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Abstract 
Agile systems-engineering and agile-systems engineering are two different concepts that share the 
word agile. In the first case the system of interest is an engineering process, and in the second case 
the system of interest is what is produced by an engineering process. The word agile refers to the 
adaptability and the sustainment of adaptability in both types of systems. Sustained adaptability is 
enabled by an architectural pattern and a set of system design principles that are fundamental and 
common to both types of systems. Research that identified this architectural pattern and design 
principles is reported, updated, and applied here in two Parts. Part 1 focuses on agile-systems 
engineering, reviewing the origins, values, and core concepts that define and enable domain 
independent agility in any type of system. Part 2 focuses on agile systems-engineering, identifying 
core agility-enabling concepts in the software-development domain-specific practice known as 
Scrum, reviewing an agile hardware/software satellite-development systems-engineering case for 
its source of agility, and then suggesting the development of an agile systems-engineering life 
cycle model as a natural next step. 

Introduction 
An agile systems-engineering process is itself a system, gaining its agility from a fundamental 
architecture and set of design principles that enables adaptability. This architecture and set of 
design principles were the subject of a companion article of the same name, but designated as Part 
1 (Dove and LaBarge 2014), with its focus on agile-systems engineering. A brief review of Part 1 
will set the stage for applying the architecture and design principles to an agile 
systems-engineering process, the focus of this Part 2 continuation. 

Agile-Systems Background 
Agility is defined as the ability of a system to thrive in an uncertain and unpredictably evolving 
environment; deploying effective response to both opportunity and threat, within mission. 
Effective response has four metrics: timely (fast enough to deliver value), affordable (at a cost that 
can be repeated as often as necessary), predictable (can be counted on to meet the need), and 
comprehensive (anything and everything within the system mission boundary). This is a core 
definition of agility exhibited by an agile systems engineering process, as well as an agile system 
developed by any process, agile or not. 

Explained in Part 1, agile systems are designed in counterpoint to their operating environments, 
characterized as an Unpredictable, Uncertain, Risky, Variable (UURV) framework: 
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• Unpredictable: randomness among unknowable possibilities. 
• Uncertain: randomness among known possibilities with unknowable probabilities. 
• Risky: randomness among known possibilities with knowable probabilities. 
• Variable: randomness among knowable variables and knowable variance ranges. 

Research that began in 1991, originating the concept of agile systems and putting the word agile 
into play, examined a large number of diverse systems throughout the ‘90s that exhibited agile 
capabilities. This research abstracted core architecture and design principles that appear necessary 
and sufficient to enable agility in systems and processes of any kind (Dove 2001). The architecture 
will be recognized in a simple sense as drag-and-drop, plug-and-play, loosely coupled 
encapsulated modularity, but with some critical aspects generally ignored in descriptions of 
modular architecture. 

Agile systems are designed for change. They can be augmented with new functional capability. 
They can be restructured with different internal relationships among their constituent systems or 
subsystems. They can be scaled up or down for economic delivery of functional capability. They 
can be reshaped to regain compatibility or synergy with an environment that has changed shape. 
These types of changes are structural as well as functional, and require an architecture that 
accommodates structural change, whether the system of interest is a development process or the 
product of a development process. 

There are three critical elements in the agile architectural pattern: a roster of drag-and-drop 
encapsulated modules, a passive infrastructure of minimal but sufficient rules and standards that 
enable and constrain plug-and-play interconnection, and an active infrastructure that designates 
four specific responsibilities for sustaining agile operational capability: module evolution, module 
readiness, system configuration, and infrastructure evolution.  

Agile Systems-Engineering Context 
Systems engineering is a disciplined activity that delivers engineered solutions to problems and 
opportunities – an activity often involving multiple stakeholders, coordination across multiple 
engineering disciplines, and complexity in both problem and solution (Sheard 2000). Unlike other 
engineering disciplines that employ natural laws to guide and govern engineering design with 
certainty within a single discipline, systems engineering deals with the social, political, and 
technical aspects of managing projects that span multiple disciplines. These projects can be quite 
large and complex, need cross-discipline unifying architectures and operational concepts, require 
multi-party accommodations to resolve tradeoffs, and often exhibit unexpected emergent 
behaviors as the project progresses. 

Peter Checkland, in speaking of “hard” and “soft” systems thinking (Checkland and Holwell 2004, 
45-46), characterizes the “hard” variety as classic systems engineering “appropriate in 
well-defined problem situations in which well-defined objectives are accepted and the live issues 
concern how best to engineer a system to meet them. … On the other hand, ‘soft’ approaches are 
said to be appropriate in messy problem situations, characterized by obscure objectives and 
multiple clashing viewpoints.” Checkland’s Soft Systems Methodology (SSM), designed to learn 
and find effective responses to real world changing problem environments, has valuable and 
practical application in an agile systems-engineering life cycle model; but that pursuit is outside 
the scope of this current article. Much of SSM, however, is the (unrecognized) foundation of the 
agile software development management process known as Scrum, which will be explored later.  



 

In agile systems-engineering, defining a solution in terms of the problem understanding and 
defining the problem in terms of the solution understanding is a spiral iteration of discovery and 
learning convergence through an evolving engineering environment. If the operational 
environment for the deployed system is also evolving, systems development continues beyond the 
development and production stages all the way to retirement, and benefits if the system produced 
is itself an agile system that facilitates continued change and adaptation. 

Illustrated in Figure 1, the separate 
environments of both the engineering 
system and the engineered system 
define the needs and degrees for 
agility in each of those systems. If the 
engineering environment is not 
stable and predictable, an agile 
approach is appropriate; which will 
evolve engineered system variations, creating a dynamic requirements environment for the 
engineered system, at least during development. There is an interaction between both of these 
systems during development, as the engineered system matures in modeling, simulation, and 
prototype instantiations that provide feedback analysis to the engineering system. That process 
should continue throughout the remainder of the engineered system’s life cycle if it is deployed in 
a dynamic evolving environment. Of course, the engineered system’s life cycle may be cut 
disappointingly short if it is not designed and sustained as an agile system. 

Agile Systems-Engineering and the System Life Cycle 
Here the focus is on domain independent agile systems-engineering, a type of systems engineering 
distinguished by its ability to deliver functional system-engineering value in a dynamic 
systems-engineering environment. 

Life cycle, as a term applied to systems, traditionally demarcates the progressive maturity flow of 
a system through a linear sequence of stages, from concept to disposal. Inherent in this model are 
the notions that a system is in one and only one stage at any point in time, and progresses from one 
single-state stage to another in a proscribed sequence. 

For practical purposes one cannot argue with the notion that there are times when a system does 
not exist that bound a time when a system does exist. Nor can one argue against the necessity to 
develop a system before utilization can occur. Here, however, the argument is against the 
continued notions of non repeating stages and of single-state existence by depicting an agile life 
cycle in Figure 2 as having progressively concurrent repeated stages. 

 

Figure 1: Two different operational environments defining 
necessary agile counterpoint for the systems they encompass.  

 

Figure 2: Framework of agile system engineering life cycle model, depicts constant evolution of all prior 
ISO/IEC 15288 life cycle stages as the life cycle progresses through maturity 



 

ISO/IEC 15288 describes “the” generic system life cycle as a seven stage maturity process 
progressing through: exploratory research, concept, development, production, utilization, support, 
and retirement (ISO/IEC 2008, 10-14). This is a classic waterfall model at the macro level, with 
15288 recognizing that each stage can be further reduced into maturity flows as well, which may or 
may not be waterfall models.  

In reality, the 15288 stages of utilization and support are typically concurrent. Also, in reality, all 
stages are not necessarily true conditions of the system, but rather perceptions and/or claims of an 
individual or collective authority. 

Looking at just two of the stages reveals the issue: must a system be either in a state of 
development or a state of utilization, but not both at the same time? A resilient system exists by 
definition in this dual state. So do agile systems, self organizing systems, autonomic systems and 
other such dynamic systems that exist sustainably in an uncertain and unpredictable environment. 
Think of a city as a system, and consider that the subsystems of that city are many, are individually 
in a full variety of the different stages, and each typically moves among all of the different stages 
repeatedly over time. 

Figure 2 shows a sequential system engineering maturity transition across the primary stages, but 
also recognizes that within each of the sequential primary stages is a growing concurrency of all of 
the prior stages. Agile systems engineering processes, by definition, are capable of responding to 
their environment as their environment changes, regardless of why or when these changes occur. 
Note that an agile systems engineering process has difficulty exercising agile capabilities if it does 
not develop an agile system, one that has an architecture which facilitates justified change 
throughout the development and subsequent utilization and support stages. 

Each of the seven stages of the systems-engineering life cycle may have individually different 
operational environments, ranging from stable to unpredictable. Dealing with stage-specific agile 
needs and methods is beyond the scope of the current article. 

In the domain context of agile software development, the production stage is the first build/release 
stage that puts product into the operational user environment, initially – not as a temporary 
prototype, but as a usable working product. Subsequent increments and iterations of development 
occur during utilization and support of prior releases. 

An effective agile systems engineering process must converge on sufficient completion of each of 
the primary stages to warrant the transition to the next primary stage, presumably on schedule and 
on budget regardless of how flexible or rigid these might be. This is represented in the Figure 2 life 
cycle depiction showing diminishing emphasis on the lower concurrent stages as maturity through 
primary stages progresses.  

The software-development management process known as Scrum is examined next; both because 
it is strongly associated with agile software development, and because it has excellent concepts 
that can be adapted to domain independent agile systems engineering, if these concepts are 
understood for how and what they contribute to agility. 

Baseline Scrum  
Scrum is one of the most popular project management practices for agile software development, 
and is highly associated with the concept of agile systems-engineering and the word agile in many 
people’s minds unfamiliar with agile concepts outside of the software domain. Consequently, the 
classic Scrum process will be examined as described in (Schwaber and Sutherland 2013) as a base 



 

line for what makes it a truly agile process in the software development domain. The reader 
familiar with agile software development practices is advised that neither the Agile Manifesto’s 
four concepts nor its 12 backup principles are responsible for the agility of the Scrum process, as 
will be shown. These concepts and principles are instead among well known (but not necessarily 
practiced) best project management practices and human productivity amplifiers, regardless of 
whether an agile systems-engineering (or agile software development) process is called for. 
Overview of Classic-Scrum 

In deference to readers that may not be versed in the Scrum process, as well as those that are 
unfamiliar with The Scrum Guide (Schwaber and Sutherland 2013), key elements are reviewed 
here, with quoted remarks in this section taken from that guide. 

“Scrum (n): A framework within which people can address complex adaptive problems, while 
productively and creatively delivering products of the highest possible value.”  

“Scrum is founded on empirical process control theory, or empiricism. Empiricism asserts that 
knowledge comes from experience and making decisions based on what is known. Scrum employs 
an iterative, incremental approach to optimize predictability and control risk. Three pillars uphold 
every implementation of empirical process control: transparency, inspection, and adaptation.” 
Scrum is an engineering process that works toward a solution in a series of steps, questioning the 
progress and process at the completion of each step. This requires complete transparency of 
everything that has been decided and accomplished, objective assessment of the quality and value 
of what has been accomplished and how it has been accomplished, and continuous feedback 
learning that adjusts both process and product to minimize variance from goals. 

“Scrum’s roles, artifacts, events, and rules are immutable and although implementing only parts of 
Scrum is possible, the result is not Scrum. Scrum exists only in its entirety and functions well as a 
container for other techniques, methodologies, and practices.” In the systems engineering 
perspective, Scrum is a management process architecture that can accommodate a wide variety of 
technical processes. 

“Scrum Teams deliver products iteratively and incrementally, maximizing opportunities for 
feedback. Incremental deliveries of ‘Done’ product ensure a potentially useful version of working 
product is always available.” In Scrum an increment is called a sprint, and multiple sprints are 
construed as iterations on increments. Unlike Alistair Cockburn’s (Cockburn 2008) well written 
distinction between increments and iterations, Scrum iterations typically add new features as well 
as improve the performance of existing features. 

“The heart of Scrum is a Sprint, a time-box of one month or less during which a ‘Done’, useable, 
and potentially releasable product Increment is created. Sprints have consistent durations 
throughout a development effort. A new Sprint starts immediately after the conclusion of the 
previous Sprint.” Note that Sprints have consistent time durations, which establishes a cadence to 
the total project; and a Sprint ends when the allotted time duration expires, whether or not all work 
planned for the Sprint is completed. This hard stop is intended to improve the task and Sprint 
estimation capabilities of the developers. Unfinished work can be picked up in a subsequent 
Sprint. 

“Scrum is a framework for a project whose horizon is no more than one month long, where there is 
enough complexity that a longer horizon is too risky. The predictability of the project has to be 
controlled at least each month, and the risk that the project may go out of control or become 



 

unpredictable is contained at least each month.” The time horizon resolves uncertain requirements 
with a series of small investments in experimental development, evaluation learning, and adaptive 
correction if necessary. The allowable time horizon is a measure of the estimated uncertainty 
appropriate for a Scrum approach. The intent is to affordably contain the costs of incremental 
learning and correction. 

“Scrum users must frequently inspect Scrum artifacts and progress toward a goal to detect 
undesirable variances. … If an inspector determines that one or more aspects of a process deviate 
outside acceptable limits, and that the resulting product will be unacceptable, the process or the 
material being processed must be adjusted. An adjustment must be made as soon as possible to 
minimize further deviation. Scrum prescribes four formal opportunities for inspection and 
adaptation.” These are called the Sprint Planning Meeting, the Daily Scrum, the Sprint Review, 
and the Sprint Retrospective. All four are collaborative learning events with all team members 
present and participating. 

“Optimal Development Team size is small enough to remain nimble and large enough to complete 
significant work. Fewer than three Development Team members decreases interaction and results 
in smaller productivity gains. … Having more than nine members requires too much coordination. 
Large Development Teams generate too much complexity for an empirical process [learn by doing 
and evaluating] to manage.” This suggests the sweet spot for participative collaborative-learning 
diversity that spurs productivity lies between three and nine. Larger projects are then composed of 
multiple Scrum teams often organized as a Scrum of Scrums. 

Shown in Figure 3, Scrum includes three major roles, four formal types of meetings, and two 
formal project management artifacts in an incremental and iterative framework (Sutherland and 
Schwaber 2007).  

The three major Scrum roles are the 
Product Owner, the Scrum Master, 
and the Development Team.  The 
Product Owner is responsible for 
defining, communicating, and 
prioritizing the product 
development tasks; and for 
accepting or rejecting the 
incremental product delivery at the 
end of each Sprint. The Scrum 
Master is responsible for ensuring 
that the Scrum process is 
understood, and that the practice  
adheres to Scrum theory and rules; 

and will also train and coach the Scrum process. The Development Team is a self-organized, 
cross-functional group that performs the product design, development, integration, test, and 
demonstration tasks for each Sprint; and they are solely responsible for choosing how to 
accomplish these tasks. 

The four formal meetings are Sprint Planning, Daily Scrum, Sprint Review, and Sprint 
Retrospective. With the exception of a fixed 15-minute Daily Scrum, these meetings are 
time-boxed relative to the duration of a Sprint, with times that follow shown for a 4 week Sprint. 

 
Figure 3. Scrum (from Sutherland and Schwaber 2007) 



 

The Sprint Planning meeting timed at eight hours has two roughly equal parts: 1) the Product 
Owner explains the tasks in the Product Backlog and their priorities, from which the Development 
Team decides how many of the high priority tasks to move into the Sprint Backlog, and 2) the 
Development Team then collaborates to agree amongst themselves on how they will complete the 
tasks in the Sprint Backlog during the next Sprint. The Daily Scrum is a fixed 15-minute meeting 
designed to quickly assess and resolve the state of the current Sprint as each Development Team 
member answers three critical questions: what did I accomplish yesterday, what am I planning to 
accomplish today, and what impediments are in my way? The Sprint Review meeting timed at four 
hours occurs at the end of the Sprint in two roughly equal parts: 1) the incremental product is 
demonstrated to the Product Owner, and 2) there is a discussion of positive and negative 
development-related lessons learned that can help subsequent Sprints. The Sprint Retrospective is 
timed at three hours and occurs after the Sprint Review and before the next Sprint Planning 
meeting, and examines how the Sprint went relative to people, relationships, process, and tools; 
identifying what went well and what needs improvement; and creating a plan for improving how 
the team does its work. With the exception of the Sprint Planning meeting, Scrum meetings are 
assessment, learning, and adaptation focused.  

The two formal project management artifacts are the Product Backlog and the Sprint Backlog. The 
Product Backlog is a prioritized list of requirements, expressed as tasks that can each be 
implemented within the time-box limitations of a single Sprint; with complex tasks broken down 
into a series of sub-tasks that can be incrementally completed over several Sprints. The Sprint 
Backlog is a collection of specific design, development and test activities allocated to the current 
Sprint in process or about to start. Other less formal artifacts are typically used to monitor progress 
during a Sprint, such as the so-called Burndown Chart, which displays daily updates of the 
estimated remaining work hours required to complete the Sprint. 
Interpretation of Classic-Scrum 

Scrum is a discipline based on feedback learning, designed to remove uncertainty and risk about 
the system to be engineered, and designed to increase productivity of the engineering process. The 
learning occurs in fixed-schedule periodic assessments and adaptations, with feedback functioning 
much like a thermostatic control system uses negative feedback to reduce temperature variance 
from a set point. This feedback learning is intended to evolve both the engineered product and the 
engineering process in successive Sprints, with fitness feedback at Sprint Reviews and Sprint 
Retrospectives, much like natural selection evolves a species through successive generations. The 
value of this approach is completely dependent upon the quality of the Review and Retrospective 
objectivity and scope. The Scrum Master is responsible for the level of achieved quality or lack 
thereof in this feedback learning approach. Going through the motions with marginal benefit has 
little if any value. 

Evolutionary learning happens between Sprints, real-time learning happens during Sprints. 
Real-time learning is the function of the 15-minute Daily Scrum meeting. Every participant in this 
meeting provides personal status in three areas: what I did yesterday, what I’ll do today, and what 
impedes my progress. The value here is realized in what is heard and processed by others. Going 
through the motions without active collective listening provides no value. Again, it is the Scrum 
Master’s responsibility to ensure this meeting’s effectiveness. 

Scrum raises the team’s collective system-wide awareness and reveals unpredictable emergent 
behaviors, potentially revealing undesirable emergent futures before they occur. 



 

The explicit essence of successful Scrum is effortful learning through active collaborative 
communication. Effortful learning is a self-motivated process that continuously identifies the next 
thing to learn after successfully accomplishing the last learning objective. In the case of a Scrum 
team, effortful learning is a key focus and responsibility of a competent Scrum Master. 

The implicit essence of successful Scrum, however, is the ability to effectively adapt the process 
and the product to what has been learned. This means changing what is being done in product 
development and changing how it is being done in the team’s working process – which requires an 
agile (adaptable) architecture of both product and process to be effective. Though absent from the 
explicit principles and processes of Scrum, ensuring that agile architectures underlie both product 
and process are key responsibilities of the Product Owner. 

You don’t hear the dependence of successful Scrum on agile architectures explicitly called out in 
the Scrum Guide or the Scrum Papers. Perhaps, on the product side, this is because Scrum was 
born and lives to solve software development problems in a time when software development 
employs Object Oriented Programming (OOP) techniques, which inherently provide the basic 
necessary structural needs for system adaptability – drag-and-drop modularity in a plug-and-play 
infrastructure. Thus, replacing, augmenting, or reconfiguring elements of software systems in 
successive Sprints is facilitated as learning drives adaptation. As will be shown in the next section, 
hardware product systems can also facilitate adaptation of Scrum-learning with an agile product 
architecture. 

On the process side, Scrum theory and practice do not explicitly address the active infrastructure 
process management responsibilities necessary to sustain agility in the process architecture. Figure 
4 assigns the architecture’s four active-infrastructure responsibilities to appropriate parties 
employed in Scrum. The process modules are principally the people. The competence quality of 

 
Figure 4.  The Scrum Agile Architecture Pattern 



 

Product Owners, Scrum Masters, and Developers are critical for obtaining and sustaining the 
benefits of the Scrum process. The Product Owner in this depiction is charged with the 
responsibility of staffing, assessing, re-balancing, and evolving the human components in the 
Scrum system The Scrum Master in this depiction appears as a module, appears in the active 
infrastructure as the system assembler, and appears in the passive infrastructure as the enforcer of 
plug-and-play module interconnectivity standards.   

Scrum is a proactive initiative, productively confrontational in nature. No denial is possible when 
Scrum is done right. It is highly intense in the people interaction area. The Scrum Master is the 
process coach and enforcer, as well as the “servant leader” enabling team productivity. 

When is Scrum, or something like it, the right approach? When the team has little experience 
working together, when the problem and solution pair are insufficiently understood, when the 
emergent behavior of interaction complexity can produce unpredictable costly results, when the 
system and/or process environment are likely to evolve unpredictably, when stakeholder 
commitment to budget and schedule are uncertain. “Scrum is a framework for a project whose 
horizon is no more than one month long, where there is enough complexity that a longer horizon is 
too risky. The predictability of the project has to be controlled at least each month, and the risk that 
the project may go out of control or become unpredictable is contained at least each month.” 

What if the Scrum Master and Product Owner are not what is required to reap the Scrum benefits? 
In such cases this contributes to dissatisfaction with the process among the participants, and with 
disappoint with the process among management. Experience has shown that many adoptions of the 
Scrum process are dissatisfying disappointments (Sutherland 2007, 79). However, in some cases 
Scrum provides a management framework that can be better than what it replaces even if it doesn’t 
deliver much of the Scrum learning and adaptation potential. In these later cases it offers 
prescriptive shared procedure where perhaps none was present before. 

An Agile Systems-Engineering Example 
The CubeSat program introduced in Part 1 defines an agile-system architecture for developing and 
constructing CubeSats from a combination of community-available common-off-the-shelf 
components and internally-developed mission-specific components. The CubeSat agile-system 
architecture specifies internal plug-and-play infrastructure for satellite construction and external 
interfaces for launch-vehicle compatibility. The internal infrastructure specification enables agile 
mission-specific designs that can avoid the cost of architecture and infrastructure design, take 
advantage of widely available COTS modules, and focus development on mission-specific 
modules. The external interface specification ensures that any CubeSat can be deployed by any 
member of a conforming launch-vehicle family, providing agility at the higher 
mission-deployment system level as well. 

CubeSat specifications say nothing about the system-engineering process that will develop and 
assemble a mission specific CubeSat at any of the many organizations that do these projects. Given 
the financial and window-of-opportunity risks associated with terminal deployment of a system 
that cannot be returned for replacement, correction, or design update, a common 
systems-engineering process would likely be some variation of a traditional waterfall engineering 
process, with big upfront planning and design. 

A group at Johns Hopkins University Applied Physics Laboratory (JHU/APL) thought differently. 
Maybe because they had to. Quoted statements in this section, if not otherwise credited, are from 



 

(Huang et al, 2012). “The Multi-Mission Bus Demonstration (MBD) is a Johns Hopkins 
University Applied Physics Laboratory program to demonstrate a government sponsored mission 
in the standardized 3U (10 x 10 x 30 cm) CubeSat form factor. … With vicious cost and schedule 
control, the MBD project is providing a classified DoD payload that will revolutionize the mission 
area and provide an operationally relevant capability to the war fighter. … The MBD space 
vehicles will cater to mission operation versatility and rapid response launch capabilities.”  

“MBD is an Advanced Concept Technology Demonstration. To complete the demonstration, two 
ready-to-launch spacecraft based on non-proven technology had to be designed and developed in 
less than 10 months and under $10 million dollars. With little or no COTS parts qualified to meet 
the mission requirements, new hardware and software development was required. The MBD 
project is characterized as a super-high-tech project; i.e., new, non-proven concepts requiring 
extensive development of technologies and system components.”  

NASA reliability requirements encourage the reuse of heritage hardware, proven in the past 1,000 
satellite development efforts. But the unique CubeSat form factor, at this point, had only 70 
Missions. Compatible heritage hardware was not available from the CubeSat COTS community. 
The MDB mission requirements called for innovative technologies far advanced over anything 
done previously. “The small volume of a CubeSat platform remains a daunting engineering 
challenge to overcome. Components were not ‘plug and play,’ requiring, in some cases, vendor 
collaboration and modification to meet the requirements of the MBD program.” 

JHU/APL has more then 70 years experience in the design, build, and operation of over 60 
spacecraft and 200 instruments, using a tight requirements process and disciplined development to 
meet NASA space flight requirements. It was evident to the MDB program team that their proven 
systems engineering procedures would be unable to meet cost and schedule in this highly uncertain 
technical development effort. They’d have to do something very different to reveal and reduce the 
uncertainties rapidly and cost effectively. 

They did. Their paper, Agile hardware and software 
systems engineering for critical military space 
applications (Huang et al. 2012), “…discloses the 
adaptation and application of concepts developed in 
agile software engineering to hardware product and 
system development for critical military applications 
… created a large paradigm shift from traditional 
spacecraft development.” 

Project uncertainty was rooted in the combination of a 
small physical envelope constraint, high technical 
capability requirements, an unprecedented low budget, 
and an unprecedented short program duration. This was recognized by the MBD sponsor, who was 
willing to make compromises and accept more risks than the typical NASA mission “in order to 
balance cost, schedule, and reliability while still meeting all mission requirements. To meet the 
dramatically constrained volume, costs and schedule while increasing functionality more than ever 
seen in a CubeSat format, new designs and concepts needed to be created, developed, and 
manufactured. … The MBD spacecraft [shown in Figure 5] is designed with all the complex and 
critical subsystems found within a typical earth observing multi-instrument satellite.” 

Taking stock of the project environment, unpredictability and uncertainty appeared high, and a real 

 

Figure 5 – JHU/APL MBD CubeSat with 
deployed solar array. 



 

risk of project success existed. Couched in the UURV framework outlined in Part 1: 

• Unpredictability: Appetite for stakeholders to stay the course when things look 
uncoordinated, or when unresolved development issues are allowed to persist. Cultural 
adjustment of engineers working outside their standard procedures. 

• Uncertainty: what requirements to use as technical drivers, what technical path to take, 
how changed subsystem dependencies will interrupt momentum, what untraditional 
decisions will have to be made, what SME expertise will be needed. 

• Risk: it can’t be, or doesn’t get, done within the constraints. 

• Variation: nothing relevant foreseen. 
A Scrum-Like Approach to Agile Systems-Engineering  

JHU/APL utilized a flat organization structure with six distinct development teams including 
Payload, Electrical, Software, Mechanical, Ground & Navigation Control, and Avionics. The lead 
of each development team, called a “Deputy”, reported directly to the MBD Program Manager, 
called the “Sherriff”. Each development team lead also had direct access to the Customer. The 
Program Manager reported directly to the head of the JHU/APL Space Department and had the 
authority to implement any technical or programmatic changes required to ensure the success of 
the MBD program. Each development team included a small interdisciplinary group of designers 
and developers, called a “Posse”. While the names for each role are different, the MBD program 
essentially used Scrum as the basis for the organizational structure, with the Sherriff serving as the 
Product Owner. Each Posse was essentially a parallel scrum Development Team led by a Deputy, 
who acted as the team’s Scrum Master. 

At the start of each day the MBD team held a “Round-Up” meeting which was attended by 
everyone on the program. These daily meetings were used to review issues and priorities, and to 
allow each team to solve problems and react to changes quickly. All of the JHU/APL team leads 
(Deputies) were collocated in an open office to assure easy and frequent communications between 
the parallel Development Teams. The MBD program used a traditional Scrum Board to track 
tasks, issues and assigned priority levels, to identify which team member was responsible for the 
completion of a task, when that task was scheduled for completion, and the dependencies between 
tasks. 

The emphasis for each Development Team was to deliver working components as early as possible 
in the development cycle. Rather than hold classic waterfall style life cycle reviews such as a 
System Requirements Review, Preliminary Design Review, and Critical Design Review, the MBD 
team held a single comprehensive design review, called the One Design Review, but also held 
many informal peer reviews with subject matter experts throughout the program life cycle. 
Whenever possible off-the-shelf components were used. When custom hardware items were 
required they were designed and manufactured in house using JHU/APL high precision 
manufacturing facilities. Module, subsystem, and system level testing was performed using a 
“build a little, test a little, learn a lot” framework designed to find and resolve issues as early as 
possible.  

Figure 6 shows the system life cycle for the MBD program, which included both iterative and 
incremental development strategies. During the MBD program several different stages of the 
ISO/IEC 15288 life cycle were performed in parallel. For example the Requirements & Concepts, 
Design & Development, Implementation & Integration, and Test & Evaluation efforts shown in 



 

Figure 6 are roughly equivalent to the 15288 Research, Concept, and Development stages. As 
shown in Figure 6 these four efforts were performed in parallel for a significant portion of the 
MBD program’s life cycle. 

According to the MBD 
development team, using agile 
system engineering processes was 
critical to the success of the 
program. Specifically they said 
“the process flow used on MBD 
left the window open to make 
modifications at a later part of the 
development. By embracing 

uncertainty and carrying open issues forward, changes could be made without dramatically 
affecting other sub systems. Issues were prioritized and the development team worked to close the 
items that would force modifications and changes to the system as soon as possible” (Huang, et al. 
2012). 

The MBD program used sprints with one-day durations, while classic Scrum typically uses sprints 
one to four weeks in duration. Consequently, Sprint Planning, Daily Scrum, Sprint Review and 
Sprint Retrospective meetings were combined into a single “Round-Up” meeting at the start of 
each work day. The MBD Program Manager assumed the role of Product Owner. The program 
implemented six parallel agile development efforts for the Payload, Electrical, Software, 
Mechanical, Ground & Navigation Control, and Avionics subsystems of the MBD satellite. Each 
development team lead performed a role similar to a Scrum Master for their subsystem, but also 
acted as a Development Team member at the system level. Thus the MBD agile process 
implementation was similar to a Scrum of Scrums with a sprint length of one day. The need to 
design, develop and test custom hardware, such as the deployable solar array, required the MBD 
team to coordinate very short duration software development sprints (1 day) with longer duration 
hardware development sprints (1 month or more). When custom hardware was required, the MBD 
team built two prototypes for each hardware element. Each of the hardware prototypes was 
integrated into the two satellites being built during the program. To the extent possible prototype 
hardware items were used as production items in the final satellites, even if that required rework 
such as cutting printed circuit board traces and adding wires to implement a design change. 
Agile Architecture and Design Principles 

Agile systems and agile systems-engineering processes gain their agility from an architecture and 
set of design principles that facilitates sustainable adaptability, as discussed in Part1. The MBD 
program’s agile architecture pattern is sufficiently similar to the Scrum Agile Architecture Pattern 
shown in Figure 4 that little of relevance would be revealed with discussion here. However, the 
ways in which ten design principles manifest in three categories may be instructive. 

Reusable principles include Modularity, Plug Compatibility and Facilitated Reuse. The agile 
processes used by the MBD program’s six subsystem development teams were modular in nature. 
Once the form, fit and functional requirements were defined for a subsystem the Development 
Team was asked to deliver incremental capabilities that met those requirements as early as 
possible in the development schedule. Changes or improvements made to the internal design or 
implementation of a subsystem that did not impact the external form, fit or function of the 
subsystem could be made quickly, with the Development Team lead (Scrum Master) having the 

 

Figure 6. MBD System Life Cycle with Overlapping Stages 
(Huang, et al. 2012) 



 

authority to make the required design decisions for their subsystem. Well defined and flexible 
interface standards were defined early on in the program so that individual subsystems could be 
plug compatible with the other subsystems as well as the spacecraft bus itself. Team members 
could be and were assigned to different subsystems at different times, provided their skill sets and 
experience matched the task requirements, employing the Facilitated Reuse principle in this Scrum 
of Scrums architecture. 

Reconfigurable principles include Peer to Peer Interaction, Distributed Control and Information, 
Deferred Commitment, and Self-Organization. Peer to Peer Interaction was employed in the 
combination of Daily Roundup meetings attended by each team member as well as the colocation 
of staff members so that communication among team leads and team members was direct, fast and 
efficient. Distributed Control and Information was employed in the Daily Roundup meetings, 
where information was exchanged among all team members. Each team lead had the authority to 
make design and implementation decisions for their subsystem, while the Program Manager had 
the authority to make system-wide design and implementation decisions. Decisions at both the 
subsystem and system levels were made by the staff members who had direct access to the 
information required to make an informed decision as well as the ability to take immediate steps to 
implement the decision. The principle of Deferred Commitment was used throughout the MBD 
program. The MBD engineering team delayed the finalization of designs to allow many new 
components to be completed and fully tested.  Deferring commitment to a specific design allowed 
modifications to requirements and hardware at a later stage of the development process. 
Self-Organization was employed within the subsystem teams which were self-organizing in 
nature. Each team lead had the flexibility to determine which tasks would be accomplished each 
day, and which team members would be assigned to those tasks. The use of a traditional Scrum 
Board assisted the self-organization process by allowing team leads and team members to quickly 
determine if other subsystems were dependent on the timely completion of one of their tasks. 

Scalable principles include Evolving Architecture, Redundancy and Diversity, and Elastic 
capacity. The systems-engineering process rules and standards were established at the start of the 
MBD program. Evolving Standards was employed in the Daily Roundup meeting discussions on 
what was working well and what could better, and then quickly implemented by the team leads. 
Redundancy and Diversity was employed in the use of cross-discipline development teams as well 
as the use of part time subject matter experts. When required, a member of one team could be 
assigned to another team to supplement a critical capability in software development, for instance. 
Subject matter experts could also be brought in to provide critical capabilities that were lacking on 
a team at any particular point in time, and this capability was facilitated specifically to avoid long 
term use of expensive subject matter experts beyond their critical need. Elastic capacity was not 
employed to any meaningful extent as no issues existed that needed this capability: development 
teams were purposefully kept small so they could quickly react to changes, and only two 
spacecraft were required. 

Discussion 
Up to this point this article has principally addressed the practitioner. But there is work yet to do in 
research, and a few words might provide direction for some of what is still needed.  

Part 1 and Part 2 of this article provide some framework and foundational considerations for 
developing an agile systems-engineering life cycle model. Synergistic guidance from the work of 
others needs to be considered as well, particularly in the opportunity to address how agile systems 



 

engineering concepts might help in contracted development at fixed price and specification. Three 
bodies of thought emerging in the eighties offer some key perspectives that may have had more 
influence on what has happened since in various agility perspectives than is explicitly recognized, 
and in any event merit re-evaluation against today’s understandings and objectives.  

The first perspective came in 1981 with the publishing of Systems Thinking, Systems Practice, 
(Checkland 1981), questioning the application of rigid systems engineering practices to a class of 
systems that don’t appear amenable to logical thinking, yet they are pervasive in the systems 
around us that have multiple stakeholders in various evolving states of satisficing for the moment. 
Checkland went beyond questioning, offering an alternative approach now known as soft systems 
methodology. 

The second (chronologically) perspective came in a 1986 Harvard Business Review paper, The 
New New Product Development Game (Takeuchi and Nonaka 1986), acknowledged in 
(Sutherland and Schwaber 2007: 6) as sparking the thoughts that led to Scrum. That paper profiled 
a general process that engineered breakthrough innovative products composed more of hardware 
than of software, and exposed the role of what they called “subtle management”, which affected 
product outcome by working behind the scenes to constantly rebalance diversity within the 
development teams. This concept is ignored by Scrum, yet crucial to the success of a rapid agile 
learning process.  

The third perspective came in 1988 with the publication of A Spiral Model for Software 
Development and Enhancement (Boehm 1988). This marked a new turn of thought, offering an 
iterative, incremental alternative to the sequential waterfall approach, subsequently refined in a 
fundamental view (Boehm 2000).  

Oversimplifying, Checkland put a focus on people, Takeuchi and Nanoka put a focus on product, 
and Boehm put a focus on process. All were concerned with uncertain and unpredictable 
engineering efforts. Each of these developments in the ‘80s gave legitimacy to, and spurred 
interest in, questioning the old ways and exploring new paths; paths meant to deal with uncertain 
and unpredictable operational environments. 

The ‘90s might be viewed as a period of gestation, experimentation, research, and discovery.  

It is suggested here that at the turn of the millennium three more bodies of synergistic relevant 
thought emerged. The first perspective came early in 2001 with the publishing of “Response 
Ability – the Language, Structure, and Culture of the Agile Enterprise (Dove 2001); which 
organized the agile systems research findings of the ‘90s into domain-independent enabling 
fundamentals for agility in engineered systems of any kind. The second perspective came later that 
same year with the publication of Agile Software Development with Scrum (Sutherland and 
Beedle); detailing a systems engineering management process for agile software development, and 
reviewed in this article for its agile enabling core. The third perspective came in 2002 published as 
Agile Software Development Ecosystems (Highsmith 2002); notable for its sane and revealing 
coverage of the principle software development practices sharing the agile family name at that 
time. 

The six references suggested were ordered by their first appearance, and included because of the 
line of thinking they initiated. There is no pretention that they encompass all of the thought that 
needs consideration for developing an agile systems-engineering life cycle model, nor suggestion 
that seminal new thinking won’t continue to emerge. 



 

It is time to develop an agile systems-engineering life cycle model. This model, if a single one is 
sufficient, must take into account at least the three different types of systems engineering, 
articulated well in (Sheard 2000): Discovery (very high complexity in problem space), 
Programmatic (complexity in solution space and possibly organizational), and Approach 
(complexity in the variation of applications, and possibly product lines). 

An agile systems-engineering life cycle model might start with the framework displayed in Figure 
2, and be guided by (ISO/IEC TR 24748-1 2010) toward identifying fundamental principle-based 
activities and processes that provide agility, independently as well as collectively, across all stages 
that warrant an agile approach. This model might justify the application of these principles, 
activities, and processes by identifying common systems-engineering environmental situations in 
need of agile response capability. Ideally, the model would be supported with case studies in a 
variety of systems engineering domains. 

Conclusion 
Unique to this article is the suggestion of a parallel between Peter Checkland’s Soft Systems 
Methodology and the situation faced when an agile systems-engineering process is appropriate; 
the introduction of a ISO/IEC 15288 compatible life cycle framework for agile 
systems-engineering; an examination of the source of agility in the popular process known as 
Scrum; an examination of JHU/APL’s CubeSat agile systems-engineering process for developing 
hardware/software systems, albeit an engineering project with more latitude than fixed price and 
requirements projects; and finally; a foundation for next steps toward developing a timely 
domain-independent agile systems-engineering life cycle model. 

The growing acceptance and adaptation of agile software development methods has passed the 
tipping point in the software world, and is now motivating expectations in broader 
domain-independent systems engineering. The popularity of Scrum as a project management 
process, and the Siren song of the Manifesto for Agile Software Development, has created for 
some an expectation of a clear path to broader application. On the opposite extreme are those who 
make a clear case for inapplicability, e.g., (Carson 2012). Neither camp is actually focused on 
agility, but rather on specific software development management practices and principles that 
share agility as a family name. 

There is no reason to expect domain specific software development practices to be applicable in 
domain independent systems engineering. For a simple disconnect example, (Carson 2012) 
observes that in software development the code designer is also the code fabricator; whereas in 
hardware, the designer’s product is an intermediate document that is intended to drive the separate 
activities of a fabricator with a different world view. Integrated product teams attempt to address 
some of the communication issues, but inherently hardware design effort and fabrication effort are 
sequential activities of different time durations and different costs – at least currently in this very 
early period of automated 3D fabrication capability. 

The ball is in motion toward the goal of an agile systems-engineering discipline. Perhaps many 
different balls are in motion, as the pressure to do systems engineering under accelerating 
environmental dynamics isn’t waiting for a common disciplined understanding. We should, as 
practitioners and as researchers, identify and define design and operational guidance for adaptive 
system engineering processes. 
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