
Fundamentals of Agile Systems Engineering – Part 1

Rick Dove
Paradigm Shift International

Taos County, New Mexico, USA
dove@parshift.com

Ralph LaBarge
Johns Hopkins University/APL

Laurel, Maryland, USA
ralph.labarge@jhuapl.edu

Copyright © 2014 by Rick Dove and Ralph LaBarge. Published and used by INCOSE with permission.

Abstract
Agile systems-engineering and agile-systems engineering are two different concepts that share the
word agile. In the first case the system of interest is an engineering process, and in the second case
the system of interest is what is produced by an engineering process. The word agile refers to the
adaptability and the sustainment of adaptability in both types of systems. Sustained adaptability is
enabled by an architectural pattern and a set of system design principles that are fundamental and
common to both types of systems. Research that identified this architectural pattern and design
principles is reported, updated, and applied here in two Parts. Part 1 focuses on agile-systems
engineering, reviewing the origins, values, and core concepts that define and enable domain
independent agility in any type of system. Part 2 focuses on agile systems-engineering, identifying
core agility-enabling concepts in the software-development domain-specific practice known as
Scrum, reviewing an agile hardware/software satellite-development systems-engineering case for
its source of agility, and then suggesting the development of an agile systems-engineering life
cycle model as a natural next step.

Introduction
The value proposition of an agile system is rooted in risk management, providing options when
system mission or system survival is threatened. Some might say the purpose or objective of an
agile system is risk management, but natural agile systems exist without that purpose/objective,
just that benefit. Most natural systems have evolved sufficient agility to sustain existence in the
inherently risky environments that surround them. But nature doesn’t care. Agility is a byproduct
of natural selection, an algorithm without an objective (Dennett 1995), based on replication with
variation in a competitive environment; an algorithm that unwittingly experiments with
expendable resources over long periods of time. This method is generally not suitable to systems
designed and built by man for purposeful objective, if these systems are to remain effective in an
uncertain and unpredictable environment for a reasonable period of time. But we can learn from
nature’s experiments, perhaps improve upon their results, for nature finds sufficient but not
necessarily optimal solutions.

Natural systems analysis is not the only path. We can also learn from man-made systems that
exhibit the ability to survive, even thrive, in uncertain and unpredictable environments, and
analyze these systems for common and replicable patterns that provide this capability. Intensively
in the nineties, and continuously thereafter, well over 100 man-made systems exhibiting agile
characteristics have been studied in workshops conducted at a wide variety of host sites, which
examined systems in many domains including manufacturing processes, enterprise processes,

hardware systems, software systems (Dove 1993a; Dove et al 1995; Dove, Hartman, Benson 1996;
Dove 1998; Dove 2001; Dove 2005), and more recently, development systems (Dove and LaBarge
2014).

This article summarizes the findings of those empirical studies, with the purpose of presenting in
one document what appear to be necessary and sufficient fundamental architecture and design
guidance for the systems engineering practitioner. The engineering usefulness of the architecture
and supporting design principles have been confirmed by one of the authors in twenty five years of
evolution and deployed employment, with examples in (Dove, Pirtle, Wilczynski 1987; Dove
2005; Dove 2009; Dove 2011), and in nine years of design and analysis projects conducted by
masters students, with examples in (Bose and Dove 2010, Papke and Dove 2013).

Understanding the fundamental enablers of systems agility is timely. The pace of technology is
reducing the useful lifetime of deployed systems and increasing the risk of long development
programs. The pace of social collaboration on a global scale changes the effectiveness of
government processes and increases the pace of technological and social innovation. The pace of
global network dependencies of all kinds brings both benefit and vulnerability.

In the military, agility is sought in agile command and control (Alberts 1996, 2011), US force
transformation (Cebrowski 2003), in composable force projection (Sillitto 2013), and in rapid
acquisition and quick reaction capability (DSB 2009, SAF 2011). In commercial sectors agility is
sought to sustain growth, innovation, and market leadership. In organizational support, agility is
sought in service oriented architecture, web services, and cross organizational collaboration. In
security, agility has been employed by the adversary to great effect for some time, prompting a
growing voice for agile security systems.

Agility has been confusingly defined in the literature as various and overlapping system
characteristics. Updating timeless core concepts developed in the ‘90s, this article presents a
succinct core definition of agility; its relationship to various literature definitions; and the nature of
uncertain, unpredictable, risky, and variable system environments that agile systems-capability is
meant to address.

Loosely coupled modular systems are generally considered the core enabler of systems
adaptability and flexibility in the literature (Orton and Weick 1990), but sustainability embedded
in architecture has been largely ignored (with a notable exception in Weick 1999), as has the
necessary core nature of infrastructure and module pools, design principles, and methods for
developing agile-response requirements. This article offers the practitioner means to address these
issues.

Agility
In the 1980s the world conceded that the Japanese lean manufacturing concepts led to superior
competitive manufacturing capability. Major manufacturers world-wide were scrambling to catch
up. Charles Kimsey, in the Office of the Secretary of Defense, thought differently. He thought
while everybody struggled to catch up, some effort also ought to be spent trying to identify what
would be next, especially since the Japanese were already working toward a next paradigm,
attempting to start what is now called the Holonic Manufacturing Systems consortia, investigating
systems composed of holons: intelligent, autonomous, cooperative agents (Christensen 1994).
Kimsey arranged to fund this look-ahead project at Lehigh University through the US Navy
Mantech program. Thirteen companies were invited to send appropriate thinkers to a summer-long

workshop at Lehigh University, with the purpose of identifying an emerging problem so common
and key to competition that it would become the next differentiator once lean was broadly
diffused.

That problem was identified as the ability to respond effectively and with competence, to
operational environments with increasing uncertainty and unpredictability (Dove and Nagel 1991,
Dove 1992). That ability was named agility, and that study spawned the Agility Forum (nee Agile
Manufacturing Enterprise Forum) to explore the nature of agile enterprise and
domain-independent agile systems throughout most of the ’90s. The primary focus of the 1991
study was on the agile manufacturing enterprise, not on manufacturing floor systems or processes
as is often thought. The work in process was socialized widely for feedback with groups such as
NIST, DARPA, the Defense Science Board, the Aerospace Industries Association, and others
recognized in (Dove and Nagel 1991); which likely sparked subsequent military “agile enterprise”
interests such as force transformation (Cebrowski 2003). The 1991 study identified the problem
and developed agile-enterprise conceptual visions in four different commercial domains:
automotive, process, semiconductor, and telecommunication industries. A subsequent Agility
Forum study broadened the focus to agile systems of all kinds, and began the search and
development of agile-system enabling fundamentals.

With the agile label and concept in play, Hewlett Packard was the first to initiate a program to
educate its customers (Dove 1993a) and subsequently bring to market IT support under the Agile
Enterprise banner; DoD’s Command and Control Research Program began an exploration of agile
command and control (Alberts 1996) that continues today, and the Agile Manifesto for Software
Development (Fowler and Highsmith 2001) adopted the agile label as appropriately descriptive
and fundamentally consistent with their concepts1

So an enterprise focus came first, domain-independent agile fundamentals next, then an
application to military force transformation, and then software development adopted the agile
label with profound popular-awareness effect. Today the software development use of the label
gets wide employment; perhaps because the software development community expressed a strong
natural pull for a new development paradigm beyond waterfall on a large scale.

.

Tracking the history of the agile-systems fundamentals development effort, the 1991 publication
of the 21st Century Manufacturing Enterprise Strategy (Dove and Nagel 1991) opened the door
with strategic intent and vision, a call for action with little in the way of true guidance at that point.
The next two years at the Agility Forum developed preliminary agile systems enabling
frameworks, inspired by work in the late ‘80s on an object-oriented CAD-like product for
developing factory-wide cellular control systems at a company called Flexis Controls. These
frameworks were first published at the 1993 Defense Manufacturing Conference (Dove 1993b),
fueling a subsequent five-year series of industry-collaborative workshop studies that involved
some 1000 people and 250 organizations, who examined 100+ systems of all kinds (Dove 1994,
1998, Dove et al. 1995) which exhibited agile characteristics. During this same period an agile
enterprise reference model was developed, which featured a capability maturity model and
analysis process to measure how agile a company was in 24 different business practices (Dove,
Hartman, and Benson 1996). The workshops and reference model work refined and augmented the

1 Personal communication with Jim Highsmith, a founder of the Agile Manifesto for Software Development (Fowler
and Highsmith 2001).

original frameworks, culminating in the publication of Response Ability – the Language, Structure
and Culture of the Agile Enterprise (Dove 2001). Title notwithstanding, the book addresses
systems within an enterprise, and was completed during the design and implementation of an
enterprise-wide IT system that featured the first agile-ERP (enterprise resource planning) system;
allowing each department to have ERP modules from any vendor, changeable at any time, all
interacting as if from a single vendor. In 2001-2002 the development and implementation of this
agile-ERP system was designed and managed as an agile development process (Dove 2005), with
three successive three-month releases that each provided functional ERP operational capability to
the company – on time and under budget.

In 2005 came a request to develop and teach two courses for an Agile Systems and Enterprises
certificate at Stevens Institute of Technology – which has refined further the vocabulary and
design processes which appear in collected form here. Working with practicing systems engineers
pursuing graduate degrees and masters projects helps clarify the conceptual and operational
stumbling blocks for the new initiate. In 2012 an INCOSE working group was chartered for Agile
Systems and Systems Engineering, with a charter focus on applying and socializing the application
of agile-system fundamentals to agile-systems design and agile systems-engineering, integrating
these fundamentals with general Systems Engineering process concepts to explore the issues
beyond Agile Software Development practices. It is anticipated that this working group effort will
also return to the characteristics of agile systems beyond fundamentals, inspired by Alberts work
and the recent work in resilient systems engineering. This present article is motivated by a need to
provide a foundation of fundamentals for the working group activity; and to update the
articulation, understanding and application of fundamentals arising from some eight years to date
of teaching the architecture, enabling principles, and concepts of operations for agile systems
creation.
Defining Agility

Words and phrases as labels for distinguishing system concepts have the ability to identify the core
essence of the concept, and provide a valuable service in doing so. Example labels applied to
system concepts of interest include lean, agile, resilient, composable, and many others. But as
concepts become popular, their proponents often attempt to expand what they encompass to
include related concepts, in what appears to be an attempt to unify everything of current interest
under a single label of some personal or program interest. To be sure, there are many best practices
shared among many legitimate labels, but they are applied specifically to augment and support the
core essence of what entitles the label to represent a uniquely distinguishable concept.

In an invited synopsis paper of the 1991 Lehigh study (Dove 1992) defined agility as “that
characteristic which allows an organization to thrive in an environment of constant and
unpredictable change.” Similarly, the most extensive and thoughtful ongoing effort to
operationalize agility started in 19962

2 The US DoD Command and Control Research Program (CCRP) has published a series of books about agile
Command and Control beginning in 1996 with Information Age Transformation (revised in 2002), all of which are
available for free download at www.dodccrp.org/html4/books_downloads.html

 with a military command and control focus, that has since
matured into a broader focus on agile enterprise of any kind, military or otherwise (Alberts 2011),
affirms that definition: “Agility is a capability that enables an entity to succeed in changing
circumstances.” These overarching definitions are echoed equivalently in a variety of wordings for
different domains, but consistently pinpoint the core definition of agile systems.

There is not a prescribed single way to express the definition of system agility, but however it is
expressed, it should reflect the core concept as offered at the 1993 Defense Manufacturing
Conference (Dove 1993b):

“We can adopt a working definition of agility as: The ability to thrive in an environment of
continuous and unpredictable change. The focal point here is ‘change’ - the ability to initiate it,
and the ability to respond to it. ‘Thrive’ is a key word because it implies both long term
success, as opposed to a lucky response, and because it implies wielding agility both as an
offensive as well as a defensive capability. ‘Continuous and unpredictable’ underscores the
new long-term picture but, most importantly, distinguishes agility from mere flexibility,
enabling successful change even when there is little advance notice and no prior expectation.”

A compatible version taught to systems engineering students emphasizes response effectiveness:

Agility is the ability of a system to thrive in an uncertain and unpredictably evolving
environment; deploying effective response to both opportunity and threat, within mission.
Effective response has four metrics: timely (fast enough to deliver value), affordable (at a cost
that can be repeated as often as necessary), predictable (can be counted on to meet the need),
and comprehensive (anything and everything within the system mission boundary).

As to the unpredictably evolving environment, emerging requirements are one typical and
pervasive example in program and project management. In a more general sense, however,
emerging requirements at both development and operational time are the only factor of interest, as
all new response needs can be reduced to new requirements that should be addressed.

Core agreement on the agile definition notwithstanding, there is still confusion with other labels
that appear to address some or all of the same capability: nimble, sense and respond, survivable,
resilient, sustainable, autonomic, holonic, robust, and composable come quickly to mind. And of
course there is the use of the agile label in Agile Software Development, which to many in the
software and software-dependent fields is the exclusive understanding of what the agile label
refers to and encompasses. Part 2 of this article will focus on agile systems-engineering, with both
respect and perspective for the relevance of domain-specific agile software development practices
to domain-independent agile systems-engineering.

Outside the scope of this article is an examination of each of
these concept labels for core differences, overlaps, and
identical meanings. But two labels warrant some attention:
resilient and composable. Since the early agile systems work
in the ‘90s, variations on the quad graphic of Figure 1 have
been used to make the point that agility is composed of both
reactive and proactive change proficiency. Since then,
resilient systems have become a strong focus of interest and
study, and more recently a call for composable systems is
being heard. In both cases an ability to reconfigure system
resources effectively to deal with new environmental
situations is called for. As will be shown later, this ability to
change effectively is enabled by a fundamental architecture
common to both.

Relating resilience to agility: Consolidating some 15 years of agile command and control

Figure 1. Two dimensions of

response proficiency

investigation for the US DoD, David Alberts recognizes resilience as one of six components (his
word) of agile systems; and juxtaposes the definition with a need to respond to a “Change in
Circumstances: The destruction, interruption, or degradation of an entity capability. … Resilience
provides an entity with the ability to repair, replace, patch, or otherwise reconstitute lost capability
or performance (and hence effectiveness), at least in part and over time, from misfortune, damage,
or a destabilizing perturbation in the environment (Alberts 2011: 217-218).”
Relating composability to agility: In a recent paper addressing military “composable capability”,
Hillary Sillitto proposed: “…improved operational readiness, performance and interoperability
can be achieved by applying a systems engineering methodology in which the ‘system focus’ is the
force element, not the individual equipment; it is possible to identify a finite set of stable, well
characterised building blocks (Force Elements) from which a wide variety of task force structures
can be put together, providing almost infinite variety of capability solutions; …” Sillitto suggests
that the “System Coupling Model” (Lawson, 2010: 23) sets the context of “composability,”
reproducing in Figure 2 as a condensed version of the agile architectural pattern shown later in
Figure 3.

Effective response to both opportunity and
threat is depicted in Figure 1 as response
proficiency in two dimensions: proactive
and reactive. As will be shown in the next
section, an agile system’s response to a
change in the environment, whether to take
advantage of an opportunity or to respond
to a threat, is achieved, metaphorically, by
reshaping the system so that it is
compatible or synergistic with the changed
shape of the environment. A reactive

response is a compulsory systemic counter to a threatening change in the environment, with
purpose to maintain or restore competitive functional performance. A proactive response is a
non-compulsory systemic initiation enabled by a change in the environment, with purpose to
improve competitive functional performance.
Metrics and Measures

How agile does a system have to be? Agility does not have a practical absolute measure, but is
rather one of comparison to the dynamics of the environment, which includes competing systems
that redefine acceptable performance requirements as they appear for the first time, and as they
evolve.

There are four fundamental metrics for response proficiency: time, cost, predictability, and scope
(Dove 2001: 70-87):

• Time to respond, measured in both the time to decide (after knowing) that a response is
necessary, and the time to accomplish the response.

• Cost to respond, measured in both the cost of accomplishing the response and the cost
incurred elsewhere as a result of the response.

Figure 2. System-Coupling Diagram (Lawson 2010: 23)
illustrating composability of a response system

appropriate to a situation.

• Predictability of response capability, measured before the fact in architectural
preparedness3

• Scope of response capability, measured before the fact in architectural preparedness for
comprehensive response capability within mission, confirmed after the fact in repeatable
evidence of broad response accommodation.

 for response, confirmed after the fact in repeatable accuracy of effective
response.

These metrics do not stand alone, but work together. Having the capability to respond quickly,
even instantly, does little good if the cost of response precludes the ability to respond again,
unpredictably and as often as necessary. Predictability in effective response is the third metric, and
the mark of a systemically repeatable response process. Finally there is scope, which differentiates
agility from flexibility, and should encompass the ability to respond to anything within the
system’s mission space. A method for measuring an organization’s response proficiency is
explained and employed in an agile enterprise case study (Dove 1996).
The Environment Drives the Need

Agile systems are defined in counterpoint to their operating environments. Words used to describe
the general nature of the target environment often include and combine dynamic, unpredictable,
uncertain, risky, variable, and changing, with little attention to clear distinction among them. To
design and develop a system that can deal effectively with changing environments it is useful to
articulate the nature of changes that should be considered. A practice employed in classes and
workshops on design methods for agile systems considers four types of environmental dynamics:
unpredictability, uncertainty, risk, and variation. This categorization originated from a desire to
explain why it felt natural to talk about agile systems as those that can deal with uncertain and
unpredictable environments. Is there a meaningful difference between uncertain and unpredictable
– or was this just a lazy tendency to use two words when one would do?

Research yielded the wisdom of Frank Knight, who very carefully and logically separated the
meaning of risk from the meaning of uncertainty in his 1921 doctoral thesis, subsequently
published and still available as a delightfully readable classic economics book (Knight 1921).

Knight’s work argues that random events come in two varieties, those with knowable probability
and those with unknowable probability; and that this distinction separates risk and uncertainty. His
knowable/unknowable distinction can also be a key differentiator for unpredictability and
variation, though these do not have the symmetrical relationship of Knight’s risk vs. uncertainty.

Our objective is a tool that directs the designers mind to a multidimensional exploration of
response needs, consistent with the expectations of an agile system.

Agile systems have effective situational response options, within mission, under:
• Unpredictability: randomness among unknowable possibilities.
• Uncertainty: randomness among known possibilities with unknowable probabilities.
• Risk: randomness among known possibilities with knowable probabilities.
• Variation: randomness among knowable variables and knowable variance ranges.

3 Architectural preparedness does not refer to a system’s functional architecture, but rather to an underlying
architecture which enables and sustains system’s agility, discussed in the next section.

The difference between risk and variation in this framework is that risk is viewed as the possible
occurrence of a discrete event (a strike keeps all employees away), while variation is viewed as the
intensity of a possible event (absenteeism varies with the season).

Stated earlier, the value proposition of agility is risk management. Recently new thinking about
risk is recognizing the role of uncertainty in addition to more traditional probability-based risk. For
instance (Klinke and Renn 2002) describe precaution-based risk-management consistent with
agile capability to deal with uncertain environments, while (Weike, Sutcliffe, and Obstfeld 1999)
and (Aven and Bodil 2014) explore the management of risk with operational concepts that employ
agile system concepts to sense and mitigate the sources of risk.

Agile Systems
Agile-systems engineering and agile systems-engineering are two different concepts (Haberfellner
and de Weck 2005), but both rely on a common architecture to enable the agility in each. The
architecture will be recognized in a simple sense as drag-and-drop, plug-and-play, loosely coupled
modularity, with some critical aspects not often called to mind with the general thoughts of a
loosely coupled modular architecture.

Agile systems are designed for change. They can be augmented with new functional capability.
They can be restructured with different internal relationships among their subsystems. They can be
scaled up or down for economic delivery of functional capability. They can be reshaped to regain
compatibility or synergy with an environment that has changed shape. These types of changes are
structural in nature, and require an architecture that accommodates structural change.

The focus in this article is on architecture, metaphorically the design of an instrument, and not on
practice, the playing of that instrument. The second part of this discussion (Dove and LaBarge
2014) focuses on practice-enabling capabilities, while (Weike, Sutcliffe, and Obstfeld 1999) deal
well with the operational practice aspects of awareness and action to employ these capabilities.

We are all very familiar with architectures that accommodate and facilitate structural change.
Think of the construction sets we grew up with: Erector set, Tinker Toy, Lego, and Lincoln Logs.
Just to name some of the classics. Each of these construction sets consists of different types of
components, with constraints on how these components can be connected and interact. Though
each construction set is better suited to some types of constructions than others, they all share a
common architectural pattern.

Some, like Erector set with motors, can be employed to build active constructions such as Ferris
wheels, helicopters, race cars, or simple robots. A Ferris wheel has a functional architecture, an
Erector set has an agile architecture. The agile architecture enables the building and changing of
the functional architecture. One could argue that the agile architecture is also a functional
architecture, just in a different domain.

A system engineer tasked to design an agile system in some functional domain starts with the
design of the erector set architecture for that domain. This agile architectural pattern is depicted in
Figure 3 as applied to an Erector set, and explained subsequently in its general pattern sense. The
standard graphic depiction pattern typically shows three sample system assemblies to indicate a
range of configuration change.

Figure 3. Agile architecture pattern depicting an Erector set construction kit example.

Agile Architecture Fundamentals

There are three critical elements in the agile architectural pattern: a roster of drag-and-drop
encapsulated modules, a passive infrastructure of minimal but sufficient rules and standards that
enable and constrain plug-and-play interconnection, and an active infrastructure that designates
four specific responsibilities for sustaining agile operational capability. The coverage here of these
elements is necessarily brief.

Here the word module is generally used as a generic term for system functional assets, which can
be human or inanimate.

• Modules—Modules are self-contained encapsulated units complete with well-defined
interfaces which conform to the plug-and-play passive infrastructure. They can be
dragged-and-dropped into a system of response capability with relationship to other
modules determined by the passive infrastructure. Modules are encapsulated so that their
methods of functionality are not dependent on the functional methods of other modules,
except perhaps as the passive infrastructure may dictate.

• Passive Infrastructure—The passive infrastructure provides drag-and-drop connectivity
between modules. Its value is in isolating the encapsulated modules so that unexpected side
effects are minimized and new operational functionality is rapid. Selecting passive
infrastructure elements is a critical balance between requisite variety and parsimony – just
enough in standards and rules to facilitate module connectivity, but not so much to overly
constrain useful innovative system configurations. At least five categories of standards and
rules should be considered: sockets (physical interconnect), signals (data interconnect),
security (trust interconnect), safety (of user, system, and environment), and service (system
assembly ConOps and evolutionary agility sustainment).

• Active Infrastructure—An agile system is not something designed and deployed in a fixed

event and then left alone. Agility is most active as new system configurations are
assembled in response to new requirements – something which may happen very
frequently, even daily in some cases. In order for new configurations to be enabled when
needed, four responsibilities are required: the roster of available modules must evolve to be
always what is needed, the modules that are available must always be in deployable
condition, the assembly of new configurations must be accomplished, and both the passive
and active infrastructures must have evolved when new configurations and new modules
require new standards and rules. Responsibilities for these four activities must be
designated and embedded within the system to ensure that effective response capability is
possible at unpredictable times. The “how” processes of dispatching responsibility should
be articulated in the service element of the passive infrastructure.
o Module Mix Evolution—Who (or what process) is responsible for ensuring that

existing modules are upgraded, new modules are added, and inadequate modules are
removed, in time to satisfy response needs?

o Module Readiness—Who (or what process) is responsible for ensuring that sufficient
modules are ready for deployment at unpredictable times?

o System Assembly—Who (or what process) assembles new system configurations
when new situations require something different in capability?

o Infrastructure Evolution—Who (or what process) is responsible for evolving the
passive and active infrastructures as new rules and standards become appropriate to
enable next generation capability.

Agile Design Principles

Ten common Reusable-Reconfigurable-Scalable (RRS) design principles were discovered in
workshop analysis of existing agile systems, and now are used to guide architectural design
strategy. These principles are split into three categories, with the understanding that a principle in
one category often provides benefit in the other categories. Need and intent are briefly outlined for
each principle, with the “intent” providing a general strategy for meeting the need, and the
understanding that an augmented or related approach may be a better fit to a specific-system need.
Entire papers could be written on the variations and nuances of each of these principles. It is left to
a designer’s creative insight to adapt the essence of the principle to the system of interest.

Reusable Principles:
• Encapsulated Modules (Modularity)—Need: System assemblers want effective module

replacement and internal change without side effects. Intent: Modules physically
encompass a complete capability, and have no dependencies on how other modules deliver
their capabilities.

• Facilitated Interfacing (Plug Compatibility)—Need: System assemblers want effective
interfacing that facilitates integration and replacement of modules. Intent: Modules share
minimal interface standards, and are readily inserted and removed.

• Facilitated Reuse—Need: System assemblers want effective module selection and
acquisition that facilitates reuse. Intent: Available modules are identified by capability and
requirements, and can be readily discovered and acquired for deployment.

Reconfigurable Principles:

• Peer-Peer Interaction—Need: System assemblers want effective communication among

modules. Intent: Modules communicate directly on a peer-to-peer basis to avoid
intermediary relay failure, content filtering, and time delay.

• Distributed Control and Information—Need: System assemblers want effective
information-based operational decisions. Intent: Decisions are made where maximal
situational knowledge exists, and relevant information is maintained local to decision
making modules while accessible globally.

• Deferred Commitment—Need: System assemblers want to maintain effective response
ability. Intent: Conserve the commitment and consumption of limited resources to the last
responsible moment, in anticipation of future unpredictable events and uncertain response
needs.

• Self-Organization—Need: Systems assemblers want effective adaptation of interacting
modules. Intent: Module relationships are self-determined where possible, and module
interactions are self-adjusting or self-negotiated.

Scalable Principles

• Evolving Standards—Need: System assemblers want effective acquisition and deployment
of new module capabilities. Intent: Passive infrastructure standards and rules are
monitored for current relevance, and evolve to accommodate new and beneficial module
types in anticipation of need.

• Redundancy and Diversity—Need: System assemblers want effective resilience under
quantitative (need more of something) and qualitative (need something different)
situational variance. Intent: Duplicate or replicable modules provides quantitative capacity
options and fault tolerance options; diversity among similar modules provides situational
fit options.

• Elastic Capacity—Need: System assemblers want to incrementally match committed
system resources to situational capacity needs of unpredictable or uncertain range. Intent:
Modules may be combined in unbounded quantities, where possible, to increase or
decrease deliverable functional capacity within the current architecture.

Response Requirements Guide Architectural Design

In addition to the system functional requirements, response situation analysis (RSA) identifies
response requirements that inform the design and implementation of the agile architecture pattern.
RSA indicates the necessary nature of modules and module pools, which in turn identify the
necessary nature of both passive and active infrastructure.

Requirements arising from RSA may not be directly present in customer requirements. Unlike
functional requirements, typically captured in all-encompassing shall-statements, response
requirements need only enumerate sufficient situational diversity to result in a capability that can
respond to un-enumerated situations.

An effective framework for guiding RSA exercises drives analytical thinking in four reactive and
four proactive domains. Note that response requirements should be stated as situations which arise
during operation (the problem) that require a system response, independent of possible ways the
response might be satisfied (the solution). Solution strategies will change over time as new
technology and knowledge become available.

Proactive responses are generally triggered internally by the application of new knowledge to
generate new value. They are proactive responses even if the values generated are not positive and
even if the knowledge applied is not new – self initiation is the distinguishing feature here. A
proactive change is usually one that has effect rather than mere potential; thus, it is an application
of knowledge rather than the invention or possession of unapplied knowledge. Proactive change
proficiency is the wellspring of leadership and innovation in system capability.
Proactive domains:

• Creation/Elimination—What range of opportunistic situations will need modules
assembled into responsive system configurations; what elements must the system create
during operation that can be facilitated by modules and module pools; what situational
evolution will cause obsolesce of modules which should be removed? The distinguishing
feature is the creation of something new or reincarnated that is not currently present. To
note, this is not about the situation that calls for the original creation of an agile system, but
rather about the evolution of the agile system during its operational period. Situations to
identify are those that require system configuration assemblies during operation, and those
that require new modules for employment in those assemblies.

• Improvement—What improvements in system response performance will be expected
over the system’s operational life? The distinguishing feature is performance of existing
response capability, not the addition of new capability. Situations to identify are generally
those involving competencies and performance factors, and are often the focus of
continual, open-ended campaigns.

• Migration—What evolving technologies and opportunities might require future changes to
the infrastructure? The distinguishing feature is a need to change the nature of the
plug-and-play infrastructure, not the addition of new modules. Situations to identify are
generally those that enable the transition to possible and potential next generation
capabilities.

• Modification (of capability)—What evolving technologies and opportunities might require
modification of the available modules and roster of module pools? The distinguishing
feature is a necessary change in available module capabilities. Situations are generally
those that require something unlike anything already present, or the upgrade or change to
something that does exist.

Reactive responses are generally triggered by events which demand a response: problems that
must be attended to or fixed, opportunities that must be addressed. The distinguishing feature is
little choice in the matter – a reaction is required. Reactive responses are often addressing
threatening competitive or environmental dynamics. They may also be responses to new customer
demands, agility deterioration/failure, legal and regulatory disasters, product failures, market
restructuring, and other non-competitor generated events. Reactive change proficiency is the
foundation of resilience and sustainability in system capability.

Reactive domains

• Correction—What types of response activities might fail in operation and need correction?
The distinguishing feature is a dysfunction or inadequacy during attempted response.
Situations to identify are those that require a recovery from response malfunction, recovery

from unacceptable side effects of a response, and inability to assemble an effective
response.

• Variation—What aspects of operational conditions and resources vary over what range
when response capabilities must be assembled? The distinguishing feature is predictable
but uncertain variance. Situations to identify are those that manifest as variances in module
availability, module performance, and module interactions.

• Expansion/Contraction (of capacity)—What are the upper and lower bounds of response
capacity needs? The distinguishing feature is capacity scalability. Situations to identify are
those that can be satisfied with planned capacity bounds, as well as those that have
indeterminate and unbounded capacity needs.

• Reconfiguration—What types of situations will require system reconfiguration in order to
respond effectively? The distinguishing feature is the configuration and employment of
available modules for new or reincarnated response needs. Situations to identify are those
that are within the system mission boundaries, and that may require a reconfiguration of an
existing system assembly, perhaps augment with removal of modules or addition of
available modules.

An Agile System Example
The CubeSat Project originally set out to provide a low cost and condensed development time
approach for very small satellites, affordable and suitable for university educational and research
programs. The first CubeSat specification was developed in 1999 by California Polytechnic State
University and Stanford University. While its original purpose was to help universities develop
and test small, cost-effective satellites, the specification has also been used by commercial
organizations and Governments around the world. By the end of 2012 over 75 CubeSats had been
launched using 24 different launch vehicles (CubeSat 2012).

Key to the effectiveness of this program is its conformance to an agile architecture pattern from the
start. Though the specification has evolved from lessons learned and open collaborative
workshops over the years (Heidtl et al. 2000, Nugent et al. 2008), critical plug-and-play
infrastructure specifications have remained stable to ensure plug compatibility of the deployment
package (Figure 4) with a variety of launch vehicles, and plug compatibility of satellites with the
deployment package.

The agile architecture pattern for CubeSat is
shown in Figure 5. CubeSat satellites can be
designed and built using a variety of
modular components. Off-the-shelf chassis,
power systems, communications,
electronics, propulsion and sensor
components are available from a number of
different commercial providers. CubeSats
can be deployed using a variety of launch
vehicles and deployment systems.

The CubeSat design specification (CubeSat
2013) defines a set of physical, mechanical,
electrical, environmental, safety,

Figure 4. Poly Picosatellite Orbital Deployer (P-POD)

operational, magnetic, and test requirements for satellites. CubeSats can be made in three form
factors: 10 x 10 x 10 cm, 10 x 10 x 20 cm, and 10 x 10 x 30 cm sizes, with a total weight of less than
5.0 kg. The small size and limited weight of a CubeSat enable “piggy back” launches, also called
rideshares, to make use of extra space and lift capacity on third party launch vehicles. CubeSats are
deployed using a Poly Picosatellite Orbital Deployer (P-POD), a standard deployment system
developed by the California Polytechnic State University shown in Figure 4.

Figure 5. CubeSat Agile Architectural Pattern

The CubeSat specification includes a number of standards and requirements related to the P-POD
deployment system, environmental standards for spacecraft launches, range safety, testing,
materials, and orbital debris. Launch vehicle operators may levy additional requirements on
CubeSat developers in order to insure the safety of the launch vehicle, and other satellites that are
to be deployed. In the past a variety of launch vehicles have been used to deploy CubeSats
including Russian Kosmos-3M and Dnepr rockets, SpaceX Falcon 9 rockets, United Launch
Alliance Delta II rockets, Orbital Science Minotaur IV and Antares rockets, and the International
Space Station.

The active infrastructure of the CubeSat Project is supported through the international
collaboration of over 100 universities, private companies and Government agencies responsible
for the development of satellites. The system assembly role in the active infrastructure is played by
universities, commercial organizations and Government agencies that are designing and
developing CubeSats. On occasion these organizations may also play the role of module mix
evolution and module supplier as they leverage their past experiences in developing CubeSats for
future projects. The principal role players of module mix evolution are COTS device developers
plus the California Polytechnic State University as the developer of the CubeSat and P-POD
specifications. More indirectly, launch vehicle operators and Government agencies responsible for

licensing communications bandwidth affect module mix evolution. A number of commercial
vendors fill the role of module readiness by providing a wide variety of off-the-shelf items that can
be used to build a CubeSat. Finally, the role of infrastructure evolution falls principally to a team at
Cal Poly San Louis Obispo (CPSLO) that publishes the evolution of design specifications
(CubeSat 2013).

The passive infrastructure of the CubeSat Project is supported by the various specifications and
standards that have been published by the California Polytechnic State University and others. The
CubeSat specification defines a set of physical, mechanical, electrical, magnetic, and operational
requirements that a satellite must meet in order to be plug and play compatible with the P-POD
delivery system and the various launch vehicles. These specifications form the basis of the
“Sockets” and “Services” portions of the passive infrastructure. The “Safety” portion of the
passive infrastructure is supported by the combination of the CubeSat specification, a number of
Government standards, and additional requirements imposed by launch vehicle operators. For
example the CubeSat specification requires that satellites incorporate battery charge/discharge
protection to avoid hazardous cell conditions that might endanger the launch vehicle or other
CubeSats in the same P-POD. The “Signals” portion of the passive infrastructure is supported by
the combination of the CubeSat specification and a set of Government regulations on the
transmission of data using RF bandwidth. For example the CubeSat specification requires that
CubeSat operators obtain and provide documentation of proper licenses for use of radio
frequencies prior to launch. The only portion of the passive infrastructure that is not currently
supported by the CubeSat Project is “Security”. The security of each CubeSat is left up to the
developer and operator of the satellite.

Conclusion
This article is Part 1 of a two part article on agile systems engineering. This part deals with
agile-systems engineering, a necessary precursor for understanding agility in agile
systems-engineering, as an agile systems-engineering process is itself an agile system.

Unique to this article is the historical review of agile system definition, research, and concept
development; and the recognition of David Albert’s extensive work in Agile C4I and military
enterprise as compatible. Also unique, but intended as the practitioner’s take-away, is the model of
agile-systems engineering as the engineering of a system construction kit; the introduction of the
UURV framework; the updated and augmented articulation of the agile architectural pattern, the
ten agile system design principles, and the eight response situation analysis domains. The
introduction of the CubeSat agile system example in this article will play a role in Part2, when the
agile systems-engineering process at John Hopkins University Applied Physics Laboratory
(JHU/APL) for developing CubeSats is examined in some detail.

Part 2 of this article will suggest a parallel between Peter Checkland’s Soft Systems Methodology
and the situation faced when an agile systems-engineering process is appropriate; introduce a life
cycle framework for agile systems-engineering; employ the fundamental agile concepts of Part 1
to examine the source of agility in the popular process known as Scrum for managing agile
software development; employ the Part 1 fundamentals to examine JHU/APL’s agile
systems-engineering process for developing CubeSat hardware/software systems; and finally,
suggest a method for developing a domain-independent agile systems-engineering life cycle
model.

Acknowledgements
The authors want to thank Jim Highsmith, Rock Angier. and INCOSE Fellow Ron Carson in
particular, as well as JHU/APL and unknown submission reviewers, for meaningful critical
comment and improvement advice. Some of these suggestions could not be addressed
appropriately within the constraints of this publication, but they warrant, and will guide, attention
in subsequent opportunities.

References
Alberts, David S. 1996 revised 2002. Information Age Transformation – Getting to a 21st Century Military. DoD Command and

Control Research Program (CCRP). www.dodccrp.org/html4/books_downloads.html.
Alberts, David S. 2011. The Agility Advantage: A Survival Guide for Complex Enterprises and Endeavors. DoD Command and

Control Research Program (CCRP). www.dodccrp.org/html4/books_downloads.html.
Aven, Terje and Bodil S. Krohn. 2014. A New Perspective on how to understand, assess and manage risk and the unforeseen.

Reliability Engineering and System Safety. Reliability Engineering and System Safety, 121, January, pp 1–10.
Boss, Jason and Rick Dove. 2010. Agile Aircraft Installation Architecture In a Quick Reaction Capability Environment. INCOSE

International Symposium, Chicago, IL, July 12-15.
Carson, Ron. 2013. Can Systems Engineering be Agile? Development Lifecycles for Systems, Hardware, and Software. INCOSE

International Symposium, Philadelphia, PA, 24-27 June.
Cebrowski, Arthur K. 2003. Military Transformation: A Strategic Approach. U.S. Department of Defense, Office of Force

Transformation. www.dau.mil/pubscats/pubscats/atl/2004_05_06/str-mj04.pdf.
CubeSat. 2012. Past Launches. www.cubesat.org/index.php/missions/past-launches.
CubeSat. 2013. Revision 13 CubeSat Design Specification Provisional Release, August 19, 2013.

www.cubesat.org/index.php/documents/developers.
Dennett, Daniel C. 1995, Darwin’s Dangerous Idea – Evolution and the Meanings of Life. Simon & Schuster.
Dove, Rick, Mel Pirtle, and Dave Wilczynski. 1987. An Overview of FLEXIS - A Methodology for the Design of Flexible Control

Systems. Tutorial, Autofact Conferance, Nov 1987, Detroit, MI.
Dove, Rick and Roger Nagel (Principle Investigators). 1991. 21st Century Manufacturing Enterprise Strategy – An Industry-Led

View (Volume 1) and – Infrastructure (Volume 2). Eds: S. Goldman and K. Preiss. Diane Publishing Company.
www.parshift.com/s/21stCenturyManufacturingEnterpriseStrategy-Volume1.pdf,
www.parshift.com/s/21stCenturyManufacturingEnterpriseStrategy-Volume2.pdf.

Dove, Rick. 1992. The 21st Century Manufacturing Enterprise Strategy or What is All This Talk about Agility? Invited paper
originally published by Paradigm Shift International (December) and then translated into Japanese and published in a
1993 issue of Prevision, the Japan Management Association Research Institute.

Dove, Rick. 1993a. Beginning the Agile Journey – A Guidebook. Hewlett Packard.
www.parshift.com/Files/PsiDocs/Pap930701Dove-BeginningTheAgileJourney-A Hewlett Packard Guidebook.pdf.

Dove, Rick. 1993b. Lean and Agile: Synergy, Contrast, and Emerging Structure. Defense Manufacturing Conference '93, San
Francisco, CA, November 29 - December 2.

Dove, Rick. 1994. Best Agile Practice Reference Base - 1994: Challenge Models and Benchmarks. Proceedings: 4th Annual
Agility Conference, Agility Forum, Bethlehem, PA., March. www.parshift.com/Files/PsiDocs/Rkd5Art1.pdf.

Dove, Rick, Steve Benson, William Drake, Anthony Fiore, David Goldman, H.T. Gorenson, Susan E. Hartman, H. Van Dyke
Parunak, Sal Scaringella, Raja Seshadri, Brian J. Turner. 1995. Agile Practice Reference Base. Agility Forum Report
AR95-02. Agility Forum, Bethlehem, PA.

Dove, Rick, Sue Hartman, and Steve Benson. 1996. An Agile Enterprise Reference Model, With a Case Study of Remmele
Engineering. Agility Forum Report, December. www.parshift.com/Files/PsiDocs/AerModAll.pdf.

Dove, Rick. 1998. Realsearch: A Framework for Knowledge Management and Continuing Education, IEEE Aerospace
Conference, March 1998. www.parshift.com/Files/PsiDocs/RealsearchIEEE.pdf.

Dove. Rick. 2001. Response Ability – The Language, Structure, and Culture of the Agile Enterprise. Wiley.
Dove, Rick. 2005. Fundamental Principles for Agile Systems Engineering. Conference on Systems Engineering Research (CSER),

Stevens Institute of Technology, Hoboken, NJ, March. www.parshift.com/Files/PsiDocs/Rkd050324CserPaper.pdf.
Dove, Rick. 2009. Pattern recognition without tradeoffs: scalable accuracy with no impact on speed. Proceedings Cybersecurity

Applications and Technology Conference for Homeland Security, IEEE Computer Society, March 3-4, 2009.

http://www.parshift.com/Files/PsiDocs/Rkd050324CserPaper.pdf�

Dove, Rick, 2011, Self-Organizing Resilient Network Sensing (SornS) with Very Large Scale Anomaly Detection, IEEE
International Conference on Technologies for Homeland Security, Waltham, MA, Nov. 15-17.

Dove, Rick and Ralph LaBarge. 2014. Agile Systems Engineering – Part 2. International Council on Systems Engineering IS14
Conference, Los Angeles, CA, 30-Jun-03Jul. www.parshift.com/s/140721IS14-AgileSystemsEngineering-Part2.pdf

DSB (Defense Science Board). 2009. Report of the Defense Science Board Task Force on Fulfillment of Urgent Operational Needs.
Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. Washington, DC.

Fowler, Martin and Jim Highsmith. 2001. The Agile Manifesto. Dr. Dobb's Journal, August.
www.drdobbs.com/open-source/the-agile-manifesto/184414755.

Haberfellner, Reinhard and Olivier de Weck. 2005. Agile SYSTEMS ENGINEERING versus AGILE SYSTEMS engineering.
INCOSE International Symposium, Rochester, NY, 10-15 July.
http://strategic.mit.edu/docs/3_59_INCOSE-2005-AGSEvsEAGS.pdf.

Heidt1, Hank, Jordi Puig-Suari, Augustus S. Moore, Shinichi Nakasuka, Robert J. Twiggs. 2000. CubeSat: A new Generation of
Picosatellite for Education and Industry Low-Cost Space Experimentation. 14TH Annual/USU Conference on Small
Satellites. Utah State University, Logan, UT, 21-24 August.

Huang, Philip M., Andrew A. Knuth, Robert O. Krueger, and Margaret A. Garrison-Darrin. 2012. Agile hardware and software
systems engineering for critical military space applications. In SPIE Defense, Security, and Sensing, pp. 83850F-83850F.
International Society for Optics and Photonics.

Klinke, Andreas and Ortwin Renn. 2002. A New Approach to Risk Evaluation and Management: Risk-Based, Precaution-Based,
and Discourse-Based Strategies. Risk Analysis, Vol. 22, No. 6.

Knight, Frank H. 1921. Risk, Uncertainty and Profit. Hart, Schaffner & Marx. Full text available at:
www.econlib.org/library/Knight/knRUPCover.html.

Lawson, Harold ‘Bud’. 2010. A Journey Through the Systems Landscape. College Publications.
Nugent, Ryan, Riki Munakata, Alexander Chin, Roland Coelho, and Dr. Jordi Puig-Suar. 2008. The CubeSat: The Picosatellite

Standard for Research and Education. AIAA Space 2008 Conference and Exposition, 9-11 September 2008, San Diego,
CA.

Orton, J. Douglas, and Karl E. Weick.1990. Loosely coupled systems: A reconceptualization. Academy of management review 15,
no. 2: 203-223.

Papke, Barry and Rick Dove. 2013. Combating Uncertainty in the Work Flow of Systems Engineering Projects. INCOSE
International Symposium, Philadelphia, PA, June 24-27. Best paper award.

SAF (Secretary of the Air Force). 2011. Air Force Instruction 63-114, Quick Reaction Capability Process. 4 January. Washington,
DC.

Sillitto, Hillary G. 2013. Composable Capability – Principles, Strategies and Methods for Capability Systems Engineering.
INCOSE International Symposium, Philadelphia, PA 24-27 June.

Weick, Karl E., Kathleen M. Sutcliffe, and David Obstfeld. 1999. Organizing for High Reliability: Processes of Collective
Mindfulness. R.S. Sutton and B.M. Staw (eds), Research in Organizational Behavior, Volume 1. Stanford: Jai Press, pp.
81–123.

Biography
Rick Dove is CEO of Paradigm Shift International, specializing in agile systems research,
engineering, and project management; and an adjunct professor at Stevens Institute of Technology
teaching graduate courses in agile and self organizing systems. He chairs the INCOSE working
groups for Agile Systems and Systems Engineering, and for Systems Security Engineering. He is
author of Response Ability, the Language, Structure, and Culture of the Agile Enterprise.

Ralph LaBarge is a Principal Professional Staff member of The Johns Hopkins University Applied
Physics Laboratory where his experience spans systems engineering, digital signal processing and
cyber security. He received master’s degrees in Computer Science, Electrical Engineering, and
Information Assurance from The Johns Hopkins University, and a bachelor’s degree in Electrical
Engineering from the University of Delaware. He is currently enrolled in a doctoral program at
George Washington University in systems engineering.

http://www.parshift.com/s/140721IS14-AgileSystemsEngineering-Part2.pdf�

	Abstract
	Agile systems-engineering and agile-systems engineering are two different concepts that share the word agile. In the first case the system of interest is an engineering process, and in the second case the system of interest is what is produced by an e...
	Introduction
	Agility
	Defining Agility
	Metrics and Measures
	The Environment Drives the Need

	Agile Systems
	Agile Architecture Fundamentals
	Agile Design Principles
	Response Requirements Guide Architectural Design

	An Agile System Example
	Conclusion
	Acknowledgements
	References
	Biography

