
24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

Accelerating MBSE Impacts Across the Enterprise:
Model-Based S*Patterns

William D. Schindel

1
, Stephen A. Lewis

1
, Jason J. Sherey

1
, Saumya K. Sanyal

2

 1
ICTT System Sciences

2
K2 Firm, LLC

 schindel@ictt.com, lewis@ictt.com, sherey@ictt.com, sksanyal@k2firm.com

Copyright © 2015 by William D. Schindel and Saumya K. Sanyal. Published and used by INCOSE with permission.

Abstract. Model-Based Systems Engineering (MBSE) methods can directly address

“organizational silos” problems. This paper reports on work by the INCOSE/OMG MBSE

Initiative Patterns Challenge Team. This group focuses on Pattern-Based Systems Engineering

(PBSE) using model-based system patterns based on the S*Metamodel, reported in multiple

IS2015 papers.

Distinctive are (1) the configurable, model-based nature of the patterns (not all historical

patterns work has been model-based), (2) the technical scope of the models, encompassing

requirements, design, failure mode, verification, and other aspects, (3) the system scope of the

models, encompassing whole systems, configurable product lines, and platforms, not just

libraries of components, (4) the diverse and integrating cross-enterprise domains of the

patterns, encompassing products, innovation processes, manufacturing,

packaging/distribution, and other domains, and (5) the ability to enable a variety of COTS

modeling languages and tools, PLM, and other enterprise information systems to integrate

support of management and application of S*Patterns across enterprises.

Introduction

Business Challenges and Opportunities

Enterprise-level economic and competitive pressures, along with human nature, can drive

managers within product manufacturing or other complex enterprises into increasingly

defensive postures and responses. These may locally defend their departmental functions, but

globally sub-optimize the performance of the enterprise—risking the viability of the

organization and the well-being of all within it. Major departments (Research, Development,

Engineering, Marketing, Finance, Accounting, Production, etc.) are struggling to maintain

performance, cost, quality, and schedule standards set by others, with shrinking budgets for

capital, R&D, and overhead budgets. Information Technology is simultaneously a cost center,

a key enabler, and a major gating factor for organizational performance. Human resources

departments may find they are only able to manage compliance and crises, but not be

responsive to requests for proactive resource planning and development.

Competitive pressures of markets for products and services, as well as investor market forces,

are driving the need to shorten innovation cycle time from concept to production, accompanied

by demand to deliver products with increased feature sets at reduced purchase and operational

costs. Cars are expected to be safer, reduce driver load, be more comfortable, and contain

sophisticated electronics, all at reduced fuel consumption and maintenance cost. Cell phones

are expected to have greater storage and display capacity, digital connectivity, and voice

quality with significantly extended battery life. Consumable goods must concurrently be

effective and meet increasingly complicated set of safety and environmental regulation.

mailto:schindel@ictt.com
mailto:lewis@ictt.com
mailto:sherey@ictt.com
mailto:sksanyal@k2firm.com

These challenges are not limited to the introductory cycle of innovations, but can also be found

throughout the subsequent life cycles of the new or innovated systems. Also common across

all of these examples are a backdrop of growing complexity and the constant drumbeat of

cheaper, cheaper, and cheaper.

Companies, managers, and industries that deal with these pressures well not only survive but

thrive. Part of the art and science of this success is concerned with addressing “enterprise level”

coordination that must occur across different functional areas to achieve an emergent result for

customers, shareholders, and other stakeholders. While teamwork and culture are essential

ingredients of that success, the fundamental nature of cross-organizational interactions is itself

a growing systems challenge that cannot be entirely overcome with culture and good will, as

expectations, complexity, and speed continue to increase.

A variety of tools and methods have been brought to this party, and their success is observed

and studied as best practices are codified and spread virally crossing industry and functional

boundaries. Enterprise information systems, first invented to solve complex scheduling

problems in manufacturing (e.g., MRP, ERP, etc.), are now being extended and used to manage

financial and human resources. Lean and Six Sigma Tools have been adapted to every

functional silo. Collaborative information technology and social media access have outstripped

their ability for governance. With that said, in our respective client practices we find that the

spreadsheet is frequently still considered (based on behavior we observe, across citizen service,

defense, aerospace, automotive, health care, advanced manufacturing, energy, telecom) as the

most useful information systems and legacy data management tool, while simultaneously

symbolic of our clients’ biggest challenges.

Project Management, Capability Maturity, and Risk Management in the late 1980s were

thought by some to be so burdensome that defense systems engineers conversant in these

techniques were relatively unemployable in the commercial sector. Today PMI, CMMI, and

Risk Management are common valued skill sets for project managers in home construction,

hospitality, education, and consumer products. Systems engineering methods and tools

formerly reserved for society’s most ambitious undertaking are finding their way into use to

serve multi-domain issues across Products, Manufacturing Processes, Supply Chain and

Distribution Systems. While credit for some of this evolution ought to be given to the improved

maturity and accessibility of those methods and tools, it is fair to say that it is also being driven

by growing complexity in these formerly “simpler” domains—whether the methods and tools

are fully ready yet or not.

This paper exemplifies the shift of emphasis from phenotype to genotype, from atoms to bits,

from making things to printing things, from bricks and mortar to intellectual property, and from

expertise of the individual to shared knowledge across the team. The competitive game is

moving to the Model Based Economy. What better toolkit could we ask for than MBSE? How

can we harness its promise across the Enterprise? Where is additional progress needed?

Background on MBSE/PBSE and the S*Metamodel

The Patterns Challenge Team of the INCOSE/OMG MBSE Initiative (Patterns Team 2013-14)

was formed in 2013 to pursue the practical use and awareness of system patterns of a particular

type, called S*Patterns, which are described as follows:

1. S*Models are MBSE models that are based on the S*Metamodel. (The Metamodel

provides an underlying framework that defines the semantic meaning of models

conforming to it.) The S*Metamodel’s explicit semantics include some key system

concepts that are long-established in science and engineering, but not always found to

be so explicit in contemporary models (Schindel, 2005, 2011, 2013). Figure 1 is a

summary extract of some of the most important aspects of the underlying

S*Metamodel.

Figure 1: Key Elements from the S*Metamodel

2. S*Patterns are configurable, re-usable S*Models. (Not all historical system pattern

work was based on the use of models, but S*Patterns are.) An S*Pattern may be thought

of as a model of a family of systems, a platform, or a product line, or as an architectural

framework. As shown in Figure 2, once an S*Pattern has been created for a given

enterprise, product line, or other domain, it may be used during a delivery project to

rapidly create a high-grade S*Model, typically an order of magnitude faster than by

creating a new model, and configured for the specific needs at hand (Schindel, 2005a,

2011c, 2012, 2014, Schindel and Peterson, 2013, Schindel and Smith, 2002, Bradley,

Hughes, Schindel, 2010, Cloutier, 2008, Alexander, 1977, Gamma et al, 1995, ISO

42010, 2011).

3. S*Models and S*Patterns are independent of any specific modeling language, and are

typically expressed using any of a variety of the popular standard or third-party

contemporary modeling languages, once a mapping is provided. (For example, in this

paper some of the S*Models are expressed in SysML language.) This has the impact of

strengthening the semantics of existing modeling languages in areas necessary to

support key historical practices of engineering and science (Schindel, 2005, 2014a,

2014b, Schindel 2010).

Figure 2: S*Patterns Are Configured to Generate S*Models

4. S*Models and S*Patterns are independent of any specific software tool or

information system, and may be stored in and managed by a variety of popular

third-party COTS modeling and engineering tools and information systems, once a

mapping is provided. (For example, this paper illustrates S*Models and S*Patterns in

several of the third party COTS system modeling tool, requirements database, and PLM

systems that have been used in various domains.) This has the impact of increasing the

value of existing COTS system modeling tools, requirements databases, and PLM

systems already in use.

5. The processes of Systems Engineering consume and produce information. However,

there is a long tradition of extensive descriptions of the process and procedure of

Systems Engineering. Compared to the amount of ink and effort traditionally spent to

describe SE process and procedure, the amount spent to describe information (which

passes through those processes and procedures) is usually orders of magnitude less.

Compare this to the amount of description of the underlying relationships of physics,

chemistry, or electronics, versus the description of related engineering procedures. This

imbalance was somewhat understandable in the day in which Systems Engineering

information was in the form of prose, for which underlying “theory” is limited, but in

the current day in which that information can be based on explicit models--the language

of science and mathematics--we suggest a shift in this balance is in order. Figure 3

illustrates the model of both the SE process and the information passing through it, and

the idea that the SE process should be primarily performed to drive trajectories in

configuration space (Schindel, 2015).

6. The processes of MBSE as typically practiced today (Estafan, 2008), as well as more

traditional Systems Engineering (ISO 15288, INCOSE SE Handbook, 2014) are most

often presented, conceived, or practiced as if each engineering project is “starting from

scratch” to “green field” conceptualize a new system of a sort never before conceived.

Much procedural guidance is offered as to the discovery, study, synthesis, and analysis

of stakeholders, requirements, allocations, and architectures, trade-spaces, risks and

failure modes, etc., in a context that might lead one to believe the system of interest is

being studied for the first time. Although nothing about this good guidance is

inappropriate in principle to engineering the next generation of established domain

systems, there is a relatively low balance of guidance on the formal inclusion of what

we already know with discovery of what is new. The “up stroke and down stroke” of

Figure 2, deal with the relationship between managing formal model-based patterns of

what is already known (similar to the physical sciences), configuration of that

information to specific projects, and the interplay of the two. Recent progress with

Product Line Engineering illustrates a start on progress to rebalance this situation

(ISO/IEC 26550, 2013).

Figure 3: The MBSE Process Consumes and Generates S*Models

The Patterns Challenge Team has practiced use of S*Patterns to describe autonomous ground

vehicles, automated safety critical system test, optimization of design review assignment, and

(in this paper, below), cross-functional enterprise dependencies in product manufacturing

businesses (Peterson et al, 2015; Cook et al, 2015; Pickard et al, 2015).

Integrating S*Patterns, at Enterprise and Lower Levels

Agricultural silos (Figure 4) are designed to minimize unwanted external interactions that are

harmful to stored silage. The “silos” metaphor is an infamous description invoked to describe

all-too-frequent organizational pathologies of a certain type—those in which lack of

coordination, cooperation, teamwork, or alignment across parts of the organization rob the

enterprise of optimum performance.

Figure 4: Silos—Good for Farms, Bad for Organizations

In the enterprise case, the systems engineer’s interpretation focuses on the interactions (or lack

of them) between the “functional silos” of the enterprise, along with external actors. The

enterprise is a system, and a system is a collection of interacting parts. Based on those internal

interactions (exchanges of information, mass flows, energy, forces), an overall enterprise

behavior emerges, as “seen” by the external “actors” (for example, customers) through the

external interactions with the “black box” enterprise, as in Figure 5.

Figure 5: The Enterprise As System Embedded In Its Domain—An Example

The interactions of this perspective are a basic fact of nature about any organization, whether

high-performing or not, whether healthy culture of not, and across all business and institutional

models and domains. Just as we must not ignore the emergent characteristics of a designed

product or a system-of-systems, likewise we ignore this aspect of organizations at our peril.

Instead of overlooking these challenges, we describe here how they can be embraced as sources

of competitive advantage, built directly into the formalisms and information systems that help

define the enterprise and its local and global practices. This begins by adopting an explicit

model that focuses attention on the important interactions across organizational functions,

using the Enterprise System Pattern.

The Enterprise System Pattern

For a given enterprise, the Enterprise System Pattern is an S*Pattern that can be configured for

individual enterprise-level projects or other endeavours. This pattern is created once for the

enterprise, but thereafter updated as learning occurs. The “system of interest” for this

S*Pattern is the enterprise, illustrated by the Top Level System in the Vee diagram of Figure 3,

and the Enterprise Domain Model of Figure 5.

Like all S*Patterns, the Enterprise Pattern includes all the S*Metamodel aspects, for which

Figure 1 provides a summary. For this paper, two aspects of particular interest are:

1. Functional Interactions (a fundamental part of all S*Models) that span multiple

subsystems of the Enterprise, or other Domains, visible in Figure 5. It is these “cross

functional” interactions (or their absence) that are the source of “Silo Pathologies” of

the Enterprise. The solution is to understand and manage the interaction as a whole, and

this begins with its representation in a system model at the Enterprise level. An example

benefit is illustrated later below.

2. The Enterprise Management subsystem is shown in the logical architecture of

Figure 5. It is the “tip of the iceberg” of the Management System Pattern (aka the

Embedded Intelligence (EI) Pattern). Figure 6 illustrates the hierarchy of (human and

automated) Management Systems. Some of these appear again playing management

and controls roles in enterprise subsystems of Figure 5, in later sections below.

Figure 6: The EI Hierarchy of the

Management System (Embedded Intelligence) Pattern

MTS SOA MDS

MTS SOA
SOU,
MDS

MTS SOA
SOU,
MDS

MTS SOA
SOU,
MDS

SOU

MTS SOA MDS

SOUManagement
System

System of
Access

Managed
System

System of
Users

Management of:
MDS Performance
MDS Configuration
MDS Faults
MDS Security
MDS Accounting

A key emphasis of this paper is the importance of explicitly modelling and managing the

Enterprise level system, for successful enterprise projects. This can be very effectively

performed by the PBSE approach, summarized in Figure 2:

1. Pattern Management Process: Creating and improving the configurable, re-usable

Enterprise S*Pattern in an appropriate modelling tool. S*Patterns may be so managed

in a number of popular third party modelling tools, some of which are illustrated in this

paper. This part could be viewed as establishing the S*Model minimum for the content

of an Enterprise architectural framework, as in (ISO 42010, 2011).

2. Pattern Configuration Process: For each major enterprise project or endeavour,

configuring that pattern as an S*Model of that project. This does not necessarily require

a full modelling tool, and such project-specific configured models can be managed in a

PLM system, over the life cycle of the project (or product), as in Figure 7. S*Models

may be so managed in a number of popular PLM, modelling tool, or other information

systems.

The connection from (1) to (2) above is the S*Pattern Configuration Agent, which can be

attached to a number of different third party modelling or PLM systems. Part of the Pattern

Configuration Process is illustrated in Figure 12.

 Figure 7: PLM System: A Natural Model Life Cycle Repository for an
Enterprise Pattern That Has Been Configured for a Project

The Product Application Domain Pattern

The Product Application Domain Pattern, another S*Pattern, describes the enterprise’s product

(or platform, product line, family) in service in its intended application domain. This pattern

also includes all the S*Metamodel aspects, including those summarized by Figure 1. Like the

Enterprise Pattern described above, the Product Pattern is managed in some modelling

environment, separately configured for each product configuration or project, and those

configured S*Models are suitable to be managed in a PLM, modelling tool, or similar

information system.

For some classes of products, it is most efficient for the scope of this pattern to include the

product’s packaging—consumer products and pharmaceuticals are typical examples. For other

product types, the packaging aspects are modelled as part of the Distribution Domain.

A subset of the views typical of S*Models are illustrated below for an example family of

manufactured products—the Oil Filter Product Line. The views shown in this section illustrate

the use of OMG SysML modelling language and tools, all of which can be readily mapped to

the S*Metamodel. There are equivalents if other modelling languages and tools are used:

1. A Stakeholder Feature Model describes the set of configurable features available in

the product line. This part of the S*Pattern marks the point at which configuration for

specific products will occur. Its stakeholder attribute set establishes the trade space for

the system family. See Figure 8.

Figure 8: Stakeholder Features Overview

Figure 9: Domain Model

2. A Domain Model describes the external domain environment that the subject system

(Packaged Product Oil Filter, in this case) will encounter and physically interact with,

over its life cycle, ultimately traceable to all system functional requirements and

stakeholder features. See Figure 9.

3. A Logical Architecture Model describes the partitioning of the system in the logical

subsystems, short of their allocation to the physical architecture, also part of the

configurable S*Pattern. See Figure 10.

Figure 10: Logical Architecture Model

4. A State Model describes the temporal framework of system states, modes, or situations,

including what system Interactions are expected to occur during each such state. See

Figure 11.

Figure 11: State Model, Including Interactions

For a project, each applicable S*Pattern (Enterprise, Product, Manufacturing System, etc.) is

configured to specific S*Models applicable in that case. This may be performed on any

information system (COTS modelling tool, PLM system, etc.) that has been mapped to the

S*Metamodel and set up with an S*Configuration Agent algorithm. For example, the process

of configuring Oil Filter Product Pattern Features is shown in Figure 12, and the resulting

configured System Requirements are shown in Figure 13.

Figure 12: Configuring Pattern Features, to Generate Configured System Model

Figure 13: Resulting System Requirements, Configured for Project

The Manufacturing System Pattern

The Manufacturing System Pattern, another S*Pattern, describes the enterprise’s

manufacturing systems (processes, equipment, controls, people, facilities, materials). This

pattern also includes all the S*Metamodel aspects, including those summarized by Figure 1,

and having views similar to the preceding Product model series. Like the S*Patterns described

above, the Manufacturing System Pattern is managed in some modelling environment,

separately configured for each manufacturing system configuration or project, and those

configured S*Models are suitable to be managed in a PLM, modelling tool, or similar

information system. For some enterprises, it is most efficient for the scope of this pattern to

include the product’s packaging systems—consumer packaged products and pharmaceuticals

are typical examples. Some of the principles of Manufacturing and Packaging System Patterns

are described in (Bradley et al, 2010, and Schindel, 2012b).

A subset of the views typical of S*Models are illustrated in Figure 14 for an example family of

manufacturing systems—those which produce the Oil Filter Product Line. The views shown in

this section illustrate the use of another COTS engineering tool, again mapped to the

S*Metamodel, so it can store the same compatible model data. There are equivalents if other

engineering tools are used:

Figure 14: Manufacturing System Domain and State Model Views

The Perform End Seal Bonding interaction of the example Manufacturing System Pattern is

based on the transfer function modelling principles of (Schindel, 2005) and the manufacturing

transformation principles of (Schindel, 2012b). Figure 15 illustrates model views of two

attribute couplings associated with this interaction and a later product life cycle interaction:

Figure 15: Manufacturing System Interaction Attribute Coupling Map Views

The System of Innovation Pattern

Referring to the R&D enterprise subsystem of Figure 5, the System of Innovation Pattern is

another S*Pattern, describing the enterprise’s system of innovation for creating new or

modified configurations of all the other enterprise subsystems shown in Figure 5. It thus

Additive Life as a

function of Heat
Time and Spray Time

X-Axis (Horizontal
1): Heat Time

Y-Axis (Horizontal
2): Spray Time

Z-Axis (Vertical):

Additive Life

Unit Throughput as a

function of Heat

Time and Spray

Time

X-Axis (Horizontal

1): Heat Time

Y-Axis (Horizontal

2): Spray Time

Z-Axis (Vertical):

Unit Throughput

includes product development, but also manufacturing process development and equipment

engineering, distribution, and other aspects. This pattern also includes all the S*Metamodel

aspects, including those summarized by Figure 1. Like the Enterprise Pattern described above,

the SOI Pattern is managed in some modelling environment, separately configured for each

innovation project, and those configured S*Models are suitable to be managed in a PLM,

modelling tool, or similar information system.

The System of Innovation (R&D) Pattern returns us to Figure 3, which summarizes one “slice”

of that pattern—the familiar Systems Engineering “Vee”, including appearances of each of the

processes of (ISO 15288, 2008, 2014). The System of Innovation Pattern is in fact a formal

S*Model of ISO15288, so the “Vee” view is only one informal high level summary of a more

explicit model. For example, Figure 16 shows more details of the SOI Pattern for the

Verification Process of ISO 15288.

Figure 16: Example Drill-down Into System of Innovation Pattern--
The Verification Process Model

A key aspect of the SOI Pattern is that it explicitly recognizes both MBSE and Pattern-Based

methods. For example, Figure 16 shows the use of configurable patterns of system

verification—represented as configurable pattern data entering from the bottom of Figure 16.

This is further discussed in (Cook et al, 2015) and (Nolan, et al, 2015).

The System of Innovation Pattern includes roles played by human and automated agents,

across the life cycle of systems. These include activities associated with diverse existing

COTS automation tools, including (SysML or other) modeling tools, requirements

management databases, and PLM systems from multiple suppliers. As shown in Figure 17, an

S*Metamodel schema map (profile) is provided for each such system, so that they can

uniformly represent project-specific configured S*Models and generalized S*Patterns.

S*Configuration Process agents likewise provide a unified approach to configuring S*Models

from S*Patterns.

Figure 17: Existing COTS Engineering & Modeling Tools, PLM Systems
Can All Support Common Underlying S*Metamodel, Innovation Processes

Many third-party COTS tools and information systems provide some means of data exchange

among them, using standards-based or other types of exchange interfaces. The approach

described here goes further, by providing a deeper underlying semantic compatibility between

these existing systems, while still taking advantage of the available exchange interfaces. This is

more than an information technology approach, as further aligns the semantics of how human

users of these systems conceive of the information they manage. As illustrated in this paper,

such approaches have been taken to further leveraging the power of existing COTS systems

such as Siemens Teamcenter®, Dassault Systemes ENOVIA®, IBM Rational DOORS®, and

SysML® tools such as Sparx Systems Enterprise Architect® and IBM Rational Rhapsody®

Architect. Along with their human users, these play Management System (MTS) roles in the

hierarchy of Figure 6, integrated within the Enterprise Pattern of Figure 5, for (ISO 15288)

specialized work processes, views, and artifacts described by a configured System of

Innovation Pattern, such as those in Figure 16.

Example: Integrating Product Development and Production

The explicit physical interactions structure of the S*Metamodel guarantees that each case of

enterprise “silo” problems will be visible in the model, associated with boundary-crossing

interactions and the emergent behavior that the resulting interaction demonstrates. An example

is Product Application Domain interactions for an in-service Oil Filter System product (e.g.,

Filter Lubricant, Inject Additive) and Production Domain interactions (e.g., Perform End Seal

Bonding, Impregnate Lubricant Additives). The attribute couplings of Figure 15 capture the

impact of production rates, pressures, temperatures, and raw material characteristics on

in-service product reliability, pressure rating, and life. An integrated framework for

negotiating and optimizing these across Process Engineering and Product Design is the result.

Summary and Conclusions

MBSE in general, and model-based patterns (PBSE) in particular, not only apply across the

enterprise—they can directly address enterprise-level challenges that arise out of interactions

of lower-level enterprise subsystems. The expressive power of explicit models is further

leveraged when they do not have to be developed “from scratch” for each project, but can be

derived from patterns that themselves accumulate learning as it occurs, becoming a new form

of IP, increasing the agility of the enterprise. Existing and in-service engineering model and

simulation tools, databases, and PLM systems have their power increased when they are further

enabled to accommodate the stronger semantics of the S*Metamodel.

References
1. (Alexander, 1977) Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

and Angel, S., A Pattern Language. Oxford University Press, New York, 1977.

2. (Berg, 2014) Berg, E., “Affordable Systems Engineering: An Application of Model-Based System

Patterns To Consumer Packaged Goods Products, Manufacturing, and Distribution”, at INCOSE

IW2014 MBSE Workshop, 2014.

3. (Bradley, Hughes, Schindel, 2010) Bradley, J., Hughes, M. and Schindel, W., “Optimizing

Delivery of Global Pharmaceutical Packaging Solutions, Using Systems Engineering Patterns”

Proceedings of the INCOSE 2010 International Symposium (2010).

4. (Cloutier, 2008) Cloutier, R., Applicability of Patterns to Architecting Complex Systems: Making

Implicit Knowledge Explicit. VDM Verlag Dr. Müller. 2008.

5. (Cook, Schindel, 2015) Cook, D., and Schindel, W., “Utilizing MBSE Patterns to Accelerate

System Verification”, to appear in Proc. of the INCOSE 2015 International Symposium, Seattle,

WA, July, 2015.

6. (Dove, LaBarge, 2014) Dove, R., LaBarge, R., “Fundamentals of Agile Systems

Engineering—Part 1” and “Part 2”, INCOSE IS2014, July, 2014.

7. (Dove, Schindel, 2015) Dove, R., and Schindel, W., “Agile Modeling and Modeling Agile

Systems”, to appear at INCOSE IW2015 MBSE Workshop, Torrance, CA, January 24, 2015.

8. (Estafan, 2008) Estafan, J. 2008. Survey of model-based systems engineering (MBSE)

methodologies. INCOSE MBSE Initiative.

9. (Gamma et al, 1995) Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing Company,

Reading, MA, 1995.

10. (INCOSE Handbook, 2014) INCOSE Systems Engineering Handbook: A Guide for System Life

Cycle Processes and Activities, Version 4, International Council on Systems Engineering (2014).

11. (INCOSE Patterns Team, 2014) INCOSE/OMG MBSE Initiative: Patterns Challenge Team

2013-14 Web Site: http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

12. (ISO 15288, 2014) ISO/IEC 15288: Systems Engineering—System Life Cycle Processes.

International Standards Organization (2014).

13. (ISO 26550, 2013) ISO/IEC 26550 “Software and Systems Engineering—Reference Model for

Product Line Engineering and Management”, 2013.

14. (ISO 42010, 2011) ISO/IEC/IEEE 42010 “Systems and Software Engineering—Architecture

Description”, 2011.

15. (Nolan, Pickard, Russell, Schindel, 2015) Nolan, A., Pickard, A., Russell, J., Schindel, W., “When

two is good company, but more is not a crowd”, to appear in Proc. of the INCOSE 2015

International Symposium, Seattle, WA, July, 2015.

16. (Peterson, Schindel, 2015) Peterson, T., Schindel, W., “Unmanned Ground Vehicle Platforms and

Model-Based System Patterns: An Example”, to appear in Proc. of the INCOSE 2015

International Symposium, Seattle, WA, July, 2015.

17. (Schindel, 2005a) Schindel, W., “Pattern-Based Systems Engineering: An Extension of

Model-Based SE”, INCOSE IS2005 Tutorial TIES 4, (2005).

18. (Schindel, 2005b) Schindel, W. “Requirements statements are transfer functions: An insight from

model-based systems engineering”, Proceedings of INCOSE 2005 International Symposium,

(2005).

19. (Schindel, 2010) Schindel, W., “Failure Analysis: Insights from Model-Based Systems

Engineering”, INCOSE International Symposium, Chicago, 2010.

20. (Schindel, 2011a) Schindel, W. “Innovation as Emergence: Hybrid Agent Enablers for

Evolutionary Competence” in Complex Adaptive Systems, Volume 1, Cihan H. Dagli, Editor in

Chief, Elsevier, 2011

21. (Schindel, 2011b) Schindel, W. “What Is the Smallest Model of a System?”, Proc. of the INCOSE

2011 International Symposium, International Council on Systems Engineering (2011).

22. (Schindel, 2011c) Schindel, W., “The Impact of ‘Dark Patterns’ On Uncertainty: Enhancing

Adaptability In The Systems World”, in Proc. of INCOSE Great Lakes 2011 Regional

Conference on Systems Engineering, Dearborn, MI, 2011

23. (Schindel, 2012a) Schindel, W. “Introduction to Pattern-Based Systems Engineering (PBSE)”,

INCOSE Finger Lakes Chapter Webinar, April 26, 2012.

24. (Schindel, 2012 b) Schindel, W., “Integrating Materials, Process, & Product Portfolios: Lessons

from Pattern-Based Systems Engineering”, in Proc. of Society for Advancement of Materials and

Process Engineering (SAMPE), 2012

25. (Schindel, 2013a) Schindel, W. “Interactions: At the Heart of Systems”, INCOSE Great Lakes

Regional Conference on Systems Engineering, W. Lafayette, IN, October, 2013.

26. (Schindel, 2013b) Schindel, W., “Systems of Innovation II: The Emergence of Purpose”,

Proceedings of INCOSE 2013 International Symposium (2013).

27. (Schindel, 2014) Schindel, W. “The Difference Between Whole-System Patterns and Component

Patterns: Managing Platforms and Domain Systems Using PBSE”, INCOSE Great Lakes

Regional Conference on Systems Engineering, Schaumburg, IL, October, 2014

28. (Schindel, 2015a) Schindel, W., “Maps or Itineraries? A Systems Engineering Insight from

Ancient Navigators”, to appear in Proc. of the INCOSE 2015 International Symposium, Seattle,

WA, July, 2015.

29. (Schindel, 2015b) Schindel, W., “System Life Cycle Trajectories: Tracking Innovation Paths

Using System DNA”, to appear in Proc. of the INCOSE 2015 International Symposium, Seattle,

WA, July, 2015.

30. (Schindel, Beihoff, 2012) Schindel W., and Beihoff, B., “Systems of Innovation I: Models of

Their Health and Pathologies”, Proc. of INCOSE International Symposium, 2012.

31. (Schindel, Peffers, Hanson, Ahmed, Kline, 2011) Schindel, W., Peffers, S., Hanson, J., Ahmed, J.,

Kline, W., “All Innovation is Innovation of Systems : An Integrated 3-D Model of

Innovation Competencies ”, Proc. of ASEE 2011 Conference, American Association for

Engineering Education, (2011).

32. (Schindel, Peterson, 2013) Schindel, W., and Peterson, T. “Introduction to Pattern-Based Systems

Engineering (PBSE): Leveraging MBSE Techniques”, in Proc. of INCOSE 2013 International

Symposium, Tutorial, June, 2013.

33. (Schindel, Smith, 2002) Schindel, W., and Smith, V., “Results of applying a families-of-systems

approach to systems engineering of product line families”, SAE International, Technical Report

2002-01-3086 (2002).

DOORS and Rhapsody are trademarks of IBM Corporation. Teamcenter is a trademark of Siemens. Enterprise

Architect is a trademark of Sparx Systems. ENOVIA is a trademark of Dassault Systemes.

Biography

William D. (Bill) Schindel is president of ICTT System Sciences. His

engineering career began in mil/aero systems with IBM Federal Systems,

included faculty service at Rose-Hulman Institute of Technology, and

founding of three systems enterprises. Bill co-led a 2013 project on the

science of Systems of Innovation in the INCOSE System Science

Working Group. He co-leads the Patterns Challenge Team of the

OMG/INCOSE MBSE Initiative

Stephen A. Lewis is a Senior Systems Engineer at ICTT Systems Sciences

in Terre Haute, Indiana, where has worked since 2008. He has served on the

planning committees of the 2013 and 2014 INCOSE Great Lakes Regional

Conferences. He currently participates in the Patterns Challenge Team of

the OMG/INCOSE MBSE Initiative and the INCOSE Regional Healthcare

Working Group.

Jason J. Sherey is a Principal Systems Engineer for ICTT Systems

Sciences. During his 15 years at ICTT System Sciences, he has practiced,

documented, taught, helped develop, and mentored others in the

Systematica™ Methodology. He has modeled patterns for a variety of

systems, including engines, tractors, trucks, software, business processes,

manufacturing systems, medical devices, and guidance systems. He is a

past-president of the INCOSE Crossroads of America Chapter.

Saumya K. Sanyal is PLM Practice Director for K2 Firm, Inc.

Insert Picture

Stephen

Lewis

