that we have constructed the correct set of expressions to present to some specialized

mathematical reasoner, e.g., Mathematica, Modelica, etc. There is a great deal of sophisticated theory and

software for solving specialized mathematical problems. The challenge for us as systems engineers is to

construct the right problem; Description Logic and the Semantic Web can help us with that.

A simple example of the foregoing is the use of Kirchhoff's Laws in circuit analysis. Given a lumped element

description of a circuit, that is, its voltage sources, resistors, and their interconnections, Kirchhoff's Laws

describe a set of algebraic relations among voltages and currents in the circuit. In that sense it can be seen as a

transformation from a structural description to its consequent analytical description. Circuit structural

description is easily within the expressivity of Description Logic. It is straightforward to represent Kirchhoff's

Laws as a model-to-model transformation, the output of which is another Description Logic representation. DL

Reasoners cannot solve the algebraic equations, but DL can provide assurance that the equations represent

our true intent by corresponding faithfully to the structural description.

4.2. Modeling Languages and Representations Utilized

Semantic models were constructed in OWL 2 DL, a restricted sublanguage of OWL 2 with favorable

computational properties.

The things asserted to be true in an OWL 2 ontology are expressed in the form of axioms. Some axiom types

define and circumscribe classes or properties, e.g., every Car is a Vehicle, the property hasWheel relates an

individual of type Car to zero or more individuals of type Wheel, etc. Collections of such axioms are commonly

called TBoxes (T for terminology) or vocabularies. Other axiom types make assertions about individuals, e.g.,

the individual named http://example.com/x is a Car. Collections of those axioms are commonly called ABoxes

(A for assertion) or descriptions.

i. Representation Levels
For the purpose of reasoning, every axiom is true and there is no need to segregate by type or any other

distinction. For the purpose of building a trustworthy modeling practice, however, it is helpful to segregate

axioms according to their scope and asserting authority.

As a simple example, in this project we used a simple power converter as an example of a device as an object

of semantic modeling. At the most concrete level, we might make assertions about an individual power

converter: its serial number, hours of service, etc. These assertions are not assumed to be true of any other

individual.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 29

At a slightly higher level of abstraction, we might collect axioms assumed to be true of all power converters,

e.g., every power converter has at least one input power interface and one output power interface. The

collection of such axioms could be considered a power converter vocabulary that establishes uniform

modeling patterns for all power converter applications.

At an even higher level of abstraction, we might capture modeling patterns that apply to engineered devices in

general, for example, a whole-part composition relationship, patterns for relating devices to their interfaces,

for interconnecting interfaces, etc. The collection of such axioms could be considered a systems engineering

vocabulary that establishes uniform modeling patterns for the general class of interconnected, composed

devices, e.g., systems.

Segregating axioms in this way allows us to associate vocabularies with engineering authority. Systems

engineering patterns are formalized in a vocabulary by some appropriate authority (perhaps an Organization’s

Chief Systems Engineer, perhaps INCOSE); power converter patterns as formalized by a design authority for

power converters. Finally, assertions about a specific individual converter are made by the manufacturer

and/or its user.

ii. Representation Patterns
Although OWL 2 DL is a usefully-expressive language for systems engineering, it is often cumbersome in

practice to apply it directly. We illustrate using two small examples.

1. Disjointness Assertions

OWL defines a thing called Class; a Class is a set of individuals. We use Class to define things like Requirement

and Interface. Although it’s implicit, what we mean when we define classes like Requirement and Interface is

that nothing can be both a Requirement and an Interface. In OWL, if that’s what we mean, we have to say it,

either explicitly:

DisjointClasses(:Requirement :Interface)

or implicitly by asserting incompatible constraints on the two classes. It’s important to assert disjointness

when it’s what we intend because it enables a reasoner to catch a broad class of modeling errors.

We also use Class to define things like IdentifiedThing and AggregatedThing. In this case we do not mean

that nothing can be both; it makes perfect sense for an aggregate to have an identifier. OWL gives us the

low-level tools to distinguish between these (disjoint vs non-disjoint) use cases, but in practice it is

tedious and error-prone to manage large taxonomies with only low-level tools.

2. Object Property Reification

In OWL we can say a camera acquires an image like this

ObjectPropertyAssertion(:acquires :camera :image)

The assertion itself has no identity, which means we can’t say anything about it. It would be useful, however,

to be able to express "Requirement R.x.y specifies that the camera shall acquire an image", i.e., to state a

functional requirement. It’s possible, using a technique called reification, to create a named individual to

represent the condition that the camera acquires an image in such a way that implies the assertion above--in

which a reasoner will conclude that. Because the reification itself has an identity, e.g.,

‘:camera_acquires_image’ and we can make that the target of another assertion like this

ObjectPropertyAssertion(:specifies :R.x.y :camera_acquires_image)

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 30

This reification technique is extremely useful and we have incorporated it into our practice; nearly every

relationship is reified.

3. Ontological Modeling Language

The Integrated Model-Centric Engineering Team at Jet Propulsion Laboratory, California Institute of

Technology has encountered issues such as these for more than a decade and has practical approaches to

address them in an open-source project called OpenCAESAR []. A higher-level language they call Ontological

Modeling Language (OML) is a key component of OpenCAESAR. OML is best thought of as a patterns-based

front end for modeling in OWL2 DL. We constructed the examples for this project in OML and used

OpenCAESAR tooling to express those models in OWL2 DL for reasoning and analysis. More information about

OpenCAESAR is in Section [] below.

4.3. Modeling, Semantic, and Pattern Configuration Tools Utilized

4.3.1. Modeling Tools Used in this Project

Cameo Systems Modeler (CSM) is the SysML MBSE modeling tool used in this project. Specifically, Version 19.0

SP3 is used along with the S* Profile and Project Template created for CSM. The Report Wizard functionality in

CSM is used to generate the integrated set of export tables for use in the Configuration Wizard. See Section

4.3.3 below for details of the Pattern Configuration Tools used (i.e., the Configuration Wizard). Additionally,

the Import CSV plug-in is used in CSM to enable the final step of the Pattern Configuration Process.

4.3.2. Semantic Tools Used in this Project

4. OpenCAESAR

OpenCAESAR is a suite of tools developed by the Integrated Model-Centric Engineering team at the Jet

Propulsion Laboratory, California Institute of Technology. It includes, among other components,

● a workbench to support building models in Ontological Modeling Language (OML),

● an OML-to-OWL2 DL converter that applies a disjointness management policy to simplify construction

of disjointness axioms,

● a reasoner based on the Openllet open source OWL reasoner,

● a Jena Fuseki RDF triple store,

● a facility for executing SPARQL queries against the triple store, and

● workflow tooling for constructing automated analysis processes.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 31

4.3.3. Pattern Configuration Tools Used in this Project

The general form of the enhanced generation of a Configured S* Model from a Trusted S* Pattern follows the

steps shown in Figure 22. The S* Pattern data shown above is exported from the modeling tool (Cameo

Systems Modeler [CSM] in this case, as SysML) into CSV [comma separated variables] files. Those CSV files are

read by the Configuration Agent tool. The “User” configuring the Pattern then makes selections of specific

Features and Feature Primary Key Values which the Configuration tool uses in conjunction with the rules

described above to create a Configured S* Model. This Configured S* Model is then imported back into the

modeling tool. See Section 5.1 for example data and additional details.

Figure 22: Overview of Repository for Pattern and Configured Model,

Plus Pattern Configuration Agent and Pattern User

The S* Metamodel describes Patterns that include configuration rules used to produce configured models

from those patterns. The configuration process exists independent of implementing technology, but periodic

improvements are made in the latter to facilitate the former. The most recent version of implementation is

the 3rd generation configuration technology created using MS Power Query in the form of database joins. Early

emphasis was on configurable requirements, which was later expanded to configuring high level designs. The

most recent generation expands the configuration scope to include configuring the details of interfaces and

associated context.

Independent of the tool technology used to implement the configuration algorithm, the nature of the

configuration rules are IF-THEN rules. Each such rule asks IF a partially configured model contains certain

information, and if it is found present, the THEN part describes what should be added to the configured

model. This is a reasoning-based propagation process, which is summarized in the matrix of Figure 6. A more

detailed view for a subset of the S*Metamodel configuration process is provided by Figure 23.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 32

Figure 23: Conceptual Reasoning Dependency Flow of Configuration Algorithm,

The latest (third generation) automation uses JOIN technology to implement that reasoning, because of the

inherent JOIN/Projection nature of what it means to generate a high dimension configured model from a low

dimension compressed pattern. A simple way to think of a JOIN is creating a set of data from two sets of data,

based on the similarity of some of their properties. JOIN originated in RDBMS SQL technology, but is also

provided for in Semantic Technologies (e.g., SPARQL). In expanding a pattern into a populated model, the

repeating JOIN paradigm is that we are comparing [a part of the pattern] with [some already populated model

data], to create some [additional populated model data]:

(a) [Pattern Feature Rules] JOIN with [Stakeholder Selections] → [Populated Features]
(b) [Pattern Feature-Interaction Rules] JOIN with [Populated Features] → [Populated Interactions]
(c) [Pattern Interaction-Role Rules] JOIN with [Populated Interactions] → [Populated Roles]
(d) [Pattern Interaction-Role-Requirement Rules] JOIN with [Populated Interactions & Roles] →

[Populated Requirements]

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 33

Figure 24: Flow of Configuration Agent JOINS to Populate Configured Model from Pattern

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 34

5. Project Results Demonstrated

5.1. Enhanced Generation of a Model from a Trusted Pattern

A configured model of the International Power Converter was populated automatically from the International

Power Converter S*Pattern, as in the right side of Figure 1, based on the precedencies summarized in Figure 6.

These populations were further governed by the configuration rules and pattern user inputs of Feature

selections. Figure 25 illustrates the entry, by the Pattern Configuring User, of selected Features (Columns AI)

to populate, and the Feature Primary Keys (Columns AJ-AL) entered by the user, after the rest of this form was

auto-populated by the Configuration Wizard as a Pattern Features “Menu”:

Figure 25: Pattern User Input, Selecting Features and FPK Values to Populate

Figures 26-28 illustrate some of the populated model generated as a result, including populated model

Features, Functional Interactions, Logical Systems, Input-Outputs, Interfaces, Architectural Relationships, and

other aspects that resulted.

Figure 26: Resulting Configured Model: Populated Features and Feature Attributes

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 35

Figure 27: Resulting Configured Model: Populated Functional Interactions

Figure 28 illustrates the portion of the resulting configured model including Logical Systems, Interfaces

(“Owner” Column), Ports (“Name” Column), and Systems of Access (“SOA Name” Column).

Figure 28: Resulting Configured Model: Populated Logical Systems, Interfaces, Ports, and Systems

of Access

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 36

Figure 29: Resulting Configured Model: Populated Input-Outputs and Architectural Relationships

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 37

5.2. Enhanced Checking of a Model Against the Same Trusted Pattern

A pattern can be viewed as a set of constraints on a model. If those constraints are conveniently expressible in

OML, we encode them as axioms in a vocabulary such that a violation of the pattern causes a logical

inconsistency. When the reasoner checks a model for inconsistency, it is implicitly checking all such

constraints. Other constraints may be beyond the expressivity of OML, or may be inconvenient to check in this

way. We elaborate below. In such cases, we can perform the checks by querying the model for all cases in

which the pattern should apply and evaluating whether it does. In some cases, the evaluation can be

performed in the query itself.

We provide examples of both cases.

i. Checking Constraints by Reasoning
An OML vocabulary defines, among other things, classes, properties, and relations of interest in a particular

domain.

As an example, the Interface Pattern defines (implicitly via graphics and prose) notions of System and Interface

and a relation between them called Provides Interface. In the parlance of OML, System and Interface are

concepts and Provides Interface is a relation entity:

concept System :> Identified [

 key hasIdentifier

]

This code snippet says System is a subclass of another class called Identified and that hasIdentifier is a key for

the class System. To understand what that means, we examine the definition of Identified:

 aspect Identified

 scalar property hasIdentifier [

 domain Identified

 range xsd:string

 functional

]

This snippet says hasIdentifier is a property whose domain is the class Identified and whose range is a string.

The functional characteristic says that no individual may have more than one distinct identifier. The key clause

above says that any two systems that have the same identifier are the same system. This will turn out to be

important because of another important (but sometimes surprising) feature of the open world assumptions of

the Semantic Web.

Individuals in the Semantic Web (and in OML) are represented by Internationalized Resource Identifiers (IRIs),

e.g.,

http://incose.org/pwg/s-star/vocabulary/power-converter#IPC

The Semantic Web does not incorporate the so-called unique name assumption. That is, an individual with a

different IRI, e.g.,

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 38

http://incose.org/pwg/s-star/vocabulary/power-converter#IPC_1

is not assumed to represent a distinct individual in the real world. It is possible to assert in OWL 2 that certain

individuals are different (or the same), and reasoners can, with the proper axioms, conclude that certain

individuals are different (or the same).

The latter is precisely what we are setting up with hasIdentifier. hasIdentifier is a user-defined property in

addition to and independent of the IRI. The combination of the key clause and the functional characteristic

above ensures that (1) any two individuals with the same identifier are the same individual, and (2) any two

individuals with different identifiers are different individuals.

With all that in mind, we can talk about how we relate systems and interfaces. In the encoding of the Interface

Pattern in OML we find these statements:

concept Interface :> Identified [

 key hasIdentifier

]

relation entity ProvidesInterface [

 from System

 to Interface

 forward providesInterface

 inverse functional

]

The first paragraph simply says that interfaces also have identifiers and that, as before, any two interfaces

with the same identifier are the same interface. The OML tooling also incorporates the disjointness

management mechanism described in Section 4.2.ii.1. As a consequence, the classes System and Interface are

declared disjsoint: no system is an interface and vice-versa.

The second paragraph says there is a reified (in the sense of Section 4.2.ii.2) relationship between system and

interface such that we can say a particular system providesInterface a particular interface. The inverse

functional characteristic says that an interface may be provided by at most one system.

The latter illustrates why we need the hasIdentifier property as defined above. In order to ensure that an

interface is provided by no more than one system, we need a way to determine whether two systems,

referred to by the IRIs (or some abbreviation thereof) are different.

With just this vocabulary so far, we can enlist the reasoner in checking for a number of violations of

vocabulary constraints. A few examples follow:

● functional properties For each property declared functional, the reasoner will ensure that no

individual has more than one distinct value for that property. In the case of object properties (i.e.,

relations) the reasoner will ensure that all values of the property refer to one individual. For example,

it means no individual may have more than one identifier.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 39

● inverse functional properties For each property declared inverse functional, the reasoner will ensure

that no individual has more than one distinct value for the inverse of that property. For example, no

Interface may be provided by more than one System.

● property cardinality functional and inverse functional are simple cases of more general restrictions

on minimum, exact, and maximum cardinality.

● property domains and ranges Any two classes for which we have not explicitly allowed an

intersection will be declared (by our OML tooling) to be disjoint. That means, for example, if we define

a System, we cannot say anything about that System that would imply that it is anything other than a

System. If we were to assert, say, that it permits a FunctionalInteraction, then the reasoner would

conclude that it must be an Interface, and since System and Interface are disjoint, our model is

inconsistent.

● range restrictions The range of a property may be restricted over some subdomain. We might say, for

example, that a particular subclass of Port may send only a restricted class of InputOutput. The

reasoner will ensure all such restrictions are satisfied.

Perhaps a simple way to understand the value of reasoning in this context is to remember the distinction

between vocabulary and description in OML. A vocabulary consists of axioms that establish rules for

description; in a sense they define a grammar for a description language. This grammar establishes both

syntactic and semantic constraints on every valid description. When we employ a reasoner in a model analysis

workflow, we are checking the compliance of a particular description with the (vocabulary) rules that apply to

all descriptions. That is, we are checking whether our work complies with our owl local rules, plus any superior

rules we have incorporated by inclusion.

While it is reassuring to know that a model contains no logical inconsistencies, in practice it is sometimes

challenging to identify the root cause(s) of an inconsistency. Some reasoners will produce an explanation,

which is simply a small (possibly the smallest) set of axioms containing an inconsistency. From there it is left to

the modeler to determine which statements are incorrect. There are undoubtedly useful heuristics to be

discovered. One such heuristic would be to assume that all vocabulary axioms are correct and scrutinize

description assertions for errors.

ii. Checking Constraints by Query
We encoded above the constraint that an Interface must be provided by at most one System. The actual

constraint, however, is that in a well-formed description of an Interface there must be exactly one System

that provides it. In principle, we can encode that constraint in OML as well by asserting minimum or exact

cardinality on the inverse of providesInterface. This approach, however, produces surprising results if one fails

to remember the nature of open-world reasoning.

If we assert in OML that every Interface must be provided by some System and then describe an Interface

without associating it with a System, the reasoner will not find an inconsistency. In the open world, the

absence of a statement associating that Interface with a System does not mean that the association does not

exist. To cause an inconsistency we would further have to assert that the exact or maximum cardinality of

Systems providing this Interface is zero. In that sense we are closing the description of the Interface with

regard to Systems.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 40

While this approach can work in principle, it is inconvenient for at least three reasons:

1. Generating the “closing” assertions is cumbersome and can be applied only when the description is

complete.

2. Closing assertions may substantially enlarge the size of the model with consequent degradation of

reasoning performance.

3. Constraints that enforce model completeness may be appropriate only at certain points in the life

cycle. It may be appropriate, for example, at some early stage of development to have defined

Systems and Interfaces but not yet to have allocated a System to each Interface. Forcing the reasoner

to find an inconsistency at that point is not helpful. Of course, the completeness constraints can be

captured in a separate vocabulary module and excluded from reasoning until wanted, but there are

easier ways.

Because OML is based on OWL 2 DL, an OML modeling ecosystem can take advantage of the entire Semantic

Web technology stack, which includes a powerful query language for RDF triples (SPARQL) and multiple

implementations of compliant data stores. It is very convenient to check these completeness criteria using a

particular query pattern.

To check the constraint that every Interface must be provided by a System, we could straightforwardly write a

query (using, perhaps, the NOT EXISTS clause of SPARQL) to look for violations. Because in a well-formed

model we expect no results to match the query, we are at risk of overlooking simple query errors that return

empty results for the wrong reason. A somewhat more robust approach is to partition the query into two

parts: the first part finds all cases for which the constraint applies, and the second part evaluates whether the

constraint is satisfied for each case. In this formulation we nearly always expect a non-empty result set and

the evaluation gives us a measure of progress (passing cases as a fraction of total cases).

Here is the SPARQL query to perform the check as we just described:

An S*Interface must have at least one associated S*System

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l .

 bind(exists { [a interface:System] interface:providesInterface ?if . }

as ?ok)

}

Without delving too deeply into the semantics of SPARQL,

● the prefix lines establish abbreviations for vocabulary namespaces

● the select line defines the variables returned by the query: if_l and ok

● the first line of the where clause finds an interface and binds if_l to its identifier

● the second line of the where clause sets the variable ok to true if and only if some System provides

this Interface

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 41

Running the query against our test model yields this result set:

?if_l ?ok

Power Input Interface true

Power Output Interface [Power Output 1] true

Power Output Interface [Power Output 2] true

Power Output Interface [Power Output 3] true

Environmental Interface true

Handling Interface true

Configuration and Information Interface true

We implemented similar queries to check the following:

● Every Interface must have at least one associated Functional Interaction

● Every Interface must have at least one associated Input/Output

● Every Interface must have at least one associated System of Access

● Every Input/Output associated with an Interface must be associated with one Functional Interaction

also associated with that Interface

● Every Input/Output associated with an Interface must be associated with one System of Access also

associated with that Interface

● Every Architectural Relationship associated with an Interface must be associated with one

Input/Output also associated with that Interface

5.3. Gaining Access to the Project’s Tooling and Information

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 42

6. Observations, Conclusions, and Implications for Action

6.1. Observations During the Project

6.1.1. Learning About Pattern Representation for Both Applications

One of the original motivations for this project was to gain perspective from two different kinds of uses of the

same MBSE pattern, especially including the potentially different ways those applications represent the

pattern and apply technologies to use it. (Recall that the general International Power Converter MBSE pattern

provided the example, and within it the more general Interface Pattern portion of the S*Metamodel.)

Figure 30: Conversion of a common pattern to different pattern representations, for use by different

automated agents.

Referring to Figure 30, the two different representations and uses of the pattern were:

A. How the S*Pattern was represented for purposes of generating configured MBSE models of specific

configurations: It was converted by automated export means from SysML to tables that participated in DB

JOINs, then automated imports converted back to a SysML model.

B. How the very same S*Pattern was represented for purposes of testing (checking, inspecting) candidate MBSE

models of specific cases, generated by other means, for conformance with the same S*Pattern: it was

converted by manual means to OWL and OML representation of rules for use in semantic technologies queries

to check

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 43

The use of two manual conversions as part of (B) above was not considered particularly important for

purposes of this project phase, because various automation paths appear to be available or forthcoming. For

example, announced plans for OMG SysML V2.0 include specified capabilities to represent SysML models in

coded statement form and to automatically generate equivalent OWL statements. Both of those capabilities

suggest that the manual steps on the left side of Figure XY would be automated in the near future.

Other differences between and comparisons of the two representations are of greater interest, and surface

the following observations and questions for additional consideration:

1. Use of each technology in the opposite case: What would be the pros and cons of applying each of

the two different representations and technologies above, for the opposite case?

2. RDBMS Concern: For MBSE models in general, relational database representations are generally not

favored in comparison to network-oriented representations such as the triple store data structures

frequently underlying SysML implementations. On the other hand, the situation in this case is the

much more limited use of narrow scope tables (shown in Figure YY) containing configurable “edges” of

the connected graph, participating in bulk JOINs to rapidly generate configured model networks which

are returned to SysML as a configured model. In fact, to the extent that future SysML tooling allows

for SPARQL JOINs operating directly on a SySML model pattern, the benefits of JOIN technologies may

be enjoyed without the need to “map in and out of SysML” to perform the JOINs.

3. Performance at Scale: The performance (speed) of JOINs can be impacted by the computational fact

that in the most general case, JOIN computations grow in proportion to the product of growth of the

length of the two JOINed tables—a kind of quadratic growth with scale. JOINs are inherently

combinatorial, on the surface. However, for the case of interest (Pattern JOINed with Configuration),

this can be avoided through the use of well-established JOIN algorithms such as sort-merge JOIN or

hashing JOIN. Because the Pattern side of the JOIN is available “in advance” (changes less often), it can

be pre-sorted or pre-hashed. Taking advantage of these facts means that the computational load of

JOIN in this case only scales linearly with growth in the size of the models involved. The fact that

RDBMS JOIN technology at scale has been the subject of decades of improvement and use is of

interest.

4. Trustable Models and Reasoning: First order/predicate logic representation, supported by

trusted/proven technologies such as semantic reasoners, query engines, and languages, are attractive

in a context in which future decision-making may rely on even greater use of digital models and

algorithms such as explored here. That is, the criticality of earned trust will likely increase. Ability to

rely on both proven and “provable” assets will increase. At the same time, we should understand that

at the level of system models / patterns encoded in those frameworks, we can still encode models

which are logically consistent but invalid in other ways, requiring a regime of multi-level validation and

usage protocols in any case. More complete representations of just how and why we are trusting our

models, managing the related uncertainties and risks, and managing change will likely continue to

grow in importance. In a sense, this might be considered a form of growth of the cybersecurity

challenge. Trustable underlying technologies provide an important foundation if not the whole

building.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 44

5. Recognition How Deeply Configuration Rules Are Embedded in the Pattern: Early in the exposition of

S*Patterns by the INCOSE Patterns Working Group, it was recognized that an S*Pattern used to generate

configured S*Models represents nearly all its “rules” about the models to be generated in the way that

is “natural” and efficient—the pattern is simply a model of the overall class / ensemble of possible

systems. An S*Pattern is really not different in character from any S*Model; there are not a large

amount of “extra things” that make it a pattern. Nevertheless, we overlooked this simple truth when

we were planning the list of test cases for the semantic technology “model conformance” examples of

this project, in the following sense. The test cases listed in Section 5.2 can be seen to omit facts that are

unique to the Power Converter Pattern, instead focusing on S*Metamodel Interface Pattern level test

cases that are true of all interfaces, plus a few that are true of all electrical interfaces. In retrospect,

prominently missing from this list of test cases are references to the IPC S*Pattern itself. For example,

another test case on model conformance could have been the following: If the Feature configuration

does not demand a second Interface for powered user devices, there should be no such interface in the

S*Model being tested. This reminds us that the suite of conformance tests needs to include explicit

reference to the configuration rules that are specific to / built into the S*Pattern. This “reminder” of a

key economy of representation inherent in S*Patterns is a key insight for future model checking using

patterns. The needed information was already built into the S*Pattern we used. Model checking code

does not need to include any code that is unique to a given S*Pattern—but it needs to be parameterized

by (use the content of) that Pattern in its checking, if we are to claim conformance to a Pattern. The

“model checking code” can be completely generic, as long as it references the Pattern. This seems more

obvious in retrospect!

6. Configuration Spaces, Projections, Understanding: Increased theoretical understanding of what it is

that a system pattern represents in system configuration space promises to improve our ability to mix

and apply multiple tools and representations in the most effective ways. Once it is understood that the

S*Metamodel is simply an S*Pattern itself, with multiple specializations and configurations “below” it

in a class hierarchy of webs related by the Gestalt Rules for specialization, it becomes clearer what the

configuration rules embedded in an S*Pattern can tell us. They describe the structure of the connected

relational cross product sub-space(s) that configuration (specialization) permits for a given pattern. This

seems to be richer and more complex than some descriptions of product line engineering and “150%

models” imply, but are nevertheless real configurations. Making more use of mathematical projection

in this space seems to be more in line with the JOINs applied in this project, but a better understanding

of how projections shine onto sub-spaces as cross-sections of the more general space could help unify

the use of JOINs with the use of “is a type of” generalizations in the propositional logic representations

applied in this project. Translated to the nature of JOINs, this suggests JOIN criteria other than just

equality (“is a”) alone, such as “is a type of” relationships. Other relationships such as uncertainty

propagation appear to also be possible in this way.

7. Test Bed: This project is a still-early phase effort toward a test bed in which the questions above and

others may be addressed in a relatively public space accessible to the systems community.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 45

6.2. Project Conclusions

This project has provided a proof-of-concept demonstration of propositions set forth in the “In a

Nutshell” first page of this report. A shared (same, common) MBSE pattern has been used (1) to

automatically generate a configured model from stakeholder needs, and (2) to automatically check

another model for conformity to that pattern. Diverse contemporary information technologies,

including MBSE SysML authoring tools, RDBMS Joins, and semantic reasoners have been used in this

demonstration, applied to a simple pattern illustrating the principles.

In the course of the project, additional learning and questions have surfaced to suggest future work,

discussed below.

6.3. Explore and Gain from this Project: Suggested Incremental Actions You Can Take

The interested reader is invited to consider taking the following incremental actions:

1. Identify a second party also interested, and work together on the following.

2. Consult the references listed in Sections 2.3-2.6 and Section 9.

3. Access the project materials and repeat the demonstration for yourself.

4. Identify a model-based pattern of interest to you and create an S*Pattern.

5. Configure specific models from the MBSE pattern of interest.

6. Separately, construct a “test model” and subject it to automated model checks.

7. Learn from the ASELCM Innovation Ecosystem Pattern about the impact of these techniques on

the Innovation Ecosystem.

8. Contact members of this project team or the MBSE Patterns Working Group, and tell us about

your interests, questions, and ideas.

6.4. Additional Questions for Future Work

Observations during the project, discussed in Section 6.1, have suggested additional questions outside

this project’s original scope, for future work:

1. Improving Automated Model Checking Exception Explanations: Similar to situations involving

programming language compilers and AI expert systems technologies, automated checking can

detect exceptions that are not easy to understand by the human user—that is, a challenge for

effective automated explanation of exceptions. This project has suggested that automated

checking of a model can be phased against a series of patterns that progress from abstract (e.g.,

S*Metamodel) to more specialized (e.g., International Power Converter S*Pattern), with exceptions

accordingly separated and ordered for most effective human understanding of what has been

violated.

2. Further exploration at large scale of performance of the related automation technologies, in

optimized conditions, can be carried out.

3. Automation of generation of the pattern checking semantic rules from the pattern can be

performed. This would be of particular interest in the SysML 2.0 and OWL setting, for example.

4. Testing of the two automation technologies used in the project, for performing the opposite roles

would add to understanding.

5. More complete description of the connection of this type of approach to enterprise level trust and

risk management would be of value.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 46

6. The INCOSE ASELCM Innovation Ecosystem Pattern emphasizes the role of Consistency

Management across the life cycle of managed systems. A more complete exploitation of that

approach would involve automated checkers not limited to semantic consistency—for example,

numerical solvers, but with their invocation governed by semantic technology that recognizes types

of consistencies that apply

7. A more complete description of the connections between JOINs as projections in configuration

space with propositional logic would be of value to understanding of practitioners, including issues

of trustable technologies.

7. Engaging with the S*Patterns Community

Interested readers are invited to contact the INCOSE Patterns Working Group or the members of this

project team. Sharing questions, experiences, and further efforts to understand unfamiliar subjects is a

good way to make progress in your own skills as well as your team’s or enterprise’s capabilities.

8. Definitions

Term Definition

ASELCM Ecosystem
Pattern

A configurable reference pattern describing the use of information assets in
support of the innovation life cycle processes, including use of models,
patterns, reference frameworks, datasets, and other artifacts.

Axioms The basic assertions, in a formal descriptive language (e.g., OWL), provided by
an ontology describing some domain.

Configure,
Configuration

In the context of model-based patterns, the transformation of a pattern
(representing a general model of a class of systems) into a specific model still
conforming to the pattern.

Domain The domain of an RDF descriptor is the class of its possible subjects.

INCOSE International Council on Systems Engineering--the professional society of
systems engineering.

MBSE; MBSE Model When systems engineering performance incorporates the lessons of three
centuries of science, engineering, and mathematics, many aspects are more
effectively expressed through system models, across the systems engineering
process areas and life cycle stages. Model-Based Systems Engineering
emphasizes precision of representation, effective use of abstraction, and
computational methods, to align multiple engineering and scientific disciplines
with each other and the interests of stakeholders.

Metamodel;
S*Metamodel

A metamodel establishes the formal governing information structures and
meanings used for generating and interpreting models which conform to it.
The S*Metamodel is a metamodel providing the minimum set of information
that has been found to be necessary for the purposes of engineering and
science across the life cycle of systems.

Model Checking Verification that a given model conforms to the formal rules governing it, such
as a metamodel, ontology, architectural framework, reference model, or
pattern.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 47

Term Definition

OMG The Object Management Group® (OMG®) is an international, open
membership, not-for-profit technology standards consortium

OML Ontology Modeling Language is a language for expression of ontologies,
inspired by OWL.

Ontology For information systems, an ontology formally represents, names, and defines
the categories, properties, and relations between the concepts, data, and
entities that describe one, many, or all domains of discourse.

OWL Web Ontology Language is an W3C standards-based Semantic Web language
designed to represent rich and complex knowledge about things, groups of
things, and relations between things, particularly to describe ontologies to
implement the Semantic Web and related applications.

Range The range of an RDF descriptor is the set of its possible property values.

RDF Resource Description Framework is a W3C standard for representing
information (originally for use on the World Wide Web) as primitive elements
to be processed by automated agents, not just viewed by people. RDF
representation is based on a "triple store" data structure primitive in which
two things (resources, sometimes but not always represented by web URLs)
are related by a predicate relationship, and can be considered a generalization
of web hyperlinks that can be processed by SPARQL or other agents.

RDFS; RDF Schema The RDF Schema is a set of classes, based on RDF representation, capable of
representing ontologies, but less expressive for that purpose than OWL.

Reasoner; Semantic
Reasoner

An automated agent capable of generating logical inferences from a set of
asserted facts or axioms, with reasoning rules often described by an ontology.

S*Model Any formal model, in any modeling language or toolset, that satisfies (has been
mapped to) the S*Metamodel.

S*Pattern A configurable, re-usable S*Model, describing a family of systems, capable of
being configured to a more specific S*Model.

Semantic Web An extension of the World Wide Web through standards set by the World
Wide Web Consortium (W3C), with the goal of making Internet data machine-
processable (compared to only viewable by human navigators).

Semantic Web Stack;
Semantic Technology

A collection of technologies that together enable the Semantic Web or related
applications; such technologies include XML, RDF, RDFS, SPARQL, OWL, SWRL,
and others.

Semantics Semantics in general are said to be about meaning; in the case of formal
models, the semantics of such a model are expressed by the model itself, as
well as the related ontology, metamodel, pattern, or modeling language which
govern the interpretation of the model.

SPARQL A query language for processing queries of data that is in RDF form.

ST4SE A project of the INCOSE MBSE Patterns Working Group, concerned with
targeted demonstrations about semantic technologies relevant to Systems
Engineering.

SysML A language for expressing system level models (MBSE models), based on
standards generated by OMG in collaboration with INCOSE.

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 48

Term Definition

Triple Store A database built to store RDF primitives.

Vocabulary For a semantic technology application, a vocabulary defines the formal
ontology for the domain addressed by the application.

W3C The World Wide Web Consortium (W3C) is an international community that
develops open standards to ensure the long-term growth of the Web.

XML XML is a text-based language for exchange of information. It is intended to be
"extended" (through the addition of tags) for use in specific domains (e.g.,
description of molecules, description of general system models, description of
content of commercial catalogs, etc.), then used to express and exchange
information in those domains (e.g., description of a specific molecule,
description of a specific system model, description of content of a specific
catalog, etc.). XML has provided the base for many "mark up" languages across
different domains, for exchange of machine processable information.

9. References

INCOSE Patterns WG Report--ST4SE Project--PINK TEAM REVIEW DRAFT V1.9.1.docx 49

10. Document Change History

Version Date Updates Revised By

1.1.1 – 1.5.9 01.24.2021
–
04.05.2022

Initial draft and revisions by project team Blackburn, Cureton, de
Koning, Jenkins, Lewis,
Schindel, Trase

1.6.0 04.05.2022 Consists of Version 1.5.9 uploaded by Stephen
Lewis on March 22, plus insertions from Steve
Jenkins made on April 4, 2022. Steve Jenkins’
insertions are to Sections 4.1, 4.2, 4.3.2, and
5.2, and are marked using MS Word change
highlighting. Since Steve Jenkins’ uploaded
insertions were made to a still earlier Version
1.5.5, those same insertions were copied
verbatim by Bill Schindel into this file on April 5,
creating this merge to avoid any confusion by
reviewers.

Schindel

1.7.1 04.16.2022 Address reviewers’ prior comments; relocate
some material to fit outline more clearly; add
interim cover page. (See also V1.7.2 below.)

Schindel; Jenkins

1.8.1 05.02.2022 Recover multiple diagrams lost in the editable
DOCX file Version 1.7.1 saved on the group file
sharing site. They appear undamaged in the
1.7.1 PDF saved on the same site on 04.16, but
the DOCX file shows a further edit on 04.19.

Schindel

1.8.2 05.02.2022 Insert sections 6.2, 6.3, 6.4, and 7. Schindel

1.8.3 05.03.2022 Add details to Section 3.3 further describing
views and configuration rules.

Lewis

1.8.4 05.04.2022 Include insertions from Steve Jenkins to Section
5.2. Delete Figure 18 and move Figure 29 to
Figure 18 location.

Lewis; Jenkins

1.8.5 05.04.2022 Update Configured Model Views in Section 5.1 Lewis

1.8.6 05.17.2022 Recover multiple diagrams lost in the editable
DOCX file Version 1.8.5 saved on the group file
sharing site during an edit shown as 05.16.22.
This recurring condition likely caused by editing
directly in Google instead of downloading the
file, editing in Word, and uploading. This
version also includes Steve Jenkins updates to
Section 5.2 through 05.16.22

Schindel, Jenkins

1.8.7 05.17.2022 Filling out balance of Section 5.2 Jenkins

1.8.8 063.13.2022 Incorporate definitions section, including
05.31.22 meeting team feedback. Insert initial
Section 2.3 Semantic Technologies References.

Schindel

1.8.9 06.14.2022 Expand section 2.3 ST references; add Appendix
of sample ST source code

Jenkins; de Koning

1.9.1 06.24.2022 Merge above contributed sections; prepare
pink team review version.

Schindel

Appendix: Semantic Technology Representation Samples

Interface Pattern (Generated by Ruby transformation of exported SysML model data)
@dc:title "S*Metamodel Interface Pattern"

vocabulary <http://incose.org/pwg/s-star/vocabulary/interface#> as interface {

 extends <http://purl.org/dc/elements/1.1/> as dc

 extends <http://www.w3.org/2001/XMLSchema#> as xsd

 @dc:^description "An Identified has an identifier."

 aspect Identified

 scalar property hasIdentifier [

 domain Identified

 range xsd:string

 functional

]

 aspect ModeledClass

 @dc:^description """An Interface is an association of Input/Outputs, Functional Interactions, Systems of Access (SOAs),

 and Architectural Relationships through which a system interacts with other systems. Each interface

 is owned by that system."""

 concept Interface :> Identified [

 key hasIdentifier

]

 @dc:^description """A system is a collection of interacting components. A component can itself be a System, called a

 sub-system. Information about the purpose or configuration of a system is encoded into the

 metaclasses associated with the System (e.g., Feature)."""

 concept System :> Identified [

 key hasIdentifier

]

 @dc:^description """An Input/Output is that which is exchanged between interacting systems."""

 concept InputOutput :> Identified [

 key hasIdentifier

]

 @dc:^description """A Functional Interaction is an interaction of two or more Systems. Interaction means that one system

 affects the state of another system. All interactions are relationships between systems, expressing

 the externally visible behavioral outcome (requirement) of the interactions. A Functional Interaction

 is also sometimes called a Collaboration."""

 concept FunctionalInteraction :> Identified [

 key hasIdentifier

]

 @dc:^description """A System of Access (SOA) is the system which allows other systems to interact (impact each other’s state)."""

 concept SystemOfAccess :> System

 @dc:^description """A Physical System is System defined based upon its identity or physical compositions, but not its behavior.

 Physical systems may be given proper names, such as names of commercial products, corporate systems, people,

 organizations, buildings, etc. Physical Systems are Design Components that fulfill the Functional Roles

 (Logical Systems) allocated to them through an Allocation Decision."""

 concept PhysicalSystem :> System

 @dc:^description """A Modeled Attribute is a modeled property or characteristic of any of the metaclasses, which might take on

 different attribute values to describe the various instances of that class. An attribute may belong to

 any metaclass, including another Attribute."""

 concept ModeledAttribute

 @dc:^description """A Port is the coincidence of an Input/Output and System border. A Port is a specific relationship between

 a received and sent Input/Output, internal and external Systems of Access (SOAs), internal and external

 Architectural Relationship, and a Functional Interaction."""

 Sample truncated

Power Converter

Specializations for power converters.
vocabulary <http://incose.org/pwg/s-star/vocabulary/power-converter#> as power-converter {

 extends <http://www.w3.org/2000/01/rdf-schema#> as rdfs

 extends <http://incose.org/pwg/s-star/vocabulary/interface#> as interface

 @rdfs:label "Convert Electrical Power [Power Output 1]"

 concept Convert_Electrical_Power_Power_Output_1_ :> interface:FunctionalInteraction, Convert_Electrical_Power,

 DPI.1_Is_Used_During, Environmental_Interface_Permits_Functional_Interaction, EN.2_Is_Used_During,

 EN.1_Is_Used_During, Power_Input_Interface_Permits_Functional_Interaction, PI.1_Is_Used_During,

 Power_Output_Interface_Power_Output_1_Permits_Functional_Interaction, PO.1_Power_Output_1_Is_Used_During,

 ENV.3_Is_Used_During, ENV.4_Is_Used_During, LPO.1_Is_Used_During [

]

 @rdfs:label "Convert Electrical Power"

 concept Convert_Electrical_Power :> interface:FunctionalInteraction [

]

 @rdfs:label "Electrically Powered Device [Power Output 1]"

 concept Electrically_Powered_Device_Power_Output_1_ :> interface:System, Electrically_Powered_Device [

 restricts all relation interface:providesInterface to Electrically_Powered_Device_Power_Output_1_Provides_Interface

 restricts all relation interface:interactsThrough to Electrically_Powered_Device_Power_Output_1_Interacts_Through

]

 @rdfs:label "Electrically Powered Device"

 concept Electrically_Powered_Device :> interface:System [

]

 @rdfs:label "Electrically Powered Device [Power Output 1] Provides Interface"

 concept Electrically_Powered_Device_Power_Output_1_Provides_Interface :> interface:Interface [

]

 @rdfs:label "Electrically Powered Device [Power Output 1] Interacts Through"

 concept Electrically_Powered_Device_Power_Output_1_Interacts_Through :> interface:Port [

]

 @rdfs:label "Output Power [Power Output 1]"

 concept Output_Power_Power_Output_1_ :> interface:InputOutput, Output_Power, DPI.1_Receives,

 Power_Output_Interface_Power_Output_1_Permits_Input_Output, PO.1_Power_Output_1_Sends [

 restricts all relation interface:exemplifies to Output_Power_Power_Output_1_Exemplifies

]

 @rdfs:label "Output Power"

 concept Output_Power :> interface:InputOutput [

]

}Power Converter Bundle
Creating a bundle around the Interface and Power Converter Vocabularies will cause the bundle closure (disjointness

assertions) algorithm to be run on the concepts therein.
vocabulary bundle <http://incose.org/pwg/s-star/vocabulary/power-converter-bundle#> as power-converter-bundle {

 includes <http://incose.org/pwg/s-star/vocabulary/power-converter#>

 }

Sample truncated

Descriptions
Power Converter
description <http://incose.org/pwg/s-star/description/power-converter#> as ipc {

 uses <http://www.w3.org/2000/01/rdf-schema#>

 uses <http://incose.org/pwg/s-star/vocabulary/interface#> as interface

 uses <http://incose.org/pwg/s-star/vocabulary/power-converter#> as power-converter

 ci convert_electrical_power_power_output_1_ : power-converter:Convert_Electrical_Power_Power_Output_1_ [

 interface:hasIdentifier "Convert Electrical Power [Power Output 1]"

]

 ci international_power_converter : power-converter:International_Power_Converter [

 interface:hasIdentifier "International Power Converter"

 interface:providesInterface environmental_interface

 interface:providesInterface power_input_interface

 interface:providesInterface power_output_interface_power_output_1_

 interface:providesInterface power_output_interface_power_output_2_

 interface:providesInterface power_output_interface_power_output_3_

 interface:providesInterface configuration_and_information_interface

 interface:providesInterface handling_interface

 interface:interactsThrough en.2

 interface:interactsThrough en.1

 interface:interactsThrough pi.1

 interface:interactsThrough po.1_power_output_1_

 interface:interactsThrough po.1_power_output_2_

 interface:interactsThrough po.1_power_output_3_

 interface:interactsThrough co.2

 interface:interactsThrough hi.1

 interface:interactsThrough en.3

 interface:interactsThrough ci.1

 interface:interactsThrough en.4

]

 ci environmental_interface : power-converter:Environmental_Interface [

 interface:hasIdentifier "Environmental Interface"

 interface:permitsFunctionalInteraction convert_electrical_power_power_output_1_

 interface:permitsFunctionalInteraction convert_electrical_power_power_output_2_

 interface:permitsFunctionalInteraction convert_electrical_power_power_output_3_

 interface:permitsFunctionalInteraction resist_contamination_

 interface:permitsFunctionalInteraction tolerate_moisture_

 interface:permitsInputOutput emi

 interface:permitsInputOutput heat

 interface:permitsInputOutput contaminants

 interface:permitsInputOutput moisture

 interface:groups en.2

 interface:groups en.1

 interface:groups en.3

 interface:groups en.4

 interface:permitsSOA emi_radiation

 interface:permitsSOA airspace_thermal_conduction

 interface:permitsSOA airborne_particulates

 interface:permitsSOA airborne_moisture_condensation

]

 ci emi : power-converter:EMI [

 interface:hasIdentifier "EMI"

]

 ci en.2 : power-converter:EN.2 [

 interface:hasIdentifier "EN.2"

 interface:isUsedDuring convert_electrical_power_power_output_1_

 interface:isUsedDuring convert_electrical_power_power_output_2_

 interface:isUsedDuring convert_electrical_power_power_output_3_

 interface:sends emi

 interface:isFacilitatedBy emi_radiation

]

 ci emi_radiation : power-converter:EMI_Radiation [

 interface:hasIdentifier "EMI Radiation"

]

 ci heat : power-converter:Heat [

 interface:hasIdentifier "Heat"

]

 ci en.1 : power-converter:EN.1 [

 interface:hasIdentifier "EN.1"

 interface:isUsedDuring convert_electrical_power_power_output_1_

 interface:isUsedDuring convert_electrical_power_power_output_2_

 interface:isUsedDuring convert_electrical_power_power_output_3_

 interface:receives heat

 interface:isFacilitatedBy airspace_thermal_conduction

]

 ci airspace_thermal_conduction : power-converter:Airspace_Thermal_Conduction [

 interface:hasIdentifier "Airspace Thermal Conduction"

]

 ci power_input_interface : power-converter:Power_Input_Interface [

 interface:hasIdentifier "Power Input Interface"

 interface:permitsFunctionalInteraction convert_electrical_power_power_output_1_

 interface:permitsFunctionalInteraction convert_electrical_power_power_output_2_

 interface:permitsFunctionalInteraction convert_electrical_power_power_output_3_

 interface:permitsInputOutput input_power

 interface:groups pi.1

 interface:permitsSOA local_power_connector

 interface:permitsArchitecturalRelationship converts_electrical_power

]

Power Converter Bundle

Closing a bundle around the Power Converter Description will cause the reasoner to extract entailments that can be

inferred from the assertions in the bundle.
description bundle <http://incose.org/pwg/s-star/description/power-converter-bundle#> as ipc-bundle {

 uses <http://incose.org/pwg/s-star/vocabulary/power-converter-bundle#>

 includes <http://incose.org/pwg/s-star/description/power-converter#>

}

Sample truncated

Audit Queries

Audit 1

Query Source

An S*Interface must have at least one associated S*System

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l .

 bind(exists { [a interface:System] interface:providesInterface ?if . } as ?ok)

}

Results

?if_l ?ok

"Configuration and Information Interface" true

"Environmental Interface" true

"Handling Interface" true

"Power Input Interface" true

"Power Output Interface [Power Output 1]" true

"Power Output Interface [Power Output 2]" true

"Power Output Interface [Power Output 3]" true

Audit 2

Query Source

An S*Interface must have at least one associated S*Functional Interaction

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l .

 bind(exists { ?if interface:permitsFunctionalInteraction [a interface:FunctionalInteraction] } as ?ok)

}

Results

?if_l ?ok

"Configuration and Information Interface" true

"Environmental Interface" true

"Handling Interface" true

"Power Input Interface" true

"Power Output Interface [Power Output 1]" true

"Power Output Interface [Power Output 2]" true

"Power Output Interface [Power Output 3]" true

Audit 3

Query Source

An S*Interface must have at least one associated S*Input/Output

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l .

 bind(exists { ?if interface:permitsInputOutput [a interface:InputOutput] } as ?ok)

}

Results

?if_l ?ok

"Configuration and Information Interface" true

"Environmental Interface" true

"Handling Interface" true

"Power Input Interface" true

"Power Output Interface [Power Output 1]" true

"Power Output Interface [Power Output 2]" true

"Power Output Interface [Power Output 3]" true

Audit 4

Query Source

An S*Interface must have at least one associated S*System of Access

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l .

 bind(exists { ?if interface:permitsSOA [a interface:SystemOfAccess] } as ?ok)

}

Results

?if_l ?ok

"Configuration and Information Interface" true

"Environmental Interface" true

"Handling Interface" true

"Power Input Interface" true

"Power Output Interface [Power Output 1]" true

"Power Output Interface [Power Output 2]" true

"Power Output Interface [Power Output 3]" true

Audit 5

Query Source

Each S*Input/Output associated with an S*Interface must be associated with one S*Functional Interaction also

associated with that S*Interface

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?io_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l ; interface:permitsInputOutput ?io .

 ?io interface:hasIdentifier ?io_l .

 bind (exists {

 ?if interface:permitsFunctionalInteraction ?fi .

 ?po interface:isUsedDuring ?fi ;

 interface:exchanges ?io .

 } as ?ok)

}

Results

?if_l ?io_l ?ok

"Configuration and Information Interface" "Configuration Setting" true

"Configuration and Information Interface" "Device Status and Information" true

"Environmental Interface" "Contaminants" true

"Environmental Interface" "EMI" true

"Environmental Interface" "Heat" true

"Environmental Interface" "Moisture" true

"Handling Interface" "Handling Force" true

"Power Input Interface" "Input Power" true

"Power Output Interface [Power Output 1]" "Output Power [Power Output 1]" true

"Power Output Interface [Power Output 2]" "Output Power [Power Output 2]" true

"Power Output Interface [Power Output 3]" "Output Power [Power Output 3]" true

Audit 6

Query Source

Each S*Input/Output associated with an S*Interface must be associated with one S*System of Access also

associated with that S*Interface

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?io_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l ; interface:permitsInputOutput ?io .

 ?io interface:hasIdentifier ?io_l .

 bind (exists {

 ?if interface:permitsSOA ?soa .

 ?po interface:isFacilitatedBy ?soa ;

 interface:exchanges ?io .

 } as ?ok)

}

Results

?if_l ?io_l ?ok

"Configuration and Information Interface" "Configuration Setting" true

"Configuration and Information Interface" "Device Status and Information" true

"Environmental Interface" "Contaminants" true

"Environmental Interface" "EMI" true

"Environmental Interface" "Heat" true

"Environmental Interface" "Moisture" true

"Handling Interface" "Handling Force" true

"Power Input Interface" "Input Power" true

"Power Output Interface [Power Output 1]" "Output Power [Power Output 1]" true

"Power Output Interface [Power Output 2]" "Output Power [Power Output 2]" true

"Power Output Interface [Power Output 3]" "Output Power [Power Output 3]" true

Audit 7

Query Source

Each S*Architectural Relationship associated with an S*Interface must be associated with one S*Input/Output also

associated with that S*Interface

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix interface: <http://incose.org/pwg/s-star/vocabulary/interface#>

select distinct ?if_l ?ar_l ?ok

where {

 ?if a interface:Interface ; interface:hasIdentifier ?if_l ; interface:permitsArchitecturalRelationship ?ar .

 ?ar interface:hasIdentifier ?ar_l .

 bind (exists {

 ?if interface:permitsInputOutput ?io .

 { ?io interface:exemplifies ?ar } union { ?ar interface:emergesFrom ?io }

 } as ?ok)

}

Results

?if_l ?ar_l ?ok

"Power Input Interface" "Converts Electrical Power" true

"Power Output Interface [Power Output 1]" "Converts Electrical Power" true

"Power Output Interface [Power Output 2]" "Converts Electrical Power" true

"Power Output Interface [Power Output 3]" "Converts Electrical Power" true

