

American Institute of Aeronautics and Astronautics

1

Modeling systems-of-systems interfaces with SysML

Peter M. Shames1 and Marc A. Sarrel.2
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

and

Sanford A. Friedenthal3
SAF Consulting, Affiliate, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Space data systems are inherently complex. They are systems-of-systems, typically composed of
spacecraft and mission operations systems (MOS) belonging to one (or more) organizations, and
multi-mission communication assets belonging to other organizations. In many cases, the
spacecraft contain sub-systems and instruments provided by different organizations, and MOS
systems that may be developed and operated by other organizations. The point of greatest leverage
in system architecting is at the interfaces. We have developed a set of methods for using SysML to
model systems-of-systems and their interfaces. This paper describes how to apply this method to
space data systems at a variety of levels of detail, from abstract systems and subsystems down to
hardware and software components, including the details of their interfaces and protocol designs.

I. Introduction
PACE data systems are typically composed of spacecraft and mission operations systems (MOS) belonging to
one (or more) organizations, and they often use multi-mission communication assets belonging to other
organizations. These End-to-End data systems are inherently systems-of-systems composed of different

elements, some of which may be free-flying in very remote locations. Well understood interfaces among these
elements are essential.

To quote Mark Maier, from Architecting Principles for Systems-of-Systems 1.

“The greatest leverage in system architecting is at the interfaces. The greatest dangers are also at the interfaces.”

The simple “boxes and lines” diagrams that are often employed in describing systems do not do justice to defining

these interfaces, nor do Interface Control Documents (ICD) consisting of lists of identified standards. Even Model-
Based Systems Engineering (MBSE) techniques and tools, if not carefully applied, may yield poorly defined
interfaces. The question then is how to more accurately and completely specify and design these systems and
interfaces to address a diverse set of stakeholder concerns?

This paper briefly introduces the problem domain, the End-to-End description of space data systems and their
composition and connectivity. It starts with a top-level view that describes the overall mission context, including the
major types of elements, nodes, systems, and subsystems. It then introduces the essential considerations for modeling
these systems-of-systems and the interfaces that define their connection points. The essential features of these
interfaces are introduced with some simple examples before diving into the details of modeling them with SysML 2.

The protocol stack layering and terminology that is used has been adapted from the ISO Basic Reference Model
(BRM), ISO/IEC 7498 3. The modeling approach, using views and viewpoints, aligns with the ISO Recommended
practice for architectural description of software-intensive systems, ISO/IEC 42010 4 and the space data system
modeling viewpoints define in the CCSDS Reference Architecture for Space Data Systems (RASDS) 5. The technical
details of using SysML to model interfaces are covered in more depth in another paper by the authors, to be published
in INCOSE IS 2016 6.

1 Mgr, JPL Data System Standards Program, Interplanetary Network Directorate, MS 301-490.
2 Systems Engineer, Mission Control Systems Section, MS 301-480.
3 Affiliate, Engineering Development Office, MS 301-237.

S

American Institute of Aeronautics and Astronautics

2

At the most abstract level, just the data flows among the major components may be modeled. When needed, these
interfaces may be elaborated to include protocol stacks with varying levels of detail that span from the application
layer down to the physical layer. The protocol stack within an interface is modeled as a full port with an interface
binding signature. This port contains parts that correspond to protocol entities at each layer of the stack. Each protocol
entity interacts with its upper and lower layers in the stack, and with its peer level protocol entity of the interfacing
component.

 The method describes how each protocol entity and the different layers of the stack may be reused and applied
where these types of ports and bindings are needed. Furthermore, the modeling methods also specify how to model
protocol behavior. This may include modeling the behavior of each protocol entity (e.g., state machines), and the
constraints on the interaction between protocol entities (e.g., sequence diagrams).

The method is intended to allow complete modeling of systems, components, their interfaces, protocols, and
protocol behaviors. Several different views of these interfaces are presented. Only selected views need to be used to
address specific concerns (e.g., logical data flow, protocol stacks and behavior, message definition, physical
interconnection). It is important to understand that while the method has the ability to model interfaces, protocols,
and their behavior, end-to-end performance, and other aspects of the interfaces, it is not required to use all the
features of the method for every problem. Appropriate application of the method, starting with the basics, allows
other views to be added when and where they are required. It can be applied in its simplest forms in the earliest stages
of system modeling, and elaborated, as needed, when additional features are needed.

II. Systems of Systems Interface Considerations
There are some fundamental assumptions and considerations for systems-of-system modeling, and these can be

succinctly stated:
• Each major system has interfaces
• The elements within each system have interfaces
• Interfaces include the connection points on the interacting elements, the data items that are exchanged, the

constraints and/or rules that govern the exchange, and the medium for the exchange (i.e. link)
• Multi-layered communication interfaces include application to physical layers

o For some interfaces the link aspects can drive performance (e.g. atmospheric affects of various
signals)

o For other interfaces protocol behavior and data transformations can drive performance (e.g. end-
to-end throughput)

• Different views are used to address different concerns
• Different interface abstractions, from logical flows to complete protocol stacks, are employed as needed

o End-to-end data flows, connectivity, and data transformations are shown where required
o Physical connections
o Protocol specifications
o Message definitions

• Complete interface specifications that span discipline concerns are supported. The type and detail of
interface information for each view must be consistent. The use of the proposed modeling method with
SysML directly supports the achievement of this goal.

A. A simple example of an interface specification
Before getting into the details of modeling, it is useful to establish the fundamental features of protocol interfaces.

In their simplest form two components may be modeled as boxes and the connection between them as a line, as in
Figure 1 which is re-used from our INCOSE IS2015 paper on a modeling pattern for layered system interfaces. 7

This simple view shows “boxes and lines”, a frequent representation of component interconnections. But what

are the interfaces? Where are the protocols? As shown, the two components, Sender and Receiver, exchange PDF
formatted files. It does provide a simple End-to-End view of sending a PDF file from A to B, but no details are
provided about the interfaces used to perform the transfer. This file transfer is essentially the high level requirement,
what the user cares about. For some purposes this sort of representation may provide sufficient information, but it is
not a specification that can be used in any rigorous way to support design or implementation.

American Institute of Aeronautics and Astronautics

3

Figure 1. Simple file exchange

B. A simple interface stack specification
In order to provide enough detail to understand the interface between Sender and Receiver it is necessary to

describe not just the data that is exchanged, but also the means used to exchange it. This might be the protocol stack
which is shown in a simple form in Figure 2.

Figure 2. Simple file transfer interface showing protocol stack

While Figure 2 is only a rudimentary interface specification, it does provide visibility into some essential aspects

of the Sender - Receiver interface, and of protocol interfaces in general:

1. An interface on a component is defined by a protocol stack. The protocol stack consists of vertical layers,

where each layer is a protocol entity.
2. This particular interface is implemented with protocol entities that include HTTP, TCP, IP and Ethernet, but

that will not always be the case.
3. Both components use the same stack at either side of the interface.
4. The protocol stacks in each component are connected both horizontally and vertically.
5. The horizontal links (a, b, c …) are logical connections, they exchange Protocol Data Units (PDU) between

peer protocol entities.
6. The vertical links (f, g, … l, m) use the provided (upper) and required (lower) interfaces of the protocol entities

to exchange Service Data Units (SDU) between layers.
7. The logical flow at each protocol layer is between peer entities in the interfacing components.
8. The actual flow of data is down the stack, across the physical layer interface (e), and then up, the stack.
9. At the physical layer (Ethernet in this example) all of the PDUs of all the layers are visible “on the wire”.

Sender

PDF Files

Receiver

PDF Files

Sender

PDF Files

HTTP

TCP

Receiver

PDF Files

HTTP

TCP

IP IP

Ethernet Ethernet

a

b

c

d

e

f

g

h

i j

k

l

m

n o

American Institute of Aeronautics and Astronautics

4

It is possible to use different views to permit separation of concerns. A view can focus on just the TCP layer,
Sender to Receiver, across the “c” interface. This view is focused on how entities in the layer are connected
(horizontally, between peer protocol entities) and how they behave (horizontally, within and between these two
protocol entities) as they exchange PDUs.

Another view could focus just on the stack of protocol entities. Such a view might focus on which protocol entities
are selected, i.e. why TCP instead of UDP, how the stack is connected (vertically, where SDUs are exchanged), and
how the stack behaves (vertically, which operations are required on the SDUs of an upper layer to meet the provided
interface of the lower layer).

Simple lists of interface protocols are not sufficient to understand and specify even this simple file exchange
interface. Space data systems, with their usual highly asymmetric links, and intermediate service elements such as
ground stations, require additional details in order to be fully specified end-to-end. The next section describes the
means to do this.

III. The Interface Modeling Method

The interface modeling method supports the definition and refinement of systems-of-system interfaces at different
levels of abstraction and different levels of detail. The following sections describe different views of the protocol
interface and how to construct them.

1. End-to-End view of the whole system, in context, showing data flows
2. End-to-End protocol view, showing the most significant protocols supporting the data flows
3. A “black box” view showing one element of the system and its decomposition
4. A “white box” view showing the protocol stack that implements an interface
5. The interfaces of a single protocol entity
6. A state machine showing the internal behavior of a protocol entity
7. Specifying the standards that define interface compliance

Other aspects, such as interface and protocol performance may also be specified in a way that supports direct
analysis of the model; for those details see the paper by Sarrel and Simpson.

A. End-to-End View of the Whole System
There are many different ways to model systems. Most methods start with a top level view of the system that

provides context. Figure 3 shows an example End-to-End context view for an example space data system. This shows
the data flow between the observed data source and the end user, via the Spacecraft and the Ground System. While
this figure shows the major physical elements of the system that is being modeled, it is intentionally somewhat abstract
and provides only a coarse grained decomposition of these elements. One of the benefits of using an MBSE tool is
that it can manage the internal consistency of the model, so we can focus on specific details, or leave them out where
needed for clarity.

This figure also shows the nature of the connections between elements. The connectors or links also have
additional details and specification, which are hidden in this view to emphasize the context and the end-to-end flows.
Similarly, the ports just indicate direction of flows through them. The internal details of the interfaces and protocols
are not shown in this view, but they can be captured in the model at the level of abstraction that is required and seen
in other views.

None of these figures show organizations, ownership, or operational details, but views that do show such
information could be developed as an overlay on this context diagram. A variety of simple embellishments can be
used, such as using color to indicate ownership or adding these kinds of properties to the modeled elements themselves.
Similarly, if operational details are needed, they can be added in a separate set of views that reference these elements
and/or their decomposition and viewed from another perspective.

American Institute of Aeronautics and Astronautics

5

Figure 3. End-to-End contextual view of a space system

Most elements shown in this figure have some sort of stereotypes applied, such as <<Component>> or <<Protocol

Entity>>. Good practice for modeling large systems is to develop a profile or a set of stereotypes to represent domain
specific definitions that can be used consistently. Figure 4 shows an example that was used for a recent system-of-
systems modeling project. Similarly, the stereotypes might include a color code that permits visual distinctions of
subsystems, or object types, or ownership, as needed for the particular model.

Figure 4. Example system stereotype definitions

This class structure example includes definitions of system, element, and subsystem, as abstract entities. At the

levels below subsystem, a distinction is drawn between hardware (HW) and software (SW) items. Keeping the model
elements abstract down to some agreed level, and only characterizing implementation distinctions (HW / SW) below
that level is a way of approaching initial architectural modeling at an abstract level before drilling down to

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip Mission Context-Logical Mar 13, 2016 3:41:57 PM

Mission Context-Logical

«Subsystem»
 : Ground Computer

«Subsystem»
 : Ground Station

«Subsystem»
 : Display

«System»
 : Ground System

«Subsystem»
 : Avionics Subsystem

«Subsystem»
 : Telecom Subsystem

«Subsystem»
 : Payload

«System»
 : Spacecraft-Physical

temperature

«External»
 : Thermal Source

«External»
 : Atmosphere

«External»
 : Atmosphere

«External»
 : User

Temperature
 Data

Thermal
Packet

Digital
Video

Thermal
Packet

Dgital
Stream

rf1 : Radiated
RF Signal

t2 : Thermal
Emissions

rf2 : Radiated
RF Signal

t1 : Thermal
Emissions

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip System Decomposition Mar 12, 2016 5:02:24 PM

System Decomposition[]

HW Config Item (HWCI)

HW Component (HWC) SW Component (CSC)

SW Module (CSCI)

System Element

HW Unit (HWU) SW Unit (CSCU)

Subsystem

System

0..* 0..*

0..*

0..*

0..*

0..*0..*

0..*

American Institute of Aeronautics and Astronautics

6

implementation details. This also permits added flexibility in mapping from architecture to one or more possible
implementation approaches.

B. End-to-End Protocol View
Figure 5 shows the major End-to-End communications systems and also the high level protocol and flows. This

figure is a re-statement in SysML of a typical cross support deployment using CCSDS standards. Similar figures in
the RASDS style appear in the CCSDS Space Communication Cross Support Architecture Requirements Document,
CCSDS 901.1-M-1 8, but this has the more familiar Spacecraft, Ground Station, and MOS terminology.

Figure 5. End-to-End contextual protocol view of the whole system

Commands to the spacecraft flow in CCSDS TC frames from the Ground Computer to the Spacecraft but the actual

data flows at the layers below this use a disjoint set of protocols. The Ground Computer does not directly radiate the
TC frames on the RF link to the Spacecraft, it uses the services of the Ground Station. The Ground Station may be
owned by another agency or a commercial service provider. The Ground Computer in this example uses a standard
service interface called the Cross Support Transfer Service (CSTS) forward frame (F-Frame). This service accepts
CCSDS frames, with whatever data they carry for delivery to the Ground Station. It is the Ground Station that encodes
the data and radiates the RF signals. There is an analogous, but different, service interface for the return link, and it
provides both on-line and off-line services along with signal and service quality annotations. A compliant Ground
Station will also have service interfaces for planning, scheduling, and configuring the link, and other service interfaces
for monitor data, radiometric data, and possibly service control. These are not shown here, but they follow the same
pattern.

These forward and return data paths are highly asymmetric, and this sort of diagram allows this to be clearly
specified. On the terrestrial side of the Ground Station the CSTS service runs over standard Internet protocols and
makes use of private or commercial WAN services and routers. On the space link side of the Ground Station CCSDS
space link, coding, modulation, and selected RF signals are used to communicate in space. This figure shows the
typical CCSDS space communications standards in relationship to major system elements, and shows that the upper
layer command and TC frame data has an <<Over> relationship to the underlying, and distinct, protocol stacks.

A diagram like Figure 5 shows the relationships among major elements and some key details of the end-to-end
flow, and may form part of an Interface Control Document. At the same time, this figure shows only the top level
ports, protocol types, and data flows, and not the details of the interfaces nor the protocol stacks.

C. “Black Box” View Showing Decomposition of One System Element
In order to more fully specify the structure of the system, it is often necessary to define how the system is

decomposed. This may be done either top-down or bottom-up; either as a decomposition activity or one of composing
systems of subsystems and components. It is often natural to think of decomposing the system, but in reality, systems
are often composed by assembling pre-existing components, such as computers, buses, physical data links, receivers,
antennas, and, for spacecraft, instruments. Figure 6 shows a view of the Spacecraft element from the End-to-End view.

This figure only shows a partial decomposition and some component relationships, since a typical spacecraft will
have many more subsystems and much more complicated interconnections than this simple example showing Avionics
and Telecom. This view can be extended to include any number of other systems and elements. This decomposition

Black Box End-to-End[System Context] Contextibd []

Ground Computer

«PDU»
 : CSTS F-Frame

«PDU»
 : TCP Segment

«PDU»
 : IP Datagram

«PDU»
 : Command

«PDU»
 : TC Frame

Spacecraft

«PDU»
 : ~TC Frame

«PDU»
 : ~Symbol

«PDU»
 : ~RF

«PDU»
 : ~Command

Ground Station

«PDU»
 : Symbol

«PDU»
 : RF

«PDU»
 : ~CSTS F-Frame

«PDU»
 : TCP Segment

«PDU»
 : IP Datagram

Terrestrial WAN
«PDU»

 : IP Datagram
«PDU»
 : IP Datagram

«Over»
«Over»

«Over» «Over»
«Over»

«Over»

«Over»

American Institute of Aeronautics and Astronautics

7

also shows hardware and contained software. These components are connected at a port and the data that is exchanged
is typed as packet data. The port has directionality, one-way in this example, and the port is shown on all parts that
participate in the connection.

This Black Box view is useful in that it shows hardware and software relationships and the presence of key
interfaces and connections. As with the rest of the figures to this point, it shows only the top level ports and data flows,
but not interface details or protocol stacks. For many purposes, a view with this level of decomposition and
connectivity will be sufficient. For other purposes more information must be provided to define the details of the
interfaces.

Figure 6. “Black Box” view of the Spacecraft Element

D. “White Box” View Showing Interface Protocol Stack Details
A “White Box” view may be used to show an internal view of the details of the protocol stack that implements the

interface. The modeling pattern is to show nested parts within the port. Each part is a protocol entity that is typically
identified as belonging to a specific protocol layer, as described in the ISO BRM. When specific, pre-defined, layers
are used it is good practice to retain those terms, but other terms may be introduced as needed. For instance, when the
BRM was defined there were not the sort of messaging layers in use that are quite common today. Ideally, each of
these layers will be associated with a specific standard, as shown in Figure 7.

A specific intent of this view is to specify the complete stack of protocols that define an interface. This starts at
the application data transfer layer, and ends at the physical layer. Not all of these layers need to be shown on every
diagram, and any given model view may stub off the details when they do not provide any added useful information.
A term used for the stack of protocols exposed at the interface of a component is the Interface Binding Signature.

Figure 7 includes the following layers, with these typical characteristics:
• Application layer: packet transfer protocol, manages exchange of packet data between applications.
• Transport layer: Transmission Control Protocol (TCP) 9, provides end-to-end delivery of data, complete,

once only, and in order.
• Network layer: Internet Protocol (IP) 10, provides network layer routing over any number of intermediate

network nodes.
• Data link layer: 1 Gb Ethernet, provides data link layer services that may involve a fabric of switches and

hubs.
• Physical layer: twisted pair cable (Cat-5) and RJ-45 plug terminations.

In this figure, the data flow between the source Packet Processor and the destination Packet to Frame Processor is

actually shown twice. The top level connection is a high level view, much like in Figure 6. Below that is shown the
details of the protocol stack. Usually, only one or the other is shown in a view. The logical connections at a horizontal
layer are labeled as <<PDU Link>>, to show that the data that flows here is actually PDU's of the protocol entities at
that layer. The characteristics of these PDU's differs from layer to layer as does the behavior of the protocol entities.

As in Figure 5, the end-to-end flow of data within a subsystem may not use a homogenous lower layer structure.
For instance, below the network & transport layers (TCP/IP) a variety of other data link and physical layers may be
employed, or intermediate devices such as Ethernet switches may be used. Depending on the purpose of the diagram,
these details may be hidden or exposed or addressed in a separate view. This diagram also reflects that the physical
layer ports (1GE and RJ45) are hardware and actually belong to the Transceiver and Computer components, while the
upper protocol layers are software and belong to the Communications and C&DH SW. MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip Black Box Mar 12, 2016 3:02:49 PM

Mission Context-Logical Black Box[]

 : Communication SW

«Provided I/F»
 : ~Packet Port

«Component»
 : Transceiver-S

«Provided I/F»
 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

«Provided I/F»
 : ~Packet Port

«Required I/F»
 : Packet Port

 : C&DH SW

«Component»
 : On-board Computer

«Required I/F»
 : Packet Port

«Subsystem»
 : Avionics Subsystem

«Required I/F»
 : Packet Port

«block»
 : Spacecraft-Physical

«SDU Link»

Thermal
Packet

American Institute of Aeronautics and Astronautics

8

Figure 7. “White Box” view showing the Spacecraft Element protocol stacks

Frequently a reference to “TCP/IP” or Ethernet is used as a short-hand, when in reality each comprises several

separate specifications with their own explicit sets of details. A nearly ubiquitous example of this is the USB interface
11. The “USB spec” for this seemingly simple interface, used on “thumb drives” and other common devices, is actually
several quite complex specifications dealing with the physical interface, signaling, cabling characteristics, bus control,
device discovery, and device type related behaviors, to say nothing of at least three different backward compatible
versions of this evolving spec.

For some purposes it will be sufficient to just identify the interface binding signature, and this will usually be the
case when well known protocols with well understood behavior are selected. In other cases it may be necessary to
model in detail the interfaces or behavior of a new or specialized protocol.

E. Interfaces of a Typical Protocol Entity
For purposes of modeling protocol entities, each one is considered to have three ports: the interface that provides

services to the upper (N+1) layer, the interface that requires services of the lower (N-1) layer, and the interface with
the peer protocol entity at the same layer. These are shown in Figure 8. There may also be a management interface
that can be used to configure and control the protocol entity, and that may be in-line with normal PDU data flows or
via some separate port. In some cases this “management interface” may be provisioned as a Management Information
Base (MIB) that is loaded at boot time, or it may even be complied in as selected options that are implemented (or
not).

Description of protocol entity ports:
• Provided Service port (TCP this in example): the services offered to any upper layer (N+1) protocol,

defined as an abstract service and using a layer N Service Data Unit (passes SDUs)
• Required Service port (IP this in example): the services required from any lower layer (N-1) protocol,

defined as an abstract service and using a layer N-1 Service Data Unit (passes SDUs)
• Peer Protocol port (TCP PDU in this example): the port that enables the protocol entity to interact with its

peer entity at the same layer, defined by the protocol specification and using the layer N Protocol Data
Units (exchanges PDUs)

• Protocol management may be in-line with the protocol, via a MIB, or a separate interface

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip White Box Mar 12, 2016 3:04:16 PM

Mission Context-Logical White Box[]

«Protocol Entity»
 : Packet Processor

 : Packet Port

 : C&DH SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : Packet Port

«Component»
 : On-board Computer

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«Protocol Entity»
 : Packet to Frame Processor

 : ~Packet Port

 : Communication SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : ~Packet Port

«Component»
 : Transceiver-S

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«block»
 : Spacecraft-Physical

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

Space Packet

«PDU Link»

«PDU Link»

«PDU Link»

«hardware»

«PDU Link»

«PDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«hardware»

«SDU Link»

Thermal
Packet

American Institute of Aeronautics and Astronautics

9

Figure 8. Interfaces of a Protocol Entity

It is expected that the required services from the N layer and the provided services from the N-1 layer will match,

but sometimes these are developed at different times, or new technology gets introduced after the fact. In the case of
IP, which is used in some of these examples, several generations of underlying data links have come and gone since
that protocol was first designed in 1981. It is really an implementation detail and not often modeled, but there is
actually a shim layer between the IP implementation and the possible underlying data links. These shims ensure that
the IP datagram, the PDU specified by RFC 791, is broken into parts and then re-assembled, as needed, to fit into the
underlying data link layers. There is a whole suite of “IP over xyz” RFCs that describe in detail how this is done.
This can be thought of as “impedance matching” between TCP and the data links. In CCSDS, the Space Packet
Protocol 12, and the Encapsulation Packet 13, provide similar functions.

F. State Machines Define Protocol Entity Behavior
At the peer entity (PDU) port, each protocol entity exposes its defined behavior. Figure 8 is a Black Box view of

such an entity, but the “badge” on the front gives a hint of the complexity that lies within. The badge, by the way, is
just incidental decoration, it may be used if it is found useful, but serves no modeling purpose aside from decoration.

The description of actual protocol behavior may be specified in a number of different ways in standards. All of
the following (and more) have been used:

• State machines (sometimes shown as an ASCII diagram)
• State tables
• Sequence diagrams
• Simple English text

For reasons of clarity and ease of understanding, state machines are recommended as clear, formalized representations
that may be well integrated with the rest of the model. In typical protocols, the behavior at a given layer is actually
performed by a pair of cooperating state machines. To capture these dynamic exchanges, the state machine diagrams
may be accompanied by sequence diagrams that show temporal exchanges between the peers.

State machines can be used to describe the process that a protocol entity follows when it receives a protocol
Protocol Data Unit (PDU) from a peer entity. They can be used to describe the exchange(s) of PDUs between peers,
and they may be used to describe the behavior at the required and provided interfaces, such as start-up, connection
establishment, and SDU transformation into PDUs. The behavior may involve the dynamics of PDU exchanges,
including both nominal and error conditions.

Figure 9 is a part of the state machine that is at the heart of the TCP protocol, as defined in RFC 793 9. A crude,
but effective, variant of this diagram is present in that document in the form of an “ASCII drawing”. TCP is a
connection oriented protocol and this figure shows the behavior of both peer entities, the Client (red lines) and the
Server (blue lines), but it only shows the connection establishment and tear-down processes.

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip Black Box Mar 12, 2016 3:14:10 PM

Protocol Entity

«Protocol Entity»
TCP

«Provided I/F»
 : TCP Provided I/F

«Required I/F»
 : IP Required I/F

«PDU I/F»
 : TCP I/F

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACKACK CLOSE() / FIN

PASSIVE OPEN() CLOSE()

American Institute of Aeronautics and Astronautics

10

Figure 9. TCP example of a State Machine - Protocol entity behavior

The bulk of the work that TCP does to ensure reliable, once-only, in order, delivery of data without omissions is

done inside the Established state shown in the middle of the diagram, and this behavior is considerably more complex.
Most of the TCP specification is done in the “simple English text” style, and this is eighty-five (85) pages of rather

dense “prose”. A paper on finite state machine modeling of the TCP standard 14 provides a translation of the TCP
spec into an extended finite state machine (EFSM) model using EFSM/SDL. This state machine model is extensive,
at thirty-seven (37) pages of diagrams, but it is quite accessible and understandable.

Furthermore, simulation of the behavior of these state machines can be performed and the behavior verified, see
the paper on EFSM modeling for an example. A clear state machine description is valuable for understanding existing
protocols, and it should prove especially useful when designing new protocols.

G. Interface Compliance Specification
Although the concept was not introduced earlier, in protocol stack views such as Figure 7, it is possible to directly

specify in the model which interfaces in the full stack are defined by, and comply with, some standard specification.
It is also possible to tie the details of each layer to a whole standard or to specific sections of a standard if that is
required. This concept of modeling compliance with a standard is captured explicitly in the model by the “Satisfies”
notation shown in Figure 10.

Compliance statements may include interface data, PDU structures, behavior (preferably as described by one or
more state machines), or by activity, and sequence diagrams. If the protocol at any given layer is fully specified in a
published standard, just using the “Satisfies” relationship for these layers may be adequate. In such cases the
specification of the interface binding signature may be accomplished by describing the set of protocols used at the
interface in a black box diagram, identifying the “satisfies” relationships, and then just referencing that interface
specification wherever needed. These components are indicated by dashed lines as shown in Figure 10, indicating
that the parts are reference parts that are not necessarily owned by the enclosing block.

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2015-10-26/Ports & Flows-10-15-26.mdzip TCP Connection Establishment] Oct 27, 2015 1:26:20 PM

TCP Connection Establishment]

Usual TCP Paths

Client

Server

CLOSING

CLOSED

LAST ACKFIN WAIT 2

FIN WAIT 1

LISTEN

TIME WAIT

SYN SENT

ESTABLISHED

SYN RECEIVED

CLOSE WAIT

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACK CLOSE() / FINACK

PASSIVE OPEN() CLOSE()

American Institute of Aeronautics and Astronautics

11

.
Figure 10. Interface Compliance Specification, TCP Example (RFC 793)

Figure 10 also shows the relationships that exist between the protocol specification, the state machines that

implement the behavior, and a sequence diagram that describes the time-ordered PDU exchanges between the two
entities. The sequence diagram shown is a hyperlink to the actual diagram in the model.

IV. Conclusion
This paper describes a method for modeling space data systems and element interfaces and behaviors at successive

levels of detail. This supports both abstract views and deep specification of technical interfaces and behavior, where
these details are required. Careful use of the method from the outset, will permit further elaboration of details as
needed.

A. Modeling Flexibility – Consistency and Re-use of Components and Views
Models may contain multiple views, from top level context, to composition and components, down to low level

interface and protocol details. Careful selection of views allows different levels of abstraction to be described, and
supports drawing clear distinctions between architectural level views and implementation level details.

Creating defined stereotypes, and libraries of components and protocol entities, allows them to be re-used and
combined as needed in different views. Whether developed top-down or bottom-up, these libraries may be used as
building blocks for new models, promoting consistency and clarity. Libraries of components and protocols may find
re-use within a particular system application and across projects.

The different views allow the systems and systems-of-systems to be understood from different perspectives and at
different levels of detail. SysML does includes support for viewpoint specification and view construction, but this
requires some discipline from the modeling team. SysML, and the typical modeling tools help ensure consistency
across the model.

B. Systems-of-Systems Interface Modeling Benefits
The method presented here permits space data systems, and systems-of-systems, their structure and interfaces, to

be modeled with a high degree of fidelity. Using a principled approach to system, component, interface, and protocol
modeling allows successive levels of detail to be added as and when needed. Even a partial model can document

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip RFC 793 Compliance Mar 12, 2016 3:28:25 PM

RFC 793 Compliance

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)
Send Call

Queue data in
the Send Buffer

Create a new
segment from
the data in the

Send Buffer

SND.NXT :=
SND.NXT +

SEG.LEN

Add data just
sent to the

Rexmt Queue

CalcRTO (RTO)

SET (RTO,
REXMT)Wait until enough data has been

accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACKACK CLOSE() / FIN

PASSIVE OPEN() CLOSE()

«Protocol Entity»
TCP : TCP

«Provided I/F»
 : TCP Provided I/F

Satisfies = RFC 793

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

«Protocol Entity»
pkt Xfer : Pkt Xfer

«Required I/F»
 : TCP Required I/F

Satisfies = RFC 793

«Component»
component 2

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)
Send Call

Queue data in
the Send Buffer

Create a new
segment from
the data in the

Send Buffer

SND.NXT :=
SND.NXT +

SEG.LEN

Add data just
sent to the

Rexmt Queue

CalcRTO (RTO)

SET (RTO,
REXMT)Wait until enough data has been

accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACKACK CLOSE() / FIN

PASSIVE OPEN() CLOSE()

«Protocol Entity»
TCP : TCP

«Provided I/F»
 : TCP Provided I/F

Satisfies = RFC 793

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

«Protocol Entity»
pkt Xfer : Pkt Xfer

«Required I/F»
 : TCP Required I/F

Satisfies = RFC 793

«Component»
component 1

«interfaceBlock»
TCP 1 : TCP I/F

«interfaceBlock»
TCP 2 : TCP I/F

TCP Established
ref

PASSIVE OPEN()
comes through
TCP Provided I/F

ACTIVE OPEN()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F TIMEOUT

happens
internally to TCP
protocol entity

Reference to the
interaction for
data exchange.

FIN6:

SYN+ACK2:

ACK5:

ACK3:

SYN1:

ACK7:

FIN4:

«PDU Link»
 : TCP I/F Connector Type

Satisfies = RFC 793

«SDU Link»
 : TCP Pro Req Connector Type

Satisfies = RFC 793

«SDU Link»
 : TCP Pro Req Connector Type

Satisfies = RFC 793

American Institute of Aeronautics and Astronautics

12

systems, interfaces, and behavior at a much deeper level of specificity than is provided by an ICD “protocol list” or a
set of “boxes and lines” diagrams, whether produced by graphical presentation or modeling tools.

Particularly for space data systems, which may include elements from different organization, distinctive and
asymmetric protocols, and other interoperability complexities, adoption of a clear and consistent approach to modeling
the interfaces can offer significant benefits. Including clear descriptions of connectivity and composition, and mapping
to specifications and behavior can help provide unambiguous specification of system structures and component
interactions. The development of these models can also support analysis of flow and continuity, and verification of
interface behavior, and support analysis of end-to-end connectivity, behavior and performance.

Acknowledgments
Aside from the many hours that the co-authors spent discussing and refining these concepts, discussions with many

other people helped to refine this method. This modeling pattern was first developed and applied as part of the Space
Communication and Navigation (SCaN) Integrated Network Interface Definition Trade Studies 15, and the related
SCaN Network Integration Project (SNIP) 16.

There has been other work to model interfaces in SysML, some of which modelled certain aspects of similar
layered interface concepts. A layered interface pattern was applied by Maddalena Jackson to describe data flows in
support of human space flight Ground Data System of the Exploration Flight Test 1 (EFT-1) project 17. This included
the flow of information across the ground network supporting the mission and used two layers. The top layer showed
the flow from source to destination and the second layer described the connections between the routers, switches,
firewalls and servers. Constraints were added to describe the path so that connectivity could be evaluated directly
from the model. Robert Karban developed and applied interface and protocol stack patterns to model software,
electrical, optical, and mechanical interfaces while at the European Southern Observatory 18. Takahiro Yamada, Erik
Barkley, John Pietras, and others contributed substantially to the development of the CCSDS RASDS and SCCS-
ADD which defined the view viewpoint methods and then tested them on a major document.

Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

References
1 Maier, Mark, Architecting Principles for Systems-of-Systems, Systems Engineering 1, John Wiley & Sons, Inc.,

1998, pp 267–284.
2 OMG Systems Modeling Language (OMG SysML™), Version 1.4, OMG Document formal/2015-06-03, Object

Management Group, September 2015. [2]
3 Information Technology—Open Systems Interconnection—Basic Reference Model: The Basic Model, Issue-1,

International Standard, ISO/IEC 7498-1:1994, Geneva: ISO, 1994.
4 Systems and software engineering — Recommended practice for architectural description of software-intensive

systems, ISO/IEC 42010, International Standards Organization, July 2007, revised 2011.
 5 Reference Architecture for Space Data Systems, Issue 1, Recommendation for Space Data System Practices

(Magenta Book), CCSDS 311.0-M-1, Washington, D.C., CCSDS, September 2008.
6 Shames, Peter M, Sarrel, Marc A, Freidenthal, Sanford A, A Representative Application of a Layered Interface

Modeling Pattern, 26th Annual INCOSE International Symposium (IS 2016), Edinburgh, Scotland, UK, July 2016
(submitted for publication).

7 Shames, Peter M, Sarrel, Marc A, A modeling pattern for layered system interfaces, 25th Annual INCOSE
International Symposium (IS2015), Seattle, WA, July 2015.

8 Space Communications Cross Support—Architecture Requirements Document, Issue 1, Recommendation for
Space Data System Practices (Magenta Book), CCSDS 901.1-M-1, Washington, D.C., CCSDS, May 2015.

9 Postel, J, Transmission Control Protocol, STD 7, Reston, Virginia, ISOC, September 1981.
10 Postel, J, Internet Protocol, STD 5, Reston, Virginia, ISOC, September 1981.
11 Universal Serial Bus Revision 2.0 Specification, USB Version 2.0 (with updates), Oregon, USB Implementers

Forum, Inc (USB-IF), April 2000.
12 Space Packet Protocol, Issue 1, Recommendation for Space Data System Standards (Blue Book), CCSDS 133.0-

B-1, including Technical Corrigendum 1 and Technical Corrigendum 2, Washington, D.C., CCSDS, September 2012.
13 Encapsulation Service. Issue 2. Recommendation for Space Data System Standards (Blue Book), CCSDS 133.1-

B-2. Washington, D.C., CCSDS, October 2009.
14 Zaghal, R, Khan, J, EFSM/SDL modeling of the original TCP standard (RFC793) and the Congestion Control

Mechanism of TCP Reno, Kent State University report TR2005-07-22-tcp-EFSM.pdf, Kent State University, 2005

American Institute of Aeronautics and Astronautics

13

15 Shames, Peter, Anderson, Michael, et al, NASA Integrated Network Monitor and Control Software Architecture,
SpaceOps 2012, AIAA, June 2012.

16 Uzo-Okoro, Ezinne, Hudiburg, John, et al, “NASA Space Communication and Navigation Network Integration
Project (SNIP), AIAA 2014-1653, SpaceOps 2014, AIAA, May 2014.

17 Jackson, M, et al., Architecting the Human Space Flight Program with Systems Modeling Language (SysML),
AIAA 2012-2556, Infotech 2012, AIAA, June 2012.

18 Karban, R, et al., MBSE Initiative – SE2 Challenge Team, Cookbook for MBSE with SysML, Issue 1, INCOSE,
2011.

Biography
Peter Shames has been engaged in the process of turning computers into useful tools for scientists for the bulk of his
professional career. His specific expertise is architecting large-scale space data systems, including space
communications protocols and standards. Peter manages JPL's Data Systems Standards Program in the Interplanetary
Network Directorate (IND). He is Director of the System Engineering Area for Consultative Committee for Space
Data System (CCSDS). Within CCSDS he was lead editor of the CCSDS Reference Architecture for Space Data
Systems (RASDS, CCSDS 311.0-M-1) and Space Communications Cross Support Architecture Documents (SCCS-
ADD, CCSDS 901.0-G-1 and SCCS-ARD, CCSDS 901.1-M-1).

Marc Sarrel is a systems engineer in JPL's Mission Control Systems section. For the past five years, he has applied
Model Based Systems Engineering to various system engineering tasks in the space-flight ground-systems domain.
He has worked on the Spitzer and Cassini missions as a Mission Operations System Engineer and a Ground Data
Systems Engineer, and has written ground processing software. He has a master’s degree in Computer and Information
Science from The Ohio State University, a bachelor’s in Computer Science from Washington University in St. Louis,
and has worked at JPL for twenty-five years.

Sanford Friedenthal is an independent consultant and industry leader in model-based systems engineering.
Previously, as a Lockheed Martin Fellow, he led the corporate engineering effort to enable Model-Based Systems
Development across the company, where he was responsible for developing and implementing strategies to
institutionalize the practice of MBSD across the company, and provide MBSE support to programs. He chairs the
INCOSE MBSE Initiative and other industry modeling efforts, and is co-author of ‘A Practical Guide to SysML.’

