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Space data systems are inherently complex.  They are systems-of-systems, typically composed of 
spacecraft and mission operations systems (MOS) belonging to one (or more) organizations, and 
multi-mission communication assets belonging to other organizations.  In many cases, the 
spacecraft contain sub-systems and instruments provided by different organizations, and MOS 
systems that may be developed and operated by other organizations. The point of greatest leverage 
in system architecting is at the interfaces. We have developed a set of methods for using SysML to 
model systems-of-systems and their interfaces. This paper describes how to apply this method to 
space data systems at a variety of levels of detail, from abstract systems and subsystems down to 
hardware and software components, including the details of their interfaces and protocol designs.  

I. Introduction 
PACE data systems are typically composed of spacecraft and mission operations systems (MOS) belonging to 
one (or more) organizations, and they often use multi-mission communication assets belonging to other 
organizations.  These End-to-End data systems are inherently systems-of-systems composed of different 

elements, some of which may be free-flying in very remote locations.  Well understood interfaces among these 
elements are essential. 
 

To quote Mark Maier, from Architecting Principles for Systems-of-Systems 1. 
 
“The greatest leverage in system architecting is at the interfaces. The greatest dangers are also at the interfaces.”  
 
The simple “boxes and lines” diagrams that are often employed in describing systems do not do justice to defining 

these interfaces, nor do Interface Control Documents (ICD) consisting of lists of identified standards.  Even Model-
Based Systems Engineering (MBSE) techniques and tools, if not carefully applied, may yield poorly defined 
interfaces.  The question then is how to more accurately and completely specify and design these systems and 
interfaces to address a diverse set of stakeholder concerns? 

This paper briefly introduces the problem domain, the End-to-End description of space data systems and their 
composition and connectivity. It starts with a top-level view that describes the overall mission context, including the 
major types of elements, nodes, systems, and subsystems.  It then introduces the essential considerations for modeling 
these systems-of-systems and the interfaces that define their connection points.  The essential features of these 
interfaces are introduced with some simple examples before diving into the details of modeling them with SysML 2. 

The protocol stack layering and terminology that is used has been adapted from the ISO Basic Reference Model 
(BRM), ISO/IEC 7498 3. The modeling approach, using views and viewpoints, aligns with the ISO Recommended 
practice for architectural description of software-intensive systems, ISO/IEC 42010 4 and the space data system 
modeling viewpoints define in the CCSDS Reference Architecture for Space Data Systems (RASDS) 5.  The technical 
details of using SysML to model interfaces are covered in more depth in another paper by the authors, to be published 
in INCOSE IS 2016 6. 

                                                
1 Mgr, JPL Data System Standards Program, Interplanetary Network Directorate, MS 301-490. 
2 Systems Engineer, Mission Control Systems Section, MS 301-480. 
3 Affiliate, Engineering Development Office, MS 301-237. 
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At the most abstract level, just the data flows among the major components may be modeled. When needed, these 
interfaces may be elaborated to include protocol stacks with varying levels of detail that span from the application  
layer down to the physical layer. The protocol stack within an interface is modeled as a full port with an interface 
binding signature. This port contains parts that correspond to protocol entities at each layer of the stack. Each protocol 
entity interacts with its upper and lower layers in the stack, and with its peer level protocol entity of the interfacing 
component.  

 The method describes how each protocol entity and the different layers of the stack may be reused and applied 
where these types of ports and bindings are needed.  Furthermore, the modeling methods also specify how to model 
protocol behavior. This may include modeling the behavior of each protocol entity (e.g., state machines), and the 
constraints on the interaction between protocol entities (e.g., sequence diagrams).  

The method is intended to allow complete modeling of systems, components, their interfaces, protocols, and 
protocol behaviors.  Several different views of these interfaces are presented.  Only selected views need to be used to 
address specific concerns (e.g., logical data flow, protocol stacks and behavior, message definition, physical 
interconnection).  It is important to understand that while the method has the ability to model interfaces, protocols, 
and their behavior, end-to-end performance, and other aspects of the interfaces, it is not required to use all the 
features of the method for every problem.  Appropriate application of the method, starting with the basics, allows 
other views to be added when and where they are required.  It can be applied in its simplest forms in the earliest stages 
of system modeling, and elaborated, as needed, when additional features are needed. 

II. Systems of Systems Interface Considerations 
There are some fundamental assumptions and considerations for systems-of-system modeling, and these can be 

succinctly stated: 
• Each major system has interfaces 
• The elements within each system have interfaces 
• Interfaces include the connection points on the interacting elements, the data items that are exchanged, the 

constraints and/or rules that govern the exchange, and the medium for the exchange (i.e. link) 
• Multi-layered communication interfaces include application to physical layers 

o For some interfaces the link aspects can drive performance (e.g. atmospheric affects of various 
signals) 

o For other interfaces protocol behavior and data transformations can drive performance (e.g. end-
to-end throughput) 

• Different views are used to address different concerns 
• Different interface abstractions, from logical flows to complete protocol stacks, are employed as needed 

o End-to-end data flows, connectivity, and data transformations are shown where required 
o Physical connections 
o Protocol specifications 
o Message definitions 

• Complete interface specifications that span discipline concerns are supported. The type and detail of 
interface information for each view must be consistent. The use of the proposed modeling method with 
SysML directly supports the achievement of this goal. 

A. A simple example of an interface specification 
Before getting into the details of modeling, it is useful to establish the fundamental features of protocol interfaces.  

In their simplest form two components may be modeled as boxes and the connection between them as a line, as in 
Figure 1 which is re-used from our INCOSE IS2015 paper on a modeling pattern for layered system interfaces. 7 

 
This simple view shows “boxes and lines”, a frequent representation of component interconnections.  But what 

are the interfaces?  Where are the protocols?  As shown, the two components, Sender and Receiver, exchange PDF 
formatted files.  It does provide a simple End-to-End view of sending a PDF file from A to B, but no details are 
provided about the interfaces used to perform the transfer. This file transfer is essentially the high level requirement, 
what the user cares about. For some purposes this sort of representation may provide sufficient information, but it is 
not a specification that can be used in any rigorous way to support design or implementation. 
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Figure 1. Simple file exchange 

B. A simple interface stack specification 
In order to provide enough detail to understand the interface between Sender and Receiver it is necessary to 

describe not just the data that is exchanged, but also the means used to exchange it.  This might be the protocol stack 
which is shown in a simple form in Figure 2. 

 
Figure 2. Simple file transfer interface showing protocol stack 

 
While Figure 2 is only a rudimentary interface specification, it does provide visibility into some essential aspects 

of the Sender - Receiver interface, and of protocol interfaces in general: 
 
1. An interface on a component is defined by a protocol stack. The protocol stack consists of vertical layers, 

where each layer is a protocol entity. 
2. This particular interface is implemented with protocol entities that include HTTP, TCP, IP and Ethernet, but 

that will not always be the case. 
3. Both components use the same stack at either side of the interface. 
4. The protocol stacks in each component are connected both horizontally and vertically. 
5. The horizontal links (a, b, c …) are logical connections, they exchange Protocol Data Units (PDU) between 

peer protocol entities. 
6. The vertical links (f, g, … l, m) use the provided (upper) and required (lower) interfaces of the protocol entities 

to exchange Service Data Units (SDU) between layers. 
7. The logical flow at each protocol layer is between peer entities in the interfacing components. 
8. The actual flow of data is down the stack, across the physical layer interface (e), and then up, the stack.  
9. At the physical layer (Ethernet in this example) all of the PDUs of all the layers are visible “on the wire”. 
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It is possible to use different views to permit separation of concerns.  A view can focus on just the TCP layer, 
Sender to Receiver, across the “c” interface. This view is focused on how entities in the layer are connected 
(horizontally, between peer protocol entities) and how they behave (horizontally, within and between these two 
protocol entities) as they exchange PDUs. 

Another view could focus just on the stack of protocol entities.  Such a view might focus on which protocol entities 
are selected, i.e. why TCP instead of UDP, how the stack is connected (vertically, where SDUs are exchanged), and 
how the stack behaves (vertically, which operations are required on the SDUs of an upper layer to meet the provided 
interface of the lower layer). 

Simple lists of interface protocols are not sufficient to understand and specify even this simple file exchange 
interface.  Space data systems, with their usual highly asymmetric links, and intermediate service elements such as 
ground stations, require additional details in order to be fully specified end-to-end.  The next section describes the 
means to do this. 

III. The Interface Modeling Method 
 
The interface modeling method supports the definition and refinement of  systems-of-system  interfaces at different 
levels of abstraction and different levels of detail.  The following sections describe different views of the protocol 
interface and how to construct them.    

1. End-to-End view of the whole system, in context, showing data flows 
2. End-to-End protocol view, showing the most significant protocols supporting the data flows 
3. A “black box” view showing one element of the system and its decomposition 
4. A “white box” view showing the protocol stack that implements an interface 
5. The interfaces of a single protocol entity 
6. A state machine showing the internal behavior of a protocol entity 
7. Specifying the standards that define interface compliance 

Other aspects, such as interface and protocol performance may also be specified in a way that supports direct 
analysis of the model; for those details see the paper by Sarrel and Simpson. 

A. End-to-End View of the Whole System 
There are many different ways to model systems.  Most methods start with a top level view of the system that 

provides context.  Figure 3 shows an example End-to-End context view for an example space data system. This shows 
the data flow between the observed data source and the end user, via the Spacecraft and the Ground System.  While 
this figure shows the major physical elements of the system that is being modeled, it is intentionally somewhat abstract 
and provides only a coarse grained decomposition of these elements. One of the benefits of using an MBSE tool is 
that it can manage the internal consistency of the model, so we can focus on specific details, or leave them out where 
needed for clarity. 

This figure also shows the nature of the connections between elements.  The connectors or links also have 
additional details and specification, which are hidden in this view to emphasize the context and the end-to-end flows.  
Similarly, the ports just indicate direction of flows through them.  The internal details of the interfaces and protocols 
are not shown in this view, but they can be captured in the model at the level of abstraction that is required and seen 
in other views. 

None of these figures show organizations, ownership, or operational details, but views that do show such 
information could be developed as an overlay on this context diagram.  A variety of simple embellishments can be 
used, such as using color to indicate ownership or adding these kinds of properties to the modeled elements themselves.  
Similarly, if operational details are needed, they can be added in a separate set of views that reference these elements 
and/or their decomposition and viewed from another perspective. 
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Figure 3. End-to-End contextual view of a space system 

 
Most elements shown in this figure have some sort of stereotypes applied, such as <<Component>> or <<Protocol 

Entity>>.  Good practice for modeling large systems is to develop a profile or a set of stereotypes to represent domain 
specific definitions that can be used consistently.  Figure 4 shows an example that was used for a recent system-of-
systems modeling project.   Similarly, the stereotypes might include a color code that permits visual distinctions of 
subsystems, or object types, or ownership, as needed for the particular model. 

 
Figure 4. Example system stereotype definitions 

 
This class structure example includes definitions of system, element, and subsystem, as abstract entities.  At the 

levels below subsystem, a distinction is drawn between hardware (HW) and software (SW) items.  Keeping the model 
elements abstract down to some agreed level, and only characterizing implementation distinctions (HW / SW) below 
that level is a way of approaching initial architectural modeling at an abstract level before drilling down to 
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implementation details.  This also permits added flexibility in mapping from architecture to one or more possible 
implementation approaches. 

B. End-to-End Protocol View 
Figure 5 shows the major End-to-End communications systems and also the high level protocol and flows.  This 

figure is a re-statement in SysML of a typical cross support deployment using CCSDS standards.  Similar figures in 
the RASDS style appear in the CCSDS Space Communication Cross Support Architecture Requirements Document, 
CCSDS 901.1-M-1 8, but this has the more familiar Spacecraft, Ground Station, and MOS terminology. 

 

 
Figure 5. End-to-End contextual protocol view of the whole system 

 
Commands to the spacecraft flow in CCSDS TC frames from the Ground Computer to the Spacecraft but the actual 

data flows at the layers below this use a disjoint set of protocols.  The Ground Computer does not directly radiate the 
TC frames on the RF link to the Spacecraft, it uses the services of the Ground Station.  The Ground Station may be 
owned by another agency or a commercial service provider.  The Ground Computer in this example uses a standard 
service interface called the Cross Support Transfer Service (CSTS) forward frame (F-Frame).  This service accepts 
CCSDS frames, with whatever data they carry for delivery to the Ground Station.  It is the Ground Station that encodes 
the data and radiates the RF signals.  There is an analogous, but different, service interface for the return link, and it 
provides both on-line and off-line services along with signal and service quality annotations.  A compliant Ground 
Station will also have service interfaces for planning, scheduling, and configuring the link, and other service interfaces 
for monitor data, radiometric data, and possibly service control. These are not shown here, but they follow the same 
pattern.   

These forward and return data paths are highly asymmetric, and this sort of diagram allows this to be clearly 
specified. On the terrestrial side of the Ground Station the CSTS service runs over standard Internet protocols and 
makes use of private or commercial WAN services and routers.  On the space link side of the Ground Station CCSDS 
space link, coding, modulation, and selected RF signals are used to communicate in space.  This figure shows the 
typical CCSDS space communications standards in relationship to major system elements, and shows that the upper 
layer command and TC frame data has an <<Over> relationship to the underlying, and distinct, protocol stacks. 

A diagram like Figure 5 shows the relationships among major elements and some key details of the end-to-end 
flow, and may form part of an Interface Control Document.  At the same time, this figure shows only the top level 
ports, protocol types, and data flows, and not the details of the interfaces nor the protocol stacks. 

C.  “Black Box” View Showing Decomposition of One System Element  
In order to more fully specify the structure of the system, it is often necessary to define how the system is 

decomposed.  This may be done either top-down or bottom-up; either as a decomposition activity or one of composing 
systems of subsystems and components.  It is often natural to think of decomposing the system, but in reality, systems 
are often composed by assembling pre-existing components, such as computers, buses, physical data links, receivers, 
antennas, and, for spacecraft, instruments. Figure 6 shows a view of the Spacecraft element from the End-to-End view. 

This figure only shows a partial decomposition and some component relationships, since a typical spacecraft will 
have many more subsystems and much more complicated interconnections than this simple example showing Avionics 
and Telecom. This view can be extended to include any number of other systems and elements. This decomposition 
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also shows hardware and contained software. These components are connected at a port and the data that is exchanged 
is typed as packet data.  The port has directionality, one-way in this example, and the port is shown on all parts that 
participate in the connection. 

This Black Box view is useful in that it shows hardware and software relationships and the presence of key 
interfaces and connections. As with the rest of the figures to this point, it shows only the top level ports and data flows, 
but not interface details or protocol stacks.  For many purposes, a view with this level of decomposition and 
connectivity will be sufficient. For other purposes more information must be provided to define the details of the 
interfaces. 

 
Figure 6. “Black Box” view of the Spacecraft Element 

D.  “White Box” View Showing Interface Protocol Stack Details 
A “White Box” view may be used to show an internal view of the details of the protocol stack that implements the 

interface.  The modeling pattern is to show nested parts within the port.  Each part is a protocol entity that is typically 
identified as belonging to a specific protocol layer, as described in the ISO BRM.  When specific, pre-defined, layers 
are used it is good practice to retain those terms, but other terms may be introduced as needed. For instance, when the 
BRM was defined there were not the sort of messaging layers in use that are quite common today. Ideally, each of 
these layers will be associated with a specific standard, as shown in Figure 7. 

A specific intent of this view is to specify the complete stack of protocols that define an interface.  This starts at 
the application data transfer layer, and ends at the physical layer.  Not all of these layers need to be shown on every 
diagram, and any given model view may stub off the details when they do not provide any added useful information.  
A term used for the stack of protocols exposed at the interface of a component is the Interface Binding Signature. 

Figure 7 includes the following layers, with these typical characteristics: 
• Application layer: packet transfer protocol, manages exchange of packet data between applications. 
• Transport layer: Transmission Control Protocol (TCP) 9, provides end-to-end delivery of data, complete, 

once only, and in order. 
• Network layer: Internet Protocol (IP) 10, provides network layer routing over any number of intermediate 

network nodes. 
• Data link layer: 1 Gb Ethernet, provides data link layer services that may involve a fabric of switches and 

hubs. 
• Physical layer: twisted pair cable (Cat-5) and RJ-45 plug terminations. 

 
In this figure, the data flow between the source Packet Processor and the destination Packet to Frame Processor is 

actually shown twice.  The top level connection is a high level view, much like in Figure 6.  Below that is shown the 
details of the protocol stack.  Usually, only one or the other is shown in a view.  The logical connections at a horizontal 
layer are labeled as <<PDU Link>>, to show that the data that flows here is actually PDU's of the protocol entities at 
that layer.  The characteristics of these PDU's differs from layer to layer as does the behavior of the protocol entities.  

As in Figure 5, the end-to-end flow of data within a subsystem may not use a homogenous lower layer structure.  
For instance, below the network & transport layers (TCP/IP) a variety of other data link and physical layers may be 
employed, or intermediate devices such as Ethernet switches may be used.  Depending on the purpose of the diagram, 
these details may be hidden or exposed or addressed in a separate view.  This diagram also reflects that the physical 
layer ports (1GE and RJ45) are hardware and actually belong to the Transceiver and Computer components, while the 
upper protocol layers are software and belong to the Communications and C&DH SW. MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip Black Box Mar 12, 2016 3:02:49 PM
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Figure 7. “White Box” view showing the Spacecraft Element protocol stacks 

 
Frequently a reference to “TCP/IP” or Ethernet is used as a short-hand, when in reality each comprises several 

separate specifications with their own explicit sets of details.  A nearly ubiquitous example of this is the USB interface 
11.  The “USB spec” for this seemingly simple interface, used on “thumb drives” and other common devices, is actually 
several quite complex specifications dealing with the physical interface, signaling, cabling characteristics, bus control, 
device discovery, and device type related behaviors, to say nothing of at least three different backward compatible 
versions of this evolving spec. 

For some purposes it will be sufficient to just identify the interface binding signature, and this will usually be the 
case when well known protocols with well understood behavior are selected.  In other cases it may be necessary to 
model in detail the interfaces or behavior of a new or specialized protocol. 

E. Interfaces of a Typical Protocol Entity 
For purposes of modeling protocol entities, each one is considered to have three ports: the interface that provides 

services to the upper (N+1) layer, the interface that requires services of the lower (N-1) layer, and the interface with 
the peer protocol entity at the same layer.  These are shown in Figure 8. There may also be a management interface 
that can be used to configure and control the protocol entity, and that may be in-line with normal PDU data flows or 
via some separate port.  In some cases this “management interface” may be provisioned as a Management Information 
Base (MIB) that is loaded at boot time, or it may even be complied in as selected options that are implemented (or 
not). 

Description of protocol entity ports:  
• Provided Service port (TCP this in example): the services offered to any upper layer (N+1) protocol, 

defined as an abstract service and using a layer N Service Data Unit (passes SDUs) 
• Required Service port (IP this in example): the services required from any lower layer (N-1) protocol, 

defined as an abstract service and using a layer N-1 Service Data Unit (passes SDUs) 
• Peer Protocol port (TCP PDU in this example): the port that enables the protocol entity to interact with its 

peer entity at the same layer, defined by the protocol specification and using the layer N Protocol Data 
Units (exchanges PDUs) 

• Protocol management may be in-line with the protocol, via a MIB, or a separate interface  
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Figure 8. Interfaces of a Protocol Entity 

 
It is expected that the required services from the N layer and the provided services from the N-1 layer will match, 

but sometimes these are developed at different times, or new technology gets introduced after the fact.  In the case of 
IP, which is used in some of these examples, several generations of underlying data links have come and gone since 
that protocol was first designed in 1981.  It is really an implementation detail and not often modeled, but there is 
actually a shim layer between the IP implementation and the possible underlying data links.  These shims ensure that 
the IP datagram, the PDU specified by RFC 791, is broken into parts and then re-assembled, as needed, to fit into the 
underlying data link layers.  There is a whole suite of “IP over xyz” RFCs that describe in detail how this is done.  
This can be thought of as “impedance matching” between TCP and the data links.  In CCSDS, the Space Packet 
Protocol 12, and the Encapsulation Packet 13, provide similar functions. 

F. State Machines Define Protocol Entity Behavior 
At the peer entity (PDU) port, each protocol entity exposes its defined behavior.  Figure 8 is a Black Box view of 

such an entity, but the “badge” on the front gives a hint of the complexity that lies within.  The badge, by the way, is 
just incidental decoration, it may be used if it is found useful, but serves no modeling purpose aside from decoration.   

The description of actual protocol behavior may be specified in a number of different ways in standards.  All of 
the following (and more) have been used: 

• State machines (sometimes shown as an ASCII diagram) 
• State tables 
• Sequence diagrams 
• Simple English text 

 
For reasons of clarity and ease of understanding, state machines are recommended as clear, formalized representations 
that may be well integrated with the rest of the model.  In typical protocols, the behavior at a given layer is actually 
performed by a pair of cooperating state machines.  To capture these dynamic exchanges, the state machine diagrams 
may be accompanied by sequence diagrams that show temporal exchanges between the peers. 

State machines can be used to describe the process that a protocol entity follows when it receives a protocol 
Protocol Data Unit (PDU) from a peer entity.  They can be used to describe the exchange(s) of PDUs between peers, 
and they may be used to describe the behavior at the required and provided interfaces, such as start-up, connection 
establishment, and SDU transformation into PDUs.  The behavior may involve the dynamics of PDU exchanges, 
including both nominal and error conditions. 

Figure 9 is a part of the state machine that is at the heart of the TCP protocol, as defined in RFC 793 9.  A crude, 
but effective, variant of this diagram is present in that document in the form of an “ASCII drawing”. TCP is a 
connection oriented protocol and this figure shows the behavior of both peer entities, the Client (red lines) and the 
Server (blue lines), but it only shows the connection establishment and tear-down processes.   
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Figure 9. TCP example of a State Machine -  Protocol entity behavior 

 
The bulk of the work that TCP does to ensure reliable, once-only, in order, delivery of data without omissions is 

done inside the Established state shown in the middle of the diagram, and this behavior is considerably more complex. 
Most of the TCP specification is done in the “simple English text” style, and this is eighty-five (85) pages of rather 

dense “prose”.  A paper on finite state machine modeling of the TCP standard 14 provides a translation of the TCP 
spec into an extended finite state machine (EFSM) model using EFSM/SDL.  This state machine model is extensive, 
at thirty-seven (37) pages of diagrams, but it is quite accessible and understandable.     

Furthermore, simulation of the behavior of these state machines can be performed and the behavior verified, see 
the paper on EFSM modeling for an example.  A clear state machine description is valuable for understanding existing 
protocols, and it should prove especially useful when designing new protocols. 

G. Interface Compliance Specification 
Although the concept was not introduced earlier, in protocol stack views such as Figure 7, it is possible to directly 

specify in the model which interfaces in the full stack are defined by, and comply with, some standard specification. 
It is also possible to tie the details of each layer to a whole standard or to specific sections of a standard if that is 
required.  This concept of modeling compliance with a standard is captured explicitly in the model by the “Satisfies” 
notation shown in Figure 10.  

Compliance statements may include interface data, PDU structures, behavior (preferably as described by one or 
more state machines), or by activity, and sequence diagrams.  If the protocol at any given layer is fully specified in a 
published standard, just using the “Satisfies” relationship for these layers may be adequate.  In such cases the 
specification of the interface binding signature may be accomplished by describing the set of protocols used at the 
interface in a black box diagram, identifying the “satisfies” relationships, and then just referencing that interface 
specification wherever needed.  These components are indicated by dashed lines as shown in Figure 10, indicating 
that the parts are reference parts that are not necessarily owned by the enclosing block. 
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.  
Figure 10. Interface Compliance Specification, TCP Example (RFC 793) 

 
Figure 10 also shows the relationships that exist between the protocol specification, the state machines that 

implement the behavior, and a sequence diagram that describes the time-ordered PDU exchanges between the two 
entities. The sequence diagram shown is a hyperlink to the actual diagram in the model.  

IV. Conclusion 
This paper describes a method for modeling space data systems and element interfaces and behaviors at successive 

levels of detail.  This supports both abstract views and deep specification of technical interfaces and behavior, where 
these details are required. Careful use of the method from the outset, will permit further elaboration of details as 
needed. 

A. Modeling Flexibility – Consistency and Re-use of Components and Views 
Models may contain multiple views, from top level context, to composition and components, down to low level 

interface and protocol details.  Careful selection of views allows different levels of abstraction to be described, and 
supports drawing clear distinctions between architectural level views and implementation level details. 

Creating defined stereotypes, and libraries of components and protocol entities, allows them to be re-used and 
combined as needed in different views.  Whether developed top-down or bottom-up, these libraries may be used as 
building blocks for new models, promoting consistency and clarity. Libraries of components and protocols may find 
re-use within a particular system application and across projects. 

The different views allow the systems and systems-of-systems to be understood from different perspectives and at 
different levels of detail.  SysML does includes support for viewpoint specification and view construction, but this 
requires some discipline from the modeling team. SysML, and the typical modeling tools help ensure consistency 
across the model.   

B. Systems-of-Systems Interface Modeling Benefits 
The method presented here permits space data systems, and systems-of-systems, their structure and interfaces, to 

be modeled with a high degree of fidelity.  Using a principled approach to system, component, interface, and protocol 
modeling allows successive levels of detail to be added as and when needed. Even a partial model can document 
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systems, interfaces, and behavior at a much deeper level of specificity than is provided by an ICD “protocol list” or a 
set of “boxes and lines” diagrams, whether produced by graphical presentation or modeling tools. 

Particularly for space data systems, which may include elements from different organization, distinctive and 
asymmetric protocols, and other interoperability complexities, adoption of a clear and consistent approach to modeling 
the interfaces can offer significant benefits. Including clear descriptions of connectivity and composition, and mapping 
to specifications and behavior can help provide unambiguous specification of system structures and component 
interactions.  The development of these models can also support analysis of flow and continuity, and verification of 
interface behavior, and support analysis of end-to-end connectivity, behavior and performance. 
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