
BY S* PATTERNS COMMUNITY 1 © 2022, SYSTEM SCIENCES, LLC

Guide to the

S*Pattern Configuration Wizard

10/27/2022

S*Pattern Configuration Wizard Third Party Modeling Tool
or Repository

S*Pattern
Repository

Configured
S*Model

Repository

Configurable S*Pattern

Configured S*Model

System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Apply:

(Configure,

Use

Pattern)

Domain-
Specific
Pattern

BY S* PATTERNS COMMUNITY 2 © 2022, SYSTEM SCIENCES, LLC

Licensed under a Creative Commons

Attribution Share Alike-License CC BY SA International 4.0

License Link: https://creativecommons.org/licenses/by-sa/4.0/legalcode

Uses are permitted under this license without further permission from the copyright owner,

provided each use (1) is clearly marked to attribute the underlying work to “S*Patterns

Community”, (2) provides a link to the CC BY SA license, (3) indicates if changes were

made, (4) does not suggest the licensor endorses the user or use, (5) does not apply legal

terms or technological measures that legally restrict others from doing anything the license

permits, and (6) if you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

Permissions beyond the scope of this license are administered through contacting:

Corporate Officer

ICTT System Sciences

378 South Airport Street

Terre Haute, IN 47803

812-232-2208

Systematica is a registered trademark of System Sciences, LLC.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
tel:812-232-2208

BY S* PATTERNS COMMUNITY 3 © 2022, SYSTEM SCIENCES, LLC

Contents
1 Introduction .. 5

1.1 Document Purpose and Scope .. 5

1.2 Intended Readership and Prerequisite Knowledge .. 5

1.3 Introduction to the Pattern Configuration Wizard ... 5

1.4 Use with Third Party Modeling Tools and Languages ... 6

1.5 Compatible Software .. 6

1.6 Public Access ... 6

1.7 History of Configuration Wizard Technology Generations ... 6

1.8 Document History ... 7

1.9 References .. 7

2 Using the Configuration Wizard ... 8

2.1 Setting Up the Environment ... 8

2.2 The Wizard User Control Panel ... 8

2.2.1 The Control Panel Buttons .. 8

2.2.2 The Control Panel Check Boxes ... 12

2.2.3 The Control Panel Navigation Links .. 14

2.2.4 The Control Panel Progress and Error Logs ... 16

2.3 Performing a Preliminary Test .. 17

2.4 How to Configure a Pattern Using the Wizard .. 18

2.5 Saving and Retrieving Configuration Parameter Input Data ... 20

2.6 The Configuration Process Algorithm; Configuration Predecessors and Successors 22

2.7 Typical Performance Times for Configured Model Generation .. 24

2.8 Purging the Configuration Wizard of Confidential Data ... 25

3 External Interface Specification and Wizard Internals .. 26

3.1 The Wizard External Interfaces Specification ... 26

3.2 The Internal Data Flow, Queries Architecture, and JOIN Technology .. 26

3.3 The Wizard Internal Control Program and Source Code... 26

3.4 The Wizard Queries and their Source Code .. 27

4 Appendices ... 28

4.1 Appendix A: Wizard External Interfaces Specification—Sample Extract 28

4.2 Appendix B: Control Program Source Code—Sample Extract ... 30

BY S* PATTERNS COMMUNITY 4 © 2022, SYSTEM SCIENCES, LLC

4.3 Appendix C: Detail Query Source Code—Sample Extract .. 33

4.4 Appendix D: Example Pattern and Configured Model for Preliminary Testing 35

4.5 Appendix E: Pattern File Names and Paths Table .. 36

4.6 Appendix F: Data Flow and Queries Architecture Diagrams ... 39

BY S* PATTERNS COMMUNITY 5 © 2022, SYSTEM SCIENCES, LLC

1 Introduction

1.1 Document Purpose and Scope
This document describes the S*Pattern Configuration Wizard, including its use and internal design

documentation.

1.2 Intended Readership and Prerequisite Knowledge
Section 2 is intended for users of the Configuration Wizard. It assumes general familiarity with S*Models

and S*Patterns, from the perspective of a person using the Configuration Wizard to generate configured

S*Models from reusable S*Patterns. Consult the References for background on S*Models and S*Patterns.

Section 3 is intended for methodologists and tool integrators and maintainers. It provides both high level

and detailed documentation of the design of the Configuration Wizard and its intended integration with

modeling tools and repositories. Consult the References for detail documentation on the S*Metamodel

and its mapping to third party tools and languages.

1.3 Introduction to the Pattern Configuration Wizard
The Pattern Configuration Wizard is a packaging of the automated algorithms for generating configured

S*Models from (and conforming to) reusable S*Patterns. It is intended to be integrated with commercial

and public domain modeling tools and repositories, as in Figure 1. It is provided with open-source code

and documentation for ease of integration, support, customization, or as an example for creation of

similar or modified capabilities.

Figure 1: Integrated with a Third-Party Modeling Tool or Repository, the Pattern
Configuration Wizard Generates Configured S*Models from Reusable S*Patterns

S*Pattern Configuration Wizard Third Party Modeling Tool
or Repository

S*Pattern
Repository

Configured
S*Model

Repository

Configurable S*Pattern

Configured S*Model

System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Apply:

(Configure,

Use

Pattern)

Domain-
Specific
Pattern

BY S* PATTERNS COMMUNITY 6 © 2022, SYSTEM SCIENCES, LLC

1.4 Use with Third Party Modeling Tools and Languages
The Pattern Configuration Wizard is in effect a specialized algorithm add-on to an existing model authoring

tool or model repository. It is intended to be relatively portable across such tools and repositories, by

utilizing published neutral interfaces to them, and applying semantic mappings based on the neutral

reference S*Metamodel. It assumes that (1) the modeling tool with which it is integrated has been

formally mapped to the S*Metamodel using a documented mapping, (2) that the S*Patterns it will receive

from that tool conform to the S*Metamodel mapped to the local tool and language, and (3) that the

configured S*Models it sends back to the modeling tool can be received by that tooling. Refer to Figure 1.

The mappings include both semantics and package folder structure.

Accordingly, the Pattern Configuration Wizard assumes that the modeling system with which it is

integrated has been equipped with the relevant export and import capabilities to generate and receive

the exchanged S*Patterns and configured S*Models shown in Figure 1, as specified by the Wizard

Interface Specification discussed in Section 3.1.

1.5 Compatible Software
The S*Configuration Wizard version described by this document has been implemented in using the

database query engine capabilities of Microsoft Power Query, within the Microsoft Excel platform. It

assumes a run time environment consisting of Microsoft Windows® 10 and Microsoft Excel® 2016, or

equivalents. The current version of Configuration Wizard at the time of this document is V1.12.25.

1.6 Public Access
Along with related publications of the S*Metamodel, S*Metamodel mapping to the local tooling, and

related S*Patterns literature, the S*Configuration Wizard is provided under Creative Commons public

licensing with its source code and descriptive documentation, to advance the practice of pattern-based

methods in Model-Based Systems Engineering (MBSE). It is accordingly being used in related projects of

the INCOSE MBSE Patterns Working Group, and available to the public, without warranty as to

performance or fitness. Consult the References.

1.7 History of Configuration Wizard Technology Generations
The version of the S*Patterns Wizard described by this document is the third in a series of generations of

automated configuration agents for S*Patterns. Those generations have refined the practice and related

automation of pattern-based methods, in this history:

Table 1: Generations of Pattern Configuration Agent Technologies
Generation and
Time of Origin

Configuration Agent Generation Compatible Modeling Tools Scalability

First generation,
2005

SE Pattern Workbook: Based in desktop
spreadsheet automation for self-
contained S*Patterns and S*Models.

Self-contained Small and medium-
scale models and
patterns.

Second
generation, 2013

SE Pattern Agent: Desktop agent
software integrated as add-on to
commercial third party MBSE tooling
across multiple COTS tools.

Models and patterns in DOORS®,
Requisite Pro®, Enterprise
Architect SysML ®, Magic Draw /
Cameo Systems Modeler SysML®

Small and medium-
scale models and
patterns.

Third generation,
2021

Configuration Wizard: Based in desktop
or server bulk JOIN software integrated
as add-on to commercial third party
MBSE tooling across multiple toolsets.

Generic OMG SysML®, Dassault
Cameo Systems Modeler® SysML,
Sparx Enterprise Architect® SysML.

Medium and large-
scale models and
patterns.

BY S* PATTERNS COMMUNITY 7 © 2022, SYSTEM SCIENCES, LLC

1.8 Document History

Version Date Content

1.2.7 08.31.2022 Consolidate material from earlier documentation, for new edition.

1.2.8 10.27.2022 Correct header formatting. Add confidential data purging section.

1.9 References
1. “Systematica® Metamodel, Version 8.0”, System Sciences, LLC, 2022.

2. “Using OMG SysML™ With Systematica Methodology Release 4.0: Mapping Guide Configured for

Sparx Systems Enterprise Architect™ V15”, System Sciences, LLC, 2022.

3. “S*Metamodel Mapping for MagicDraw/Cameo Systems Modeler Version 19”, System Sciences, LLC,

2019.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:systematica_mapping_fo

r_magicdraw_csm_v1.9.1a.pdf

4. Schindel, W., and Peterson, T., “Introduction to Pattern-Based Systems Engineering (PBSE): Leveraging

MBSE Techniques”, tutorial in Proc of INCOSE 2016 Great Lakes Conference on Systems Engineering.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_tutorial_glrc_2016_

v1.7.4.pdf

5. Schindel, W., “Realizing the Promise of Digital Engineering: Planning, Implementing, and Evolving the

Ecosystem”, Proc. of INCOSE 2022 International Symposium, Detroit, MI.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:realizing_the_vision_of_

digital_engineering_is2022_v1.3.4.pdf

6. “MBSE Patterns Working Group”, Working Group Meeting June, 2022.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:mbse_patterns_wg_mtg_

is2022_06.26.2022_v1.3.5_.pdf

7. Schindel, W., “What Is the Smallest Model of a System?”, Proc. of the INCOSE 2011 International

Symposium, International Council on Systems Engineering, 2011.

http://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:what_is_the_smallest_mo

del_of_a_system_v1.4.4.pdf

8. Schindel, W., Lewis, S., Sherey, J., Sanyal, S., “Accelerating MBSE Impacts Across the Enterprise:

Model-Based S*Patterns”, Proc. of INCOSE 2015 International Symposium, July, 2015.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:accelerating_mbse_impa

cts_across_the_enterprise_using_model-based_s-patterns_v2.1.1.pdf

9. Patterns WG. “Methodology Summary: Pattern-Based Systems Engineering (PBSE), Based On S*MBSE
Models”, INCOSE Patterns Working Group, 2019.
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_extension_of_mbs
e--methodology_summary_v1.6.1.pdf

10. INCOSE MBSE Patterns Working Group Web Site.
https://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

11. “Semantic Technologies for Systems Engineering (ST4SE): Project Report”, INCOSE MBSE Patterns

Working Group, 2022.

https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:systematica_mapping_for_magicdraw_csm_v1.9.1a.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:systematica_mapping_for_magicdraw_csm_v1.9.1a.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_tutorial_glrc_2016_v1.7.4.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_tutorial_glrc_2016_v1.7.4.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:realizing_the_vision_of_digital_engineering_is2022_v1.3.4.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:realizing_the_vision_of_digital_engineering_is2022_v1.3.4.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:mbse_patterns_wg_mtg_is2022_06.26.2022_v1.3.5_.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:mbse_patterns_wg_mtg_is2022_06.26.2022_v1.3.5_.pdf
http://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:what_is_the_smallest_model_of_a_system_v1.4.4.pdf
http://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:what_is_the_smallest_model_of_a_system_v1.4.4.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:accelerating_mbse_impacts_across_the_enterprise_using_model-based_s-patterns_v2.1.1.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:accelerating_mbse_impacts_across_the_enterprise_using_model-based_s-patterns_v2.1.1.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_extension_of_mbse--methodology_summary_v1.6.1.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:pbse_extension_of_mbse--methodology_summary_v1.6.1.pdf
https://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

BY S* PATTERNS COMMUNITY 8 © 2022, SYSTEM SCIENCES, LLC

2 Using the Configuration Wizard

2.1 Setting Up the Environment
The initial environment that must be established consists of:

1. The modeling tool or model repository, in which configurable S*Patterns will be found for use by

the Configuration Wizard, and to which configured S*Models can be returned after they are

created by the Configuration Wizard.

a. This modeling tool must include a semantic profile for its models that has been

constructed from a formal mapping of the S*Metamodel into the semantic space of the

tool. This formalizes the semantics of S*Patterns and S*Models in the modeling tool. Such

profiles and mappings are available for a number of popular contemporary modeling tools

and repositories.

b. The modeling tool should have been equipped with pattern export and model import

capabilities for exchange of patterns and models with the Configuration Wizard, per the

Interface Specification of Appendix A.

c. The environment in which the modeling tool operates should have file exchange access

with the environment in which the Configuration Wizard operates—whether in the same

computer or across a network.

2. The desktop environment in which the Configuration Wizard will be run, to generate configured

models from configurable patterns.

a. The Configuration Wizard (an .xlsm file) should be installed in this environment.

b. The installed Configuration Wizard provides a Control Panel, described in the next section,

which can be used to identify additional file system location environmental details

described later below. The environment in which the Configuration Wizard will run

should have file exchange access with the environment in which the Modeling Tool

operates—whether in the same computer or across a network.

2.2 The Wizard User Control Panel
Start the Configuration Wizard, and view its Control tab to see the Wizard Control Panel, shown in Figure

2 below. Note that the Control Panel includes several Buttons, used to control the Configuration Wizard;

a set of Logs, used to display progress or errors during use of the Configuration Wizard; a set of Check

Boxes, used to manage Configuration Wizard options; and a set of Navigation Links for the user.

2.2.1 The Control Panel Buttons
The control buttons on the panel are as follows:

Buttons 1-3 are used during the basic cycle of generating models from patterns, as follows:

• Button 1: Load Pattern from Repository

o This button causes the Configuration Wizard to fetch and load a Pattern that has been

output by the Model Repository. A progress log is generated during that process.

• Button 2: Generate Configured Model from Pattern

o This button causes the Configuration Wizard to begin to configure a Model from a Pattern.

This will require preceding Button 2 with additional user input of configuration data,

described further in Section 2.4. A progress log is generated during that process.

BY S* PATTERNS COMMUNITY 9 © 2022, SYSTEM SCIENCES, LLC

• Button 3: Return Configured Model to Repository

o This button causes the configured model produced by the Configuration Wizard to be

transmitted to the Model Repository.

Figure 2: The Control Panel of the Configuration Wizard, Including Control Buttons 1-3

Buttons 4-6 are used to identify the file directories in which various data will be found or stored.

• Button 4: Identify Source of Patterns

o This button allows the user to select a file directory folder in which Patterns will be

inserted by the Pattern Repository / Modeling Tool, as exported data from that

repository.

BY S* PATTERNS COMMUNITY 10 © 2022, SYSTEM SCIENCES, LLC

• Button 5: Identify Destination for Configured Models

o This button allows the user to select a file directory folder in which Configured Models

will be inserted by the Configuration Wizard.

• Button 6: Identify Log File Destination

o This button allows the user to select a file directory folder in which Log Files will be

stored, if the file logging option is selected.

Figure 3: Buttons 4-6, Selectable Locations for Files

BY S* PATTERNS COMMUNITY 11 © 2022, SYSTEM SCIENCES, LLC

Buttons 7-8 are used to save or retrieve user input information that is part of the configuration process.

• Button 7: Save Configuration Data

o Because the pattern configuration process involves user insertion of significant amounts

of configuration parameter values, this button allows that information to be saved (en

masse in a single user-specified file) after it has been entered, so that it can later be

retrieved and re-used without re-entering it. The saved configuration information consists

of selected features and feature primary key values, populated feature attribute values

other than primary key attributes, populated role attribute values, and populated design

component attribute values. Multiple differing configuration sets may be saved in

different files that can later be quickly invoked.

• Button 8: Retrieve Configuration Data

o The opposite of Button 7, this button causes previously saved configuration parameter

information to be retrieved for re-use, from a user specified separate file (see Button 7

above). The retrieved configuration information consists of selected features and feature

primary key values, populated feature attribute values other than primary key attributes,

populated role attribute values, and populated design component attribute values.

Figure 4: Buttons 7-8 Save and Retrieve User-Entered Configuration Information

BY S* PATTERNS COMMUNITY 12 © 2022, SYSTEM SCIENCES, LLC

2.2.2 The Control Panel Check Boxes
The Control Panel also provides several “check boxes”, to control optional behaviors:

• The Integrated Import File checkbox: This option is about the Wizard importation of a

configurable pattern from the modeling tool pattern repository. Depending on how that tool has

been optioned and operated, this pattern import may involve multiple model exchange files or a

single integrated model exchange file. The check box indicates which of these two options is to

be used during the (Button 1) pattern import process. As a related aid, in the case of import of

the single integrated file option, the Wizard will extract a set of multiple files from that integrated

file and place them in the import area, similar to what would have been the case for the multiple

file import case.

• The File Logging checkbox: This option is a diagnostic utility that will record logged files of what

is being exchanged between the Wizard and the Pattern and Model Repository.

Figure 5: Check Box Options for Pattern Import (Single Integrated File) and Logging

BY S* PATTERNS COMMUNITY 13 © 2022, SYSTEM SCIENCES, LLC

Four check boxes control the “scope of pattern configuration”. The Configuration Wizard can be used to

populate and configure smaller or larger subsets of the full scope of the S*Metamodel, based on those

additional checkboxes. The Configuration Wizard always populates and configures at least model

Features, Interactions, Logical Systems, Requirements, and Design Components. Beyond that, the four

optional checkboxes can be marked to populate and configure additional subsets of the S*Metamodel:

• Interface Context Model Checkbox: Additionally configures Interfaces, Input-Outputs, Ports, and

Architectural Relationships. This expands the scope of the pattern import (Button 1), model

configuration (Button 2), and configured model export (Button 3) processes.

• State Model Checkbox: Additionally configures States, Transitions, and Events. This expands the

scope of the pattern import (Button 1), model configuration (Button 2), and configured model

export (Button 3) processes.

• Attribute Coupling Model Checkbox: Additionally configures Attribute Couplings. This expands

the scope of the pattern import (Button 1), model configuration (Button 2), and configured model

export (Button 3) processes.

• Risk (FMEA) Model Checkbox: Additionally configures Failure Modes, Failure Impacts, and

Counter-Requirements. This expands the scope of the pattern import (Button 1), model

configuration (Button 2), and configured model export (Button 3) processes.

Figure 6: Check Box Options for Expanding or Reducing Scope of Model Configuration

BY S* PATTERNS COMMUNITY 14 © 2022, SYSTEM SCIENCES, LLC

2.2.3 The Control Panel Navigation Links
The Control Panel tab also includes several navigation links, for travel to other tabs. See Figure 7. One

group of navigation links is used in connection with the entry of pattern configuration parameter values:

• Select Features link: This navigates to the Stakeholder Feature and Feature Primary Key Value

selection page (see Figure 12). It is that page into which the Wizard user will enter pattern

configuration information before using Button 2, to select which Features of the pattern will be

populated in the configured model (or not), and for Features with Primary Key attributes, what

values of those Feature Primary Keys will be used to creates specialized instances of those

Features in the configured model. This entry is normally carried out after a pattern has been

loaded into the Wizard via Button 1, and before Button 2 is clicked to generate a configuration.

Refer to Figure 11. It is the main user control over the configuration of the pattern. An alternate

means of quickly selecting those Features and their Feature Primary Key values is the use of

Button 8, retrieving en masse a previously saved set of such selections. See Section 2.5.

• Set Feature Attribute Values link: This navigates to the Feature Attribute Values data entry page.

It is on that page the Wizard user will insert configuration information after using Button 2, to

insert values into the newly populated (non-PK) Feature Attributes that were populated as part

of the configuration process.

• Set Role Attribute Values link: This navigates to the Role Attribute Values data entry page. It is

on that page the Wizard user will insert configuration information after using Button 2, to insert

values into the newly populated (non-PK) Role Attributes that were populated as part of the

configuration process.

• Set Design Component Attribute Values link: This navigates to the Design Component Attribute

Values data entry page. It is on that page the Wizard user will insert configuration information

after using Button 2, to insert values into the newly populated (non-PK) Design Component

Attributes that were populated as part of the configuration process.

Figure 7: Navigation Links to Other Pages for Configuration Input Values

BY S* PATTERNS COMMUNITY 15 © 2022, SYSTEM SCIENCES, LLC

Another group of navigation links (see Figure 8) is used for the utility ability to navigate to and inspect the

internal representation of portions of the configured model (after it is generated using Button 2) before

it is transferred back to the model repository and rendered there in its modeling language specific form:

• Configured Model Features

• Configured Model Interactions

• Configured Model Roles

• Configured Model Requirement Statements

• Configured Model Design Components

• Configured Model Interface Context

• Configured Model States

• Configured Model Attribute Couplings

• Configured Model Risk Analysis / FMEA

Figure 8: Navigation Links to View Configured Model Elements

BY S* PATTERNS COMMUNITY 16 © 2022, SYSTEM SCIENCES, LLC

2.2.4 The Control Panel Progress and Error Logs
The progress and error logs on the Control Panel (see Figure 9) are as follows:

• Pattern Data Refresh Log: Located below Button 1, this log shows progress through the process

started by that button—loading (importing) the configurable pattern data provided by the pattern

repository. Each entry shows a time stamp and indication of the number of items of various types

that were received. Errors may be reported at this level of granularity.

• Model Configuration Log: Located below Button 2, this log shows progress through the

population of a configured model. Each entry shows a time stamp and indication of the number

of items of various types that were populated. Errors maybe reported at this level of granularity.

• Return Model Data Log: Located below button 3, this log shows progress through the return

(export) of configured model data intended for the model repository.

Figure 9: Progress and Error Logs

BY S* PATTERNS COMMUNITY 17 © 2022, SYSTEM SCIENCES, LLC

2.3 Performing a Preliminary Test
The intended use of the Configuration Wizard involves end-to-end interaction with a Model Authoring

Tool or Model Repository. Before attempting that integrated activity for the first time, a simpler

preliminary pre-integration test is recommended, as summarized by Figure 10:

Figure 10: A Preliminary “Open Loop” Test Before Integration

This test uses the example test data provided with the Configuration Wizard (Refer to Appendix D), by

“breaking” the closed loop normal configuration into an “open loop” test configuration—see Figure 10.

The preliminary test simplifies the process of integration of the Configuration Wizard, Third Party

Modeling Tool or Repository, and their IT environment. The recommended test steps correspond to the

diagram in Figure 10:

1. Install the Test Pattern (1), supplied with the Configuration Wizard, in the Pattern Repository.

2. Operate the Pattern Repository export process to generate Export Data (2), which should conform

to the Interface Specification for pattern files, in Appendix A. A simple check on that conformance

is comparison to (3), the test data supplied with the Configuration Wizard.

3. Install the Configuration Wizard and use Button 1 to import the pattern Test Data (3) provided

with the Configuration Wizard.

4. Check the Import Log (under Button 1) for agreement with (4), the Test Log supplied with the

Configuration Wizard. The imported pattern items counts should agree with that reference.

5. Install the test Configuration Input Parameters file (5) in the Configuration Wizard accessible file

environment. Use the Retrieve (Button 8) operation to load that configuration data file (5).

S*Pattern Configuration Wizard Third Party Modeling Tool
or Repository

S*Pattern
Repository

Configured
S*Model

Repository
System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Apply:

(Configure,

Use

Pattern)

Domain-
Specific
Pattern

3
3

3
2
2

2

6
6

6
7
7

7

Configurable S*Pattern

Configured S*Model

Output Data Generated
by Configuration Wizard

Test Data Supplied with
Configuration Wizard

Test Data Supplied with
Configuration Wizard

Export Data Generated
by Model Repository

Normal Closed Loop Setup

Preliminary Open Loop
Test Setup

1

9

Test Pattern Supplied with
Configuration Wizard

Test Configured Model
Supplied with

Configuration Wizard

5

Test Configuration
Parameters Supplied with
Configuration Wizard

8

4

Test Log Supplied with
Configuration Wizard

Generated by
Model Import

Process

BY S* PATTERNS COMMUNITY 18 © 2022, SYSTEM SCIENCES, LLC

6. Use Button 2 to generate a Configured Model (6), and compare the log generated under Button

2 to the test data log (4) supplied with the Configuration Wizard. The logged items counts

should be the same. Compare the Configured Model (6) files generated to the Test Data (7) files

provided with the Configuration Wizard. They should be the same.

7. Import the test data configured model files (7), provided with the Configuration Wizard, into the

Model Repository, using the repository import process, which should conform to the Interface

Specification of Appendix A.

8. A simple check on the conformance of (8) is to compare it to the test data configured model (9)

supplied with the Configuration Wizard.

When all the above “open loop” tests pass, then the user should be able to revert to the “normal set up”

integration seen in Figure 1 and Figure 10. The same results should be obtainable in closed loop form

without using the extra test files supplied with the Configuration Wizard.

2.4 How to Configure a Pattern Using the Wizard
Figure 11 summarizes the overall flow to generate a configured model from a configurable pattern:

Figure 11: Overview of the Pattern Configuration Process

Configuration Wizard
Pattern and Model Repository

or Modeling ToolUser

Author or Update Pattern
Model in Modeling Tool

Button 1: Import Pattern

Create and Store Updated Pattern

Request Pattern Export from
Repository

Export Pattern in S*Mapped Form

Exchange Files

Setup Wizard File Locations
and Wizard Options

File Locations and Options Established

Manually Enter Feature
Selections and FPK Values

Button 8: Auto Retrieve Feature
Selections and FPK Values

Or

Configuration Data

Store Manually Entered Feature
Selections and FPK Values

Retrieve Feature Selections and
FPK Values

Or

Import Pattern Data to Wizard

Button 2: Configure New
Model from Pattern

Populate Configured Model

Manually Enter Configured
Model Attribute Values

Button 8: Auto Retrieve Model
Attribute Values

Or

Store Manually Entered
Attribute Values

Auto Retrieve Model Attribute
Values

Or

Button 7: Save Configuration
Data

Save Configuration Data

Button 3: Export Configured
Model

Generate Configured Model
Export Files

Create and Store Configured ModelRequest Configured Model
Import

Configured Model Data

Setup Inputs

Pattern Modeling Inputs

Request Pattern Export

Pattern Data
Button 1

Button 8

Selected
Features and
FPK Values

Selected
Features and
FPK Values

Button 2

Att Values for
Features,

Roles,
Des Compons

Button 8

Att Values for
Features,

Roles,
Des Compons

Button 7 Selected Features and FPK Values;
Att Values for Features,

Roles, Des Compons

Button 3
Configured

Model
Export
Files

Request Configured Model Import

Configured
Model

BY S* PATTERNS COMMUNITY 19 © 2022, SYSTEM SCIENCES, LLC

As indicated by Figure 11, after clicking on Button 1 to load a pattern into the Configuration Wizard, and

before clicking on Button 2, the user should enter a selection of Features from the Configurable Pattern

that are to be populated in the Configured Model. This is done through the Select Features link shown in

Figure 7, bringing up the Features Selection Matrix shown in Figure 12.

Figure 12: Features Selection Matrix

The Features Selection Matrix displays all the Features of the loaded Pattern. For each such Feature, the

user may enter Yes or No to indicate whether it is to be populated (included) in the Configured Model to

be generated by the Wizard. In addition, the matrix shows which pattern Features, if any, include Feature

Primary Key attributes, naming them in the matrix in the Feature Attribute column. The subset of Features

that have Primary Key attributes may be “multiply instantiated” in the Configured Model, with each such

instance differentiated by a unique value to be populated in its Feature Primary Key Attribute. The pattern

may contain an enumerated list of possible Feature Primary Key values to populate in such instance,

available for selection using pull-down menus as shown in Figure 12.

After entering Feature selection and Feature Primary Key value information into the Feature Selection

Matrix shown in Figure 12, the user may click Button 2 to generate a configured model based on those

selections. A configuration progress and errors log will be generated below Button 2, as shown in Figure

9.

After that population has occurred, the resulting configured model data structure is ready to allow the

user to also enter values for populated Feature Attributes (not the PK type, just ordinary attributes that

can have values), as well as attributes of populated Roles, and attributes of populated Design

Components. These are entered by navigating to the three respective screens using the navigation links

shown in Figure 7. Each of those three screens displays a list of populated classes and their attributes

(Feature Attributes, Role Attributes, Design Component Attributes), and invites entry of values for those

attributes. Refer to Figure 13.

Each of those three screens provides a return navigation link back to the Control Panel screen.

After entry of these attribute values, the user has the option of saving those entries to an external record

file, in case they may be needed again in a future situation with this or another configuration. This is

described in the next section.

BY S* PATTERNS COMMUNITY 20 © 2022, SYSTEM SCIENCES, LLC

Figure 13: Configured Model Attribute Value Entry Screens, for Features, Roles, and Design Components

2.5 Saving and Retrieving Configuration Parameter Input Data
Buttons 7 and 8 can be used to save and retrieve manually-entered configuration attribute data, so that

it does not need to be manually re-entered. This information is saved in a user-designated file whose

name and location are identified by the user. So, many such configuration parameter value files may be

saved, for different configurations. The files used to save this information are of file type .xlsx.

It is not necessary for the Wizard user to view the interior content of these files, which are created by and

used by the Configuration Wizard itself. Such a saved configuration values file has four internal tabs,

containing the following information semantic structures and values information:

• Configured Features Selected, and their Feature Primary Key Values, for the currently loaded

pattern’s library of potential features;

• Configured Feature Attribute Values for the current configured model’s populated Features;

• Configured Role Attribute Values for the current configured model’s populated Roles;

• Configured Design Component Attribute values for the current configured model’s populated

Design Components;

Establishing values for these items may usefully occur at two different times. Refer to Figure 11:

1. After loading of a Pattern, via Button 1, and prior to configuring that pattern, using Button 2: At

this time, the selection of Features and their Feature Primary Key values should occur. (This does

not involve the other Feature Attributes, Role Attribute, or Design Component Attributes.) This

may be done by either manually entering that information on the Feature Selection tab, or else

by automated setting of those values using the Retrieve (Button 8) capability. As long as Button 1

has been used once to load a pattern of interest, Button 8 may be used multiple times to generate

BY S* PATTERNS COMMUNITY 21 © 2022, SYSTEM SCIENCES, LLC

different configurations of that pattern, each using Button 2 to generate a different configured

model, without repeating Button 1.

2. After populating a configured model, using Button 2: At this time, configured model class

instances have been populated by the Configuration Wizard, including the population of attribute

“slots” for instances of Features, Roles, and Design Components. So, it is at this point that values

for those attributes may be inserted. This may be done by either manually entering that

information on the three tabs for those attributes, or else by automatically setting of those values

using the Retrieve (Button 8) capability. As long as Button 2 has been used once to generate the

populated classes carrying these attributes, Button 8 may be used multiple times to generate

different configurations of that pattern.

As a further aid to Wizard ease of use and robustness, during the “Retrieve” (Button 8) operation, the

Configuration Wizard performs a “match-up” process between:

A. the semantic structure of the currently loaded pattern (obtained via Button 1) or currently

configured model (obtained via Button 2)

in comparison to (matched up with)

B. the semantic structure of the saved file of previously saved (via Button 7) configuration data

This “match-up” process is performed because the currently loaded pattern or configured model may be

different (a little or a lot) than the pattern or configured model that was in use when the configuration

information was saved (via Button 7). A simple example of this would be the addition of a new Feature,

Feature Attribute, Role, or Role Attribute to the pattern, months after an earlier saving of a configuration

values file. The “match-up” process aligns the subset of saved values information with the current pattern

or configured model information, saving a lot of manual inspection or data entry effort. The Wizard user

is still free to also further edit the configured values data after the Retrieve (Button 8) operation, to make

up any subsequent changes, and the result may also be saved (Button 7) as a new saved configuration file.

The above match-up process occurs automatically, transparent to the Wizard User, but visibility of the

results is posted in the log entries below Button 7 and Button 8, where the number of retrieved or saved

items is visible. See Figure 4.

In order to avoid accidental mis-matches of configuration information and the pattern or configured

model to which that information applies, performing a pattern load (Button 1) will automatically clear out

(erase) any currently entered configuration information for selected Features and Feature Primary Keys,

as well as any currently entered values for Feature Attributes, Role Attributes, and Design Component

Attributes. These may be quickly restored by a Retrieve (Button 8) operation.

As a consequence of the above automatic match-ups, there can be situations in which the Retrieve (Button

8) operation may be required at two different times in the following sequence:

1. After loading a pattern (Button 1), the use of Button 8 will automatically load previously saved

Feature and Feature Primary Key selection data that will have impact on a subsequent pattern

configuration operation.

BY S* PATTERNS COMMUNITY 22 © 2022, SYSTEM SCIENCES, LLC

2. After subsequently configuring the pattern (using Button 2), a configured model will have been

created with a semantic structure determined by a combination of the pattern and the above

configuration information. At that point, a second Retrieve (Button 8) operation can be used to

re-establish attribute values for the configured model’s populated Features, Roles, and Design

Components. This is particularly important before exporting the resulting configured model back

to the model repository (Button 3).

 Based on the above, user warning messages appear whenever Button 1 or 2 are pressed:

• The warning message upon pressing Button 1 is a reminder that continuing that operation will

wipe out any currently entered configuration values. This provides the user opportunity to stop

short of this process, to save that information first if desired (via Button 7).

• The warning message upon pressing Button 2 is a reminder that continuing that operation

assumes that the user has already entered feature configuration information, either manually or

via Retrieve (Button 8). (For example, a pushing of Button 1 to load a pattern could have wiped

out that information, which needs to be refreshed by Button 8.)

2.6 The Configuration Process Algorithm; Configuration Predecessors and Successors

The pattern configuration process, which is automated by the Configuration Wizard, generates a

configured model from a configurable pattern combined with configuration input information. An

informal illustrative overview of this is provided by

Figure 14 for a subset of the S*Metamodel classes and relationships populated in the Configured Model

by this process.

This is a propagation process, in which “upstream” configured model elements are combined with the

pattern (which includes configuration rules) to generate “downstream” configured model elements. The

order of that propagation is a consequence of it being based on the generic structure of the neutral

S*Metamodel (mapped to the tools and languages in use). This simplifies the nature of configuration

analysis and rules, so that the order of precedence and succession becomes central to understanding

pattern configuration.

Based on that, Figure 15 formalizes a more complete (compared to

Figure 14) description of the predecessor-successor order of configured model population. In Figure 15,

population of model classes that are listed across the top (defining columns) will trigger population of

model classes that are listed down the left side (defining rows), but only when a grey cell appears at the

intersection of the related column and row.

BY S* PATTERNS COMMUNITY 23 © 2022, SYSTEM SCIENCES, LLC

Figure 14: Informal Illustration of the Pattern Configuration Process

BY S* PATTERNS COMMUNITY 24 © 2022, SYSTEM SCIENCES, LLC

Figure 15: Formal List of Configuration Predecessors and Successors, S*Metamodel

2.7 Typical Performance Times for Configured Model Generation
Owing to the compression power of S*Patterns, a comparatively small S*Pattern can be used to generate

relatively large configured S*Models. The time required for this mostly automated process is of interest,

and has been an emphasis in the progression of technologies utilized in the three generations of

Configuration Wizards to date, described by Section 1.7.

For the basic model generation process described by Section 2.4, the following stages contribute to the

overall performance time:

BY S* PATTERNS COMMUNITY 25 © 2022, SYSTEM SCIENCES, LLC

Table 2: Contributions to Automated Run Time

Automated Step of Configuration Process Performing Component

1. Pattern export time from Pattern Repository Modeling Tool or Repository, Export Process

2. Pattern Import time for Configuration Wizard Configuration Wizard, Button 1

3. Configured Model population time Configuration Wizard, Button 2

4. Configured Model export time Configuration Wizard, Button 3

5. Configured Model import time Modeling Tool or Repository, Import Process

The time required for these steps naturally depends heavily upon model sizes and computing engine

configurations. However, based on the progressive optimization across several generations of

Configuration Wizard technologies, the dominant time in the above stages, for large configured models,

is typically seen to be Step 5, the importing of a new configured model into the modeling tool or

repository. This is in keeping with years of experience with the insertion of data into databases. A few

minutes for the entire series of steps is typical.

It is also expected that this model configuration process is used to originate a new configured model, not

for its subsequent model life cycle editing. Accordingly, the process described here is expected to be

relatively infrequent across the life cycle of configured models.

2.8 Purging the Configuration Wizard of Confidential Data
During use, the Configuration Wizard temporarily holds Configurable Pattern and Configured Model data

in its internal data tables. This allows for multiple configuration iterations (repeat cycles of Figure 11) to

be carried out before a configured model is returned to the external Model Repository.

In case the Pattern or Model data used with the Configuration Wizard is confidential and you wish to

provide the Configuration Wizard to someone else for other use, you can purge (remove) the internal

Pattern and Model data from the Wizard, using the following automated steps:

1. Using Button 1, load an “empty” or non-confidential “demonstration” pattern into the Wizard.

2. Using Button 2, generate an “empty” or non-confidential “demonstration” configured model.

3. Using Button 3, generate a set of “empty” or non-confidential “demonstration” output files.

BY S* PATTERNS COMMUNITY 26 © 2022, SYSTEM SCIENCES, LLC

3 External Interface Specification and Wizard Internals

3.1 The Wizard External Interfaces Specification
Appendix A provides a sample of the External Interfaces Specification for the Configuration Wizard. Note

that this interface specification is actually a built-in tab that is part of the Configuration Wizard itself.

As implied by Figure 11, there are three external actors that interact with the Configuration Wizard,

implying External Interfaces on the Wizard for its interactions with all three:

1. Interfaces to the Modeling Tool or Repository: These are implemented as file exchanges, using

Comma Separated Variable (.csv) files. The Interface Specification of Appendix A indicates the file

names, column headings, and semantic contents of each column. (While this form is not as

sophisticated as XML exchanges or API services, it provides a relatively simple to observe and

debug form of interface in the current generation of technology.)

2. Interfaces to the Human User: As illustrated by the user sections of this document, these

interfaces include tabular text data entry and display, control buttons, check boxes, and

navigational links. These are detailed in both the Interface Specification and in Sections 1 and 2 of

this User Guide.

3. Interfaces to Saved Configuration Parameter Files: As shown in Figure 11, and discussed in

Section 2.5, the Configuration Wizard can save and load stored configuration parameter value

files. These files are of type (.xlsx), contain multiple tabs, and their tabs and columns are

documented by the Interface Specification of Appendix A.

3.2 The Internal Data Flow, Queries Architecture, and JOIN Technology
The overall data flow internal to the Configuration Wizard is dominated by the flow through a network of

relational queries. This technology was chosen for the third generation Configuration Wizard based on

the insight that the core conceptual S*Pattern Configuration Algorithm is in effect based upon projections

of “upstream” already-configured model data onto “downstream” pattern data and its rules, and that this

is equivalent to a series of relational INNER JOINs. To achieve the third generation Configuration Wizard

goal of scalability to very large models, commercially proven JOIN technologies have been used, where

industry optimization of JOIN algorithms over decades of platforms have created a sound base. The

current JOIN platform used for the Configuration Wizard is based on the Microsoft Power Query® M-Code

capability, available in forms including native Microsoft Excel 2016.

The flow of these queries is controlled by the Configuration Wizard internal Control Program, discussed

in the next section. The queries themselves are specified by M-Code, which is similar in its JOIN aspects

of interest here to ANSI SQL.

Appendix F provides detailed data flow diagrams of the queries across the entire process summarized by

Figure 11. For each of the queries there, details of the individual query are specified by the query source

code. A sample of that query source code is provided by Appendix C.

3.3 The Wizard Internal Control Program and Source Code
The overall flow of Configuration Wizard queries, as well as other Configuration Wizard interaction with

the external actors, is controlled by the Configuration Wizard Control Program. Among other things, this

BY S* PATTERNS COMMUNITY 27 © 2022, SYSTEM SCIENCES, LLC

control program manages the Control Panel user interactions, invokes queries, and reads and writes

various external exchange files.

The Control Program is written in Visual Basic, and its (commented) source code can be directly accessed

through the Excel Developer Menu for the Configuration Wizard. A sample of the Control Program source

code is provided by Appendix B.

The purpose of the Control Program is overall control of the Configuration Wizard, but not detailed query

semantic data processing of pattern and model data, which is provided by the Queries described in the

next section.

3.4 The Wizard Queries and their Source Code
The detailed semantic information processing of the patterns and models by the Configuration Wizard is

provided by the encoded Queries. These are encoded in (commented) M-Code, which resembles

relational SQL queries for the core JOIN functions used by the Configuration Wizard.

The source code for all these queries is contained in the Configuration Wizard, and can be generated by

navigating to the wizard Query Source tab and pushing the Generate Queries Source Code Listing button

there. A sample of that commented source code is provided by Appendix C.

BY S* PATTERNS COMMUNITY 28 © 2022, SYSTEM SCIENCES, LLC

4 Appendices

4.1 Appendix A: Wizard External Interfaces Specification—Sample Extract

Use Case

To
o

l t
o

 A
ge

n
t

A
ge

n
t

to
 T

o
o

l

A
ge

n
t

to
 U

se
r

U
se

r
to

 A
ge

n
t

IO #
IO Name (File Name for

Files)
Table Name in

Integrated Report
IO Type Col #

Column Name
(Exchanged Table Heading)

Meaning and Notes

Configure Pattern X IO 0 Export Tables N/A XLS File 1 Integrated rept of Pattern Tables from repository: Name of Tbl, or "#"
for Tbl Hdr Row, or Tbl Row Nos., or empty to delimit each Tbl section
of integrated report.

Configure Pattern X IO 0 Export Tables N/A XLS File 2-N Tbl Col Hdgs, or Tbl Col Data; Contains IO 1,2,3,18-22,29-30

Configure Pattern X IO 1 Pattern Features File Pattern Features File CSV File 1 Name

Configure Pattern X IO 1 Pattern Features File Pattern Features File CSV File 2 Configuration Rule

Configure Pattern X IO 2 Pattern Feature
Attributes File

Pattern Feature
Attributes File

CSV File 1 Owner Feature Name

Configure Pattern X IO 2 Pattern Feature
Attributes File

Pattern Feature
Attributes File

CSV File 2 Name Feature Attribute

Configure Pattern X IO 2 Pattern Feature
Attributes File

Pattern Feature
Attributes File

CSV File 3 Applied Stereotype Feature PK Flag ("Feature Attribute" or "Feature Primary Key")

Configure Pattern X IO 2 Pattern Feature
Attributes File

Pattern Feature
Attributes File

CSV File 4 Possible Values Possible values, using colon (:) delimiters within single cell list

Configure Pattern X IO 3 Pattern Features-
Interactions File

Pattern Features-
Interactions File

CSV File 1 Type (Role B) Feature Name

Configure Pattern X IO 3 Pattern Features-
Interactions File

Pattern Features-
Interactions File

CSV File 2 FPK Value FPK Value

Configure Pattern X IO 3 Pattern Features-
Interactions File

Pattern Features-
Interactions File

CSV File 3 Type (Role A) Interaction Name

Configure Pattern X IO 3 Pattern Features-
Interactions File

Pattern Features-
Interactions File

CSV File 4 IPK Rule Interaction PK Rule

Configure Pattern X IO 18 Pattern Interactions-
Roles File

Pattern Interaction
Roles

CSV File 1 Type (Role B) Interaction Name

Configure Pattern X IO 18 Pattern Interactions-
Roles File

Pattern Interaction
Roles

CSV File 2 Type (Role A) Role Name

Configure Pattern X IO 18 Pattern Interactions-
Roles File

Pattern Interaction
Roles

CSV File 3 <<HasRole>> IPK Value RPK Rule; guillemets portion is optional

Configure Pattern X IO 18 Pattern Interactions-
Roles File

Pattern Interaction
Roles

CSV File 4 <<HasRole>> RPK Rule IPK Value; guillemets portion is optional

Configure Pattern X IO 19 Pattern Role Attributes
File

Pattern Role Attributes
File

CSV File 1 Owner Logical System Name

Configure Pattern X IO 19 Pattern Role Attributes
File

Pattern Role Attributes
File

CSV File 2 Name Attribute Name

BY S* PATTERNS COMMUNITY 29 © 2022, SYSTEM SCIENCES, LLC

Use Case

To
o

l t
o

 A
ge

n
t

A
ge

n
t

to
 T

o
o

l

A
ge

n
t

to
 U

se
r

U
se

r
to

 A
ge

n
t

IO #
IO Name (File Name for

Files)
Table Name in

Integrated Report
IO Type Col #

Column Name
(Exchanged Table Heading)

Meaning and Notes

Configure Pattern X IO 20 Pattern Role-Des
Compons File

Pattern Functional Role
Allocation

CSV File 1 Type (Role B) Des Compon Name

Configure Pattern X IO 20 Pattern Role-Des
Compons File

Pattern Functional Role
Allocation

CSV File 2 Type (Role A) Role Name

Configure Pattern X IO 20 Pattern Role-Des
Compons File

Pattern Functional Role
Allocation

CSV File 3 <<FunctionalRoleAllocation>>
IPPK Value

PSPK Rule; guillemets portion is optional

Configure Pattern X IO 20 Pattern Role-Des
Compons File

Pattern Functional Role
Allocation

CSV File 4 <<FunctionalRoleAllocation>>
Configuration Rule

RPK Value; guillemets portion is optional

Configure Pattern X IO 21 Pattern Des Compons
Attributes File

Pattern Des Compons
Attributes File

CSV File 1 Owner Des Compon Name

Configure Pattern X IO 21 Pattern Des Compons
Attributes File

Pattern Des Compons
Attributes File

CSV File 2 Name Des Compon Attribute

BY S* PATTERNS COMMUNITY 30 © 2022, SYSTEM SCIENCES, LLC

4.2 Appendix B: Control Program Source Code—Sample Extract

'---------------------------------------

'

' Pattern Configuration Wizard Control Program

'

' Controls overall flow of pattern configuration process, including queries

' Obtains local pattern from repository tool

' Returns configured model, generated from pattern,back to repository tool

' See also wizard Interface Specification, built into wizard.

' See also Pattern Configuration Wizard user documentation

' See also query code and documentation, built into wizard.

'

' Copyright 2021, 2022 System Sciences, LLC.

' Available under Creative Commons CC SA BY public licensing.

'

'---------------------------------------

Dim SinglePatternFileEnabled, FileLoggingEnabled, BackgroundQueryEnabled As Long

Dim NumOfFileTypes, MaxTableRows, InputFilesQty, IntegratedReptFileRowNum, FirstFileRowNum, LastFileRowNum As Integer

Dim TableName, TableRangetoExtract, SepFileName, ControlFile, ColID, RowID As String

Dim TableRange As Range

Dim ConfigureInterfaces, ConfigureCouplings, ConfigureStates, ConfigureFMEA As Boolean

Sub Macro5()

'------------------------------

'

' Button B1: Refresh Configurable Pattern from Model Repository

'

'-------------------------------

Dim Msg As String

Dim LogPath As String

Dim SourceFile, DestinationFile As String

Dim MyFSO As FileSystemObject

' Warn user to consider saving configuration input values before proceeding further.

 response = MsgBox("This action will blank out previously entered pattern Configuration Input Values. You can Save Configuration Input Values first, using Button 7, and later Retrieve Configuration Input Values, using Button 8.

Proceed with pattern refresh data loading anyway? ", vbYesNo)

 If response = vbNo Then

 Exit Sub

 End If

ColID = "C" ' Set column and row of progress log output on control sheet

RowID = 8

FirstRowID = 8 ' Set range of log space to be cleared prior to logging.

LastRowID = 130

ClearProgressLog FirstRowID, LastRowID, ColID ' Clear the progress log

ProgressLog RowID, ColID, "Pattern Template Loading Started:", 0 ' Start logging.

BY S* PATTERNS COMMUNITY 31 © 2022, SYSTEM SCIENCES, LLC

'Refresh check box status for file logging and including configuration of interfaces, states, couplings, FMEA

Macro10

Macro12

Macro13

Macro14

Macro15

Macro16

'Disable_Background_Refresh

BackgroundQuery = False

'--

'

' Set Full Path Names to Pattern Input Files, Based on User Admin of Input File Locs

'

'--

SourceFilesDirectory = ThisWorkbook.Sheets("Control").Cells(8, "L")

InputFilesQty = 22 ' Number of pattern input file types

IntegratedReptFileRowNum = 2 ' Row number in file util directory tab of integrated pattern input report file

FirstFileRowNum = 3 ' Number of first row in file util directory tab of individual pattern input file names

LastFileRowNum = FirstFileRowNum + InputFilesQty - 1 ' Number of last row in file util directory tab

MaxTableRows = 3000 ' Max number of rows allowed in a pattern input table from pattern.

For FileNo = 1 To InputFilesQty

 SourceFileFullName = SourceFilesDirectory & "\" & ThisWorkbook.Sheets("tableConfig").Cells(FileNo + 2, "B")

 ThisWorkbook.Sheets("tableConfig").Cells(FileNo + 2, "C") = SourceFileFullName '

Next FileNo

'--

'

' There are two options for incoming pattern data tables, depending on optioning of pattern repository--

' Option 1: Multiple CSV files of one pattern table per file, or . . .

' Option 2: A single integrated XLS file containing all the pattern tables

' Selection of one of these options is by wizard user on wizard control tab

' Check status of single versus multiple pattern input file control selection

'

'---

If (ActiveSheet.CheckBoxes("Check Box 12").Value = 1) Then

 SinglePatternFileEnabled = True

 ProgressLog RowID, ColID, "Single Integrated Pattern File Xfer Mode", 0

 Else: SinglePatternFileEnabled = False

 ProgressLog RowID, ColID, "Multiple Pattern File Xfer Mode", 0

End If

'---

'

' For Option 2 above, following routine generates CSV input pattern files (same as Option 1) from single XLS file

'

'--

If SinglePatternFileEnabled = "True" Then

BY S* PATTERNS COMMUNITY 32 © 2022, SYSTEM SCIENCES, LLC

' Load the integrated tables report file for subsequent separation of its tables into files.

 ControlFile = ActiveWorkbook.Name ' Remember name of wizard to return to it below

 Application.ScreenUpdating = False ' Suspend screen updating

 Worksheets("IO 0 Integrated Pttrn Table Set").Range("A:Z").Clear ' Clear report input sheet early in case following fails

 SourceFileFullName = SourceFilesDirectory & "\" & ThisWorkbook.Sheets("tableConfig").Cells(IntegratedReptFileRowNum, "B")

 ThisWorkbook.Sheets("tableConfig").Cells(IntegratedReptFileRowNum, "C") = SourceFileFullName '

 SingleInputFileName = ThisWorkbook.Sheets("tableConfig").Cells(IntegratedReptFileRowNum, "C") ' Get name of single integrated rept file to load

 SingleInputShortName = ThisWorkbook.Sheets("tableConfig").Cells(IntegratedReptFileRowNum, "B") ' Get simple file name for file close cmd to follow

 Workbooks.Open SingleInputFileName 'Open single integrated tables spreadsheet file

 Worksheets("Report").Range("A:Z").Copy 'Copy the integrated tables file for use in later table separation.

 Application.DisplayAlerts = False ' Disable user dialog for closing

 Workbooks(SingleInputShortName).Close SaveChanges:=False

 Workbooks(ControlFile).Activate ' Switch to wizard

 Worksheets("IO 0 Integrated Pttrn Table Set").Range("A:Z").PasteSpecial Paste:=xlPasteAll 'Load to IO 0 Tab for table parsing

 Application.DisplayAlerts = True ' Re-enable user dialog after closing and pasting

 Selection.NumberFormat = "@" ' format copied table as text for the parsing that will follow

' Count the number of non-blank rows in integrated table items count report, for progress log

 NumRowsNotBlank = 0 ' in case of error

 On Error GoTo DoneCounting

 NumRowsNotBlank = Worksheets("IO 0 Integrated Pttrn Table Set").Range("A:A").Cells.SpecialCells(xlCellTypeConstants).Count

DoneCounting: On Error GoTo 0 ' turn off error trapping

 ProgressLog RowID, ColID, "Integrated Rept File Loaded", NumRowsNotBlank 'Log integrated file has been loaded

' Loop through the list of table/file names to be parsed from the single integrated file.

 For FileNo = 1 To InputFilesQty

 TableName = ThisWorkbook.Sheets("tableConfig").Cells(FileNo + FirstFileRowNum - 1, "D") 'Name of incoming table to find in integrated file.

 SepFileName = ThisWorkbook.Sheets("tableConfig").Cells(FileNo + FirstFileRowNum - 1, "C") 'Name of separated file to created from incoming table

 MetamodelSeg = ThisWorkbook.Sheets("tableConfig").Cells(FileNo + FirstFileRowNum - 1, "E") 'Name of Metamodel Segment this table is in.

 If (MetamodelSeg = "Interfaces" And ConfigureInterfaces = False) Then GoTo NextFile ' Check Wizard User options for not used parts of metamodel

 If (MetamodelSeg = "Couplings" And ConfigureCouplings = False) Then GoTo NextFile

 If (MetamodelSeg = "States" And ConfigureStates = False) Then GoTo NextFile

 If (MetamodelSeg = "FMEA" And ConfigureFMEA = False) Then GoTo NextFile

 ExtractTable TableName, SepFileName 'Find table in incoming file and write to separated file

 Application.ScreenUpdating = True

 DoEvents ' This DoEvents smooths out the user log viewing experience, but adds on the order of 10 seconds to the overall button 1 loading run

 Application.ScreenUpdating = False

NextFile: Next FileNo ' Advance to next table/file type to be parsed from the single integrated set

 Application.ScreenUpdating = True

End If 'End of table extraction and file generation process.

'--

BY S* PATTERNS COMMUNITY 33 © 2022, SYSTEM SCIENCES, LLC

4.3 Appendix C: Detail Query Source Code—Sample Extract

//
//
// This query produces populated Requirement Statements by an Inner Join between (Populated Interactions + Populated Roles) and (Pattern Interaction-Role-Requirements Rules)
//
///
//
// Begin with pattern configuration rules Interaction-Role-Requirement table;
// Perform inner join with table of populated interactions and populated roles
// Initially the join checks for match of Roles and Interactions with pattern, but not yet check of IPK and RPK values
//
// Access method used for source data chosen to minimize later load times
//
let
 #"Source" = Excel.CurrentWorkbook(){[Name="Pattern_Interactions_Roles_Requirements_File"]}[Content],
 #"Source2" = Excel.CurrentWorkbook(){[Name="Populated_Roles_and_RPKs"]}[Content],
 #"Merged Queries" = Table.NestedJoin(Source, {"Interaction Name", "Role Name"}, Source2, {"Interaction Name", "Role Name"}, "Source2", JoinKind.Inner),
 #"Removed Other Columns" = Table.SelectColumns(#"Merged Queries",{"Interaction Name", "IPK Value", "Role Name", "RPK Value", "RSPK Rule", "Requirement ID", "Requirement Statement","Source2"}),
 #"Expanded Populated Roles and RPKs" = Table.ExpandTableColumn(#"Removed Other Columns", "Source2", {"IPK Value", "RPK Value"}, {"IPK Value.1", "RPK Value.1"}),
// There should be no blank rows at this point, but remove any blank rows for robustness sake.
 #"Removed Blank Rows" = Table.SelectRows(#"Expanded Populated Roles and RPKs", each not List.IsEmpty(List.RemoveMatchingItems(Record.FieldValues(_), {"", null}))),
//
// Check for IPK rule satisfied, checking both the case of IPK = *ANY* and the case of IPK = anything else; filter out any exceptions:
//
 #"Filtered Rows with IPK Rule=*ANY*" = Table.SelectRows(#"Removed Blank Rows", each [IPK Value] = "*ANY*"),
 #"Filtered Rows with IPK Value=IPK Rule" = Table.SelectRows(#"Removed Blank Rows", each [IPK Value] = [IPK Value.1]),
 #"Combined Rows" = Table.Combine({#"Filtered Rows with IPK Value=IPK Rule", #"Filtered Rows with IPK Rule=*ANY*" }),
//
// Check what remains (from above filtering) for RPK rule also satisfied, checking both the case of RPK = *ANY* and the case of RPK = anything else; filter out any exceptions:
//
 #"Filtered Rows with RPK Rule=*ANY*" = Table.SelectRows(#"Combined Rows", each [RPK Value] = "*ANY*"),
 #"Filtered Rows with RPK Value=RPK Rule" = Table.SelectRows(#"Combined Rows", each [RPK Value] = [RPK Value.1]),
 #"Combined Rows2" = Table.Combine({#"Filtered Rows with RPK Value=RPK Rule", #"Filtered Rows with RPK Rule=*ANY*" }),
//
// For surviving rows, generate Req Stmt PK (RSPK) value, by using RSPK Rule in pattern on populated IPK and RPK values.
// RSPK Rule may contain any one of the following: "", "IPK", "RPK", "RIPK", "/<text string>/", "IPK/<text string>/", "RPK/<text string>/", "RIPK/<text string>/".
// Begin by extracting the populated IPK value, if the RSPK rule contains "IPK":
//
 #"Added Conditional Column" = Table.AddColumn(#"Combined Rows2", "IPK Flag", each if Text.Contains([RSPK Rule], "IPK") then [IPK Value.1] else ""),
// Then extract the populated RPK value, if the RSPK rule contains "RPK":
 #"Added Conditional Column1" = Table.AddColumn(#"Added Conditional Column", "RPK Flag", each if Text.Contains([RSPK Rule], "RPK") then [RPK Value.1] else ""),
// Then extract the text string value, if the RSPK rule contains a text string within "/" delimiters, extract:
 #"Inserted Text Between Delimiters" = Table.AddColumn(#"Added Conditional Column1", "Text Between Delimiters", each Text.BetweenDelimiters([RSPK Rule], "/", "/"), type text),
// Then form delimiter characters "-" or "", to separate concatenated value fields if they are not blank:
 #"Added Conditional Column2" = Table.AddColumn(#"Inserted Text Between Delimiters", "Delimiter1", each if [IPK Value.1] = "" then "" else if [RPK Value.1] = "" then "" else "-"),
// Then extract a concatenated IPK-RPK value, if the RSPK rule contains "RIPK":

BY S* PATTERNS COMMUNITY 34 © 2022, SYSTEM SCIENCES, LLC

 #"Added Conditional Column3" = Table.AddColumn(#"Added Conditional Column2", "RIPK Flag", each if Text.Contains([RSPK Rule], "RIPK") then [RPK Value.1]&[Delimiter1]&[IPK Value.1] else ""),
 #"Added Conditional Column4" = Table.AddColumn(#"Added Conditional Column3", "Delimiter2", each if [IPK Flag]&[RPK Flag]&[RIPK Flag] = "" then "" else if [Text Between Delimiters] = "" then "" else "-"),
// Then form RSPK value from above intermediates:
 #"Inserted Merged Column" = Table.AddColumn(#"Added Conditional Column4", "RSPK Value", each Text.Combine({[IPK Flag]&[RPK Flag]&[RIPK Flag], [Delimiter2] , [Text Between Delimiters]}), type text),
// Generate columns with [RSPK] value, owning Interaction, qualified names, RTF reference, relationship owning package
 #"Added Conditional Column5" = Table.AddColumn(#"Inserted Merged Column", "Configured Requirement ID", each if [RSPK Value] <> "" then [Requirement ID] & " [" & [RSPK Value] & "]" else [Requirement ID]),
 #"Added Conditional Column6" = Table.AddColumn(#"Added Conditional Column5", "IPK In Brackets", each if [IPK Value.1] = "" then "" else " [" & [IPK Value.1] & "]"),
 #"Added Custom" = Table.AddColumn(#"Added Conditional Column6", "Owning Interaction", each "02 Configured Model::03 Interaction Framework::" & [Interaction Name] & [IPK In Brackets]),
 #"Added Conditional Column7" = Table.AddColumn(#"Added Custom", "Configured Requirement ID, Qualified Name", each [Owning Interaction] & "::" & [Configured Requirement ID]),
// #"Added Custom1" = Table.AddColumn(#"Added Conditional Column7", "Configured Requirement, Qualified Name", each [Owning Interaction] & "::" & [Requirement Statement]),
 #"Added Conditional Column8" = Table.AddColumn(#"Added Conditional Column7", "Configured Interaction", each if [IPK Value.1] = "" then [Interaction Name] else [Interaction Name] & " [" & [IPK Value.1] & "]"),
 #"Added Conditional Column9" = Table.AddColumn(#"Added Conditional Column8", "Configured Role", each if [RPK Value.1] = "" then [Role Name] else [Role Name] & " [" & [RPK Value.1] & "]"),
 #"Added Custom2" = Table.AddColumn(#"Added Conditional Column9", "Configured RTF, Qualified Name", each "02 Configured Model::03 Interaction Framework::"&[Configured Interaction]&"::Perform " & [Configured Role] & " in " & [Configured
Interaction]),
 #"Added Custom3" = Table.AddColumn(#"Added Custom2", "Owning Package", each "02 Configured Model::03 Interaction Framework"),
// Housecleaning--remove remaining columns and duplicate rows; reorder columns
 #"Removed Columns" = Table.RemoveColumns(#"Added Custom3",{"Interaction Name", "IPK Value", "Role Name", "RPK Value", "IPK Value.1", "RPK Value.1", "IPK Flag", "Text Between Delimiters", "Delimiter2", "RSPK Rule", "RPK Flag", "Delimiter1", "RIPK
Flag", "IPK In Brackets", "Configured Interaction", "Configured Role"}),
 #"Removed Duplicates" = Table.Distinct(#"Removed Columns"),
 #"Reordered Columns" = Table.ReorderColumns(#"Removed Duplicates",{"Configured Requirement ID", "Requirement Statement", "Owning Interaction", "Configured Requirement ID, Qualified Name","Configured RTF, Qualified Name", "Owning Package",
"Requirement ID", "RSPK Value"})
in
 #"Reordered Columns"

BY S* PATTERNS COMMUNITY 35 © 2022, SYSTEM SCIENCES, LLC

4.4 Appendix D: Example Pattern and Configured Model for Preliminary Testing

There are six test files supplied with the Configuration Wizard, numbered in the diagram:

1. S*Pattern File for Modeling Tool

2. N/A (Generate using S*Pattern Repository export.)

3. Importable Pattern Files to Import into Wizard.

4. Expected Wizard Log Results

5. Retrievable Configuration Inputs File

6. N/A (Generate using Configuration Wizard.)

7. Importable Configured Model Files to Import into Model Repository

8. N/A (Generate using Configured Model Import into Model Repository)

9. Configured S*Model, contained in same file as (1) above.

S*Pattern Configuration Wizard Third Party Modeling Tool
or Repository

S*Pattern
Repository

Configured
S*Model

Repository
System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Apply:

(Configure,

Use

Pattern)

Domain-
Specific
Pattern

3
3

3
2
2

2

6
6

6
7
7

7

Configurable S*Pattern

Configured S*Model

Output Data Generated
by Configuration Wizard

Test Data Supplied with
Configuration Wizard

Test Data Supplied with
Configuration Wizard

Export Data Generated
by Model Repository

Normal Closed Loop Setup

Preliminary Open Loop
Test Setup

1

9

Test Pattern Supplied with
Configuration Wizard

Test Configured Model
Supplied with

Configuration Wizard

5

Test Configuration
Parameters Supplied with
Configuration Wizard

8

4

Test Log Supplied with
Configuration Wizard

Generated by
Model Import

Process

BY S* PATTERNS COMMUNITY 36 © 2022, SYSTEM SCIENCES, LLC

4.5 Appendix E: Pattern File Names and Paths Table

This table is built into a tab of the Configuration Wizard. It contains the file names of pattern files importable into the Configuration Wizard, generated by the Pattern Repository Export. The first row is the name of the Integrated Pattern Tables File, whose

loading brings in all the required pattern data in one integrated file. The subsequent rows are the names of the individual files when the import is not from a single integrated file, along with their names when integrated into the single integrated file case.

The Segment column identifies the overall class of information for control of the scope of the pattern content being imported. The path column is generated by the Configuration Wizard, based on the user’s entry of the pattern import path name.

Index FileType Path Integrated Pattern Report Section Name Metamodel Segment
Export Tables.xlsx C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM

Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Export
Tables.xlsx

1 Pattern Features File.csv C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Features File.csv

Pattern Features File Base

2 Pattern Feature Attributes
File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Feature Attributes File.csv

Pattern Feature Attributes File Base

3 Pattern Features-
Interactions File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Features-Interactions File.csv

Pattern Features-Interactions File Base

4 Pattern Interactions-Roles
File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Interactions-Roles File.csv

Pattern Interaction Roles Base

5 Pattern Role Attributes
File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Role Attributes File.csv

Pattern Role Attributes File Base

6 Pattern Role-Des Compons
File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Role-Des Compons File.csv

Pattern Functional Role Allocation Base

7 Pattern Des Compons
Attributes File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern Des
Compons Attributes File.csv

Pattern Des Compons Attributes File Base

BY S* PATTERNS COMMUNITY 37 © 2022, SYSTEM SCIENCES, LLC

Index FileType Path Integrated Pattern Report Section Name Metamodel Segment

8 Pattern Interactions-Roles-
Requirements File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Interactions-Roles-Requirements File.csv

Pattern Requirements Base

9 Pattern Input-Output
Attributes File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Input-Output Attributes File.csv

Pattern Input-Output Attributes File Interfaces

10 Pattern ICT1 File.csv C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
ICT1 File.csv

Pattern Interface Context File ICT1 Interfaces

11 Pattern ICT2 File.csv C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
ICT2 File.csv

Pattern Interface Context File ICT2 Interfaces

12 Pattern ICT4 File.csv C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
ICT4 File.csv

Pattern Interface Context File ICT4 Interfaces

13 Pattern ICT5 File.csv C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
ICT5 File.csv

Pattern Interface Context File ICT5 Interfaces

14 Pattern Interactions-States
File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Interactions-States File.csv

Pattern Interactions-States File States

15 Pattern States-Transitions,
Events File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
States-Transitions, Events File.csv

Pattern States-Transitions, Events File States

16 Pattern Attribute
Couplings File.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Attribute Couplings File.csv

Pattern Attribute Couplings Couplings

17 Pattern Failure Impacts.csv C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Failure Impacts.csv

Pattern Failure Impacts FMEA

BY S* PATTERNS COMMUNITY 38 © 2022, SYSTEM SCIENCES, LLC

Index FileType Path Integrated Pattern Report Section Name Metamodel Segment

18 Pattern Counter
Requirements.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Counter Requirements.csv

Pattern Counter Requirements FMEA

19 Pattern Failure Impacts-
Counter Requirements.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Failure Impacts-Counter Requirements.csv

Pattern Failure Impacts-Counter
Requirements

FMEA

20 Pattern Failure Modes.csv C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Failure Modes.csv

Pattern Failure Modes FMEA

21 Pattern Failure Modes-
Counter Requirements.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Failure Modes-Counter Requirements.csv

Pattern Failure Modes-Counter
Requirements

FMEA

22 Pattern Failure Mode
Context.csv

C:\Users\WSchindel\Documents\Docs\System Sciences, LLC\Tech\Systematica\STM
Methodology\STMTemplatesWorksheets\Workbook\2020-21 Wkbk
Experiments\File IntchgTstData--PwrCnvrt\FilesPowerCnvrtr08.28.2022\Pattern
Failure Mode Context.csv

Pattern Failure Mode Context FMEA

BY S* PATTERNS COMMUNITY 39 © 2022, SYSTEM SCIENCES, LLC

4.6 Appendix F: Data Flow and Queries Architecture Diagrams

BY S* PATTERNS COMMUNITY 40 © 2022, SYSTEM SCIENCES, LLC

BY S* PATTERNS COMMUNITY 41 © 2022, SYSTEM SCIENCES, LLC

SHAPES & COLORS
LEGEND

P

Data File

Process
(Query, Program,
Human Process)

Data Table

Patterns Repository
Tooling

Export Process

Configured Models Repository
Tooling

Import Process

S*Pattern Configuration Wizard:
Internals on Wizard Side
V1.4.19 10.25.2022 Implementation: V1.13.1

Popd Attribute
Couplings and PKs

Control Program
Output File Writer

Popd Attribute
Couplings and PKs.csv

IO 70

Popd Attribute
Coupling Relats to Atts

Control Program
Output File Writer

Popd Attribute
Coupling Relats to

Atts.csv

IO 71

Popd Attribute
Couplings and PKs

Popd Attribute
Coupling Relats to Atts

Control Program
Pattern Input Source Files Read

Process

Se
q

u
e

n
ce

d
 Q

u
er

y
R

e
fr

e
sh

 R
e

q
u

e
st

s

User Request to Refresh
Pattern (Button 1)

Control Program
Configured Model Files

Write Process

User Request to Store
Configured Model in
Repository (Button 3)

Output File Write Requests

1
. R

EF
R

ES
H

 P
A

TT
ER

N
3

. T
R

A
N

SF
E

R
 C

O
N

FI
G

U
R

ED
 M

O
D

EL
2

. C
O

N
FI

G
U

R
E

P
A

TT
ER

N
 T

O
 P

O
P

U
LA

TE
 M

O
D

EL

Pattern Failure Impacts

Pattern Failure Impacts

Pattern Failure Impacts

fParam

tableConfig

File Parameters for Queries Access

File Parameters
For Read-Write Access

Control Program Configured
Model Queries Requests

User Request to Generate
Configured Model in

Wizard (Button 2)

Se
q

u
e

n
ce

d
 Q

u
er

y
R

e
q

u
e

st
s

Pattern
Attribute Couplings

IO 60

Pattern Input and Refresh
Process

Configured Model
Generation Process

Configured Model Output
Process

IO 77

Popd Failure
Modes-Des Comps

Popd Failure
Modes-Des Comps

Control Program
Output File Writer

Popd Failure
Modes-Des Comps

IO 83

Popd Failure Modes

Control Program
Output File Writer

Popd Failure Modes

IO 82

Popd Failure Modes

Popd Counter Reqs-
Failure Modes

Control Program
Output File Writer

Popd Counter Reqs-
Failure Modes

IO 81

Popd Counter Reqs-
Failure Modes

Popd Counter
Requirements

Control Program
Output File Writer

Popd Counter
Requirements

IO 80

Popd Counter
Requirements

Popd Failure Impacts-
Counter Reqs

Control Program
Output File Writer

Popd Failure Impacts-
Counter Reqs

IO 79

Popd Failure Impacts-
Counter Reqs.csv

Popd Failure
Impacts

Control Program
Output File Writer

Popd Failure
Impacts

IO 78

Popd Failure
Impacts.csv

Pattern
Attribute Couplings

Pattern
Attribute Couplings

Popd Failure Mode
Context

Control Program
Output File Writer

Popd Failure Mode
Context

IO 84

RISK ANALYSIS MODEL
(FAILURE MODES, PROBABILITIES, SEVERITIES, COUNTER-REQS, IMPACTS,

CAUSES, DETECTIONS, PREVENTIONS, PROGNOSTICS, MITIGATIONS)

ATTRIBUTE COUPLINGS
(FITNESS, DECOMP, CHARACTERIZATION, I/O)

IO 64

IO30 1D Popd Ftrs,
FPKAs, FPKVs

Populated Roles and
RPKs

Pop Design Info

Populate Attribute
Couplings

Previous Page Previous Page

Updated Popd ICT

IO 7A 1-D Popd
Features and PKVs

Previous Page

Pattern Failure Mode
Context

Pattern Failure Mode
Context

Pattern Failure Mode
Context

IO 67

IO 8 Popd
Interactions and IPKs

Previous Page

Pattern Counter
Requirements

Pattern Counter
Requirements

Pattern Counter
Requirements

IO 65

IO 25 Popd
Requirements

Previous Page

Pattern Failure Modes

Pattern Failure Modes

Pattern Failure Modes

IO 66

IO 15A Popd Des
Compons

Previous Page

Popd Failure Mode
Context

Popd Attribute Couplings
and Relats

IO 85

Popd FMEA View

Control Program
Output File Writer

Popd FMEA View

Populate Risk Model, FMECA

IO 86

Popd FMEA View

Populated
Features

Populated
Roles

Populated Design
Components

Populated
Input-Outputs

Pattern Attribute
Couplings

IO 65A

Pattern Failure Impacts-
Counter Requirements

Pattern Failure Impacts-
Counter Requirements

Pattern Failure Impacts-
Counter Requirements

IO 66A

Pattern Failure Modes-
Counter Requirements

Pattern Failure Modes-
Counter Requirements

Pattern Failure Modes-
Counter Requirements

Popd Risk Model, FMECA

