Two |FSR 2018 Topics

* Credibility of Models (Monday)
* Smallest Model of a System (Tuesday)

Referenced general contextual setting
Offered assertions for discussion (1 slide)
Existing conceptual frames, terms, standards
. Conversation (the main thing)

Supporting references
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Smallest Model
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Offered assertions for discussion Smallest Model

1. Size Matters: The size of a model is of theoretical interest because the size of a system’s
“minimal representation” is one definition of its complexity. A more practical engineering
interest is that the size and redundancy of engineering specifications challenge the
effectiveness of systems engineering processes. Humankind needs to find the simplest—but
not too simple--approaches to systems engineering.

2. Both Too Small and Too Large: Practitioner MBSE models are often too large and too small
(see 3) at once--missing key information while redundant in other aspects.

3. System Phenomenon: There is a misperception that ”s¥stem models” are of a different nature
than “discipline-specific models”, arising from the peculiar history of SE compared to the other
disciplines. Other engineers believe their discipline is based on “fundamental” physical laws
(e.g., mechanics), and that SE is not phenomena-based. The truth is a converse: The System
Phenomenon and Hamilton’s Principle are the basis of all the other disciplines” “laws”. In

particular, this says not to omit Interactions.

4. PBSE as Size Compression: Model-based System Patterns, organized by Gestalt Rules, divide
system descriptions into fixed and variable parts, further compressing models, and enabling
PBSE. The Minimum Description Length Principle helps compress models and model space
representation.

5. Foundation of MBSE Patterns: Smallest we have been able to find and practice over the last
30 years is the content of the S*Metamodel, therefore used as foundation of PBSE—if a
different content had been found, then we would have made it the S*Metamodel.




Smallest Model

Existing conceptual frames, terms, standards

What are S*Models?

* S*Models are MBSE system models that are based on the
S* Metamodel. What Is the Smallest Model of a System?
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Introduction and Background: Size Matters!
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Language and Compression. This subject may appear fo be related to the language used to
describe systems, and an interesting thread in the mathematical study of description length is
whether minimality is in a sense independent of language (Chaitin. Grunwald. Li and Vitany).
In any case. systems modeling languages such as SysML® and its predecessors provide
valuable assets for the movement to model-based methods (SysML Partners). Qur subject here
is not the machinery of these specific modeling languages, but the systems 1deas that minimal
models must address. When used for system families (product lines, ensembles). the
representation described here is subject to significant compression by the use of patterns This
turns out to provide powerful insights about approaches to major practical reductions in the
size of SE descriptions and processes. and about ongoing firture evolution of domain languages
over tume. These dynamics also suggest that such pattems can be understood as emergent when
the inferaction rules of the systems engineering process are properly amanged.
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Practical representation challenges of traditional systems engineering. Traditional system
documentation of concept of operations (CONOPS), system requirements. design
specifications, failure mode and effects analysis (FMEA). test plans, operations and
maintenance procedures. and other task-specific system representations over the life cycle of a
system can exceed thousands of pages. This does not encourage the engagement of a 10:1
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Existing conceptual frames, terms, standards ™"

* Lawnmower Product Line: Configurations Table
What are S*Patterns? e e e
] Push Mower Mower Self-Propelled Rider Tractor Tractor Autonomous
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Figure 12: Pattern Compression




Existing conceptual frames, terms, standards *metee
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Existing conceptual frames, terms, standards

Smallest Model

System
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Figure 6: Two Different Starting Points:

Systems As Interacting Components versus A SIPOC Perspective
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The System Phenomenon

* In the perspective described here, by system we
mean a collection of interacting components:

Extemal
“Actors’

System

* Where interaction involves the exchange of energy,
force, mass, or information, . ..

* Through which one component impacts the state of
another component, . ..

* And in which the state of a component impacts its
behavior in future interactions. '

The System Phenomenon

* Phenomena of the hard sciences are in each case
instances of the following “System Phenomenon”:

— behavior emergent from the interaction of behaviors
(phenomena themselves) a level of decomposition lower.

* In each such case, the emergent interaction-based
behavior of the larger system is a stationary path of the
action integral:
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¢ Reduced to simplest forms, the resulting equations of
motion (or if not solvable, empirically observed paths)
provide “physical laws” subject to scientific verification.
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A traditional view: Our view:
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Got Phenomena? Science-Based Disciplines for
Emerging Systems Challenges
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Abstract. Engineering disciplines (ME. EE, CE. ChE) sometimes argue their fields have “real
physical phenomena”, “hard science”™ based laws. and first principles, claiming Systems
Engmeering lacks equivalent phenomenological foundation. We argue the opposite, and how
replanting systems engineering in MBSE/PBSE supports emergence of new hard sciences and
phenomena-based domain disciplines.

Supporting  this perspective is the System Phenomenon. wellspring of engineering
opporfunities and challenges. Governed by Hamilton's Principle, it is a traditional path for
derivation of equations of motion or physical laws of so-called “fundamental” physical
phenomena of mechanics. electromagnetics, chemistry. and thermodynamics.

We argue that laws and phenomena of traditional disciplines are less fundamental than the
System Phenomenon from which they spring. This is a practical reminder of emerging higher
disciplines. with phenomena, first principles. and physical laws. Contemporary examples
include ground vehicles, aircraft, marine vessels. and biochemical nefworks; ahead are health
care, distribution networlks. market systems. ecologies, and the IoT.

1. Introduction

As a formal body of knowledge and practice. Systems Engineering is much vounger than the
more established engineering disciplines, such as Civil, Mechanical, Chemical, and Electrical
Engineering. Comparing their underlying scientific foundations to some equivalent in Systems
Engineering sometimes arises as a dispute, concerning whose profession is “real” engineering
based on (or at least later explained by) hard science. with tangible physical phenomena. and
accompanied by physical laws and first principles. This paper argues for a different
perspective altogether (Figure 1). and the reader exploring this paper is warned to avoid the
trap of the seeminely familiar in parsine the messace.
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Introduction to Pattern-Based Systems Engineering
(PBSE): Leveraging MBSE Techniques
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