

System Architecture Virtual Integration (SAVI) Project : Intermodel Error Checking and Consistency Review and Demonstration

An Aerospace Vehicle Systems Institute Project (AVSI)

Presented by Greg Pollari (Rockwell Collins) and Nigel Shaw (Eurostep)

Who are we?

- Greg Pollari (Rockwell Collins)
 - Principal Systems & Process Engineer
 - 30 years in product design and leadership roles
 - SAVI PMC (Project Management Committee) chair
- Nigel Shaw (Eurostep)
 - Managing Director for Eurostep in UK
 - SAVI Technology Vendor Partner and subcontractor
 - 30 years standards involvement

Agenda

- SAVI The problem
- SAVI The consortium
- Two examples
- Conclusions
- Looking forward

Many systems integrated into one aircraft

The impact of requirement/design errors is documented

SAVI Approach

- "System Architecture Virtual Integration"
- Leverage MBSE best practices and tools
 - SAVI developed with exemplar toolset seek to define tool characteristics, but not specific tool selection
- Reduce costs/development time through <u>early</u> and <u>continuous</u> model-based virtual integration
 - Inter-domain and inter-model consistency checks
 - Protect Intellectual Property (IP)
 - Support definition/capture of incremental evidence for system safety analysis – supporting certification approach
 - Consistency checking of constituent models participating in integration is critical element of the SAVI concept

SAVI Virtual Integration "V"ision

© 2016 AVSI

SAVI Participants

Full Members

- Airbus
- Boeing
- DoD
- Embraer
- GE Aviation
- Honeywell
- Rockwell Collins
- Sikorsky

Tool Vendor Partners

- Adventium Labs
- Ansys (Esterel Technologies)
- Eurostep Limited

• FAA

- NASA
- SEI

System Architecture Virtual Integration

MAIRBUS

Two example challenges

 The specific case: to test consistency for a printed circuit card assembly

13 separate sources **Geometry:**

- MCAD
- ECAD
- Excel Connectors
 Logical
- Excel Signals

• The generic case: to compare models of the same or related systems in different languages

Both cases fit within a single Model Repository and Data Exchange/Sharing capability

Root cause of the

Foundation process

Data Extraction

- Specific case find specific elements such as pad positions on circuit cards
- Generic case extract into the "model of models"

«block»

values

id : Identifier [1]

name : Name [1]

values : Value [1..*]

actors : Actor [0 .. *] dates : DateTime [0 ... *]

bdd [Package] ModelOfModels [ModelOfModels

Model of Models

Model Repository

- SAVI have created a specification for a "Model Repository and Data Extraction Layer"
- Key issues are:
 - Enabling access to extracted data while controlling access to the source models
 - Allowing for cross enterprise sharing of models
- As an exemplar Eurostep has used ShareAspace to provide this functionality

1147-

Virtual Integration

- In the specific case we can bring together data extracted from all 13 source files to create a virtual integration that supports testing geometric and logical consistency
 - Do pads and connector positions match?
 - Are the circuit board shapes consistent across ECAD and MCAD?
 - Are the signals on the boards consistent with the interconnect tables and do they match between boards?
- The major challenge in this process was to be sure how the different geometric spaces relate – across MCAD, ECAD and connector definitions
 - STEP standard exports used to enable the ECAD/MCAD comparison

11317-

113777

AEROSPACE VEHICLE SYSTEMS INSTITUTE

Virtual Integration

TEXAS ABM END

© 2016 AVSI

Virtual Integration

10 November 2016

© 2016 AVSI

Issues

Approval

Users

Presentation

Tools

Discovery of equivalence

 In the generic case, need to identify where "things" should be consistent, then test if they are consistent

Conventions

Languages

- Have all models in a single form, i.e. the "model of models"
- Enables

11377-

- Application of a rule engine to find equivalences
- The user to identify equivalences and look for consistency
 - Edit results from the rule engine
 - Identify patterns that should match across models
- Apply rules to determine consistency

Tolerance

Rules

Tools

Develope

Model

Model Selection

Reposito

& Grouping

Data

Extraction

Use fuzzy comparison due to differences in names and conventions

Model of Models viewer

ID	NAME	DESCRIPTION	FROM MODEL	Remove	
1.2.9.2+_PACHYDm8EeSp CaOzdHHjsQ+004_AADL_ Model1	PositionFeedBack		FullSystem_impl_Instance	x	
1.3.3+_PACHYDm8EeSpCa OzdHHjsQ+004_AADL_M odel1	PositionSensor		FullSystem_impl_Instance	Х	
1.1.15+_PACHYDm8EeSp CaOzdHHjsQ+004_AADL_ Model1	PositionSensor	[object Object]	FullSystem_impl_Instance	х	
EAID_F36A161D_F580_40 97_B6B1_6B2EB7ED7685 EAPK_61A274C3_BF29_4 f8_9DDB_6F54CF00CDAE +001_SysML_Model1	Position Sensor		EA_Model	Х	
slidingblockpid1- full.mo+Modelica.Mechan ics.Translational.Sensors.P ositionSensor+positionse nsor1_Modelica_File_Versi	positionsensor1	[object Object]	slidingblockpid1-full.mo	х	

Edit content of the discovered equivalent set

Fuzzy matching has identified four occurrences of three different names used across models Plus one false match

fa

associated properties, structures, etc.

Production scale models

These are the same two pairs of models with different relationships and rules applied.

© 2016 AVSI

Conclusions

- The aim is to allow discovery of consistency issues much earlier than physical test
 - In the general case this is a challenging problem
 - Making progress on establishing both process and mechanisms
 - The approach is feasible for specific domains
 - Through the use of standard formats, can resolve the spatial relationships and so perform virtual integration and check consistency of integration
- SAVI is working on:
 - A Virtual Integration Process
 - Methods for considering emergent model behaviour as well as static tests
 - Specific capabilities such as safety and security across models

Looking forward

- As Model Based Systems Engineering becomes the normal way of business, it will be even more important to minimise the risk due to inconsistency between models, both within and across enterprises
- This problem is not going to go away!

Website: savi.avsi.aero

1137-

Back up slides

Publish subscribe

			AFE 61 WBS model xref.xlsx - Excel				? 🗹 — 🗗 🗙			
FILE HO	ME INSERT PAGE LAYOUT FOR	RMULAS DATA REV	/IEW VIEW SHARE-A-SPACE TEAM					Nigel Shaw 🝷 🔍		
Normal Page Bre Preview Workbo	eak Page Custom v Layout Views ook Views	rmula Bar eadings Zoom 1009	6 Zoom to Selection m	Uiew Side	e by Side ous Scrolling ndow Position Windows - Macros			~		
A2 • : $\times \checkmark f_x$ z24-xx-101										
A	В	С	D	E	F	G	н і	J		
1 Publisher ATA	A Publisher Name	Connection	Signal	Subscriber ATA	Subscriber Name	Notes	Geometry Routing			
2 z24-xx-101	Elec. Pwr. Sys L	z24-xx-101_z24-xx-102	Primary Power	z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L		PowerWire6 (1275, 704) - Bulkhead Connector (1268, 313) - PowerWire2 (1272, 692)			
3 z24-xx-101	Elec. Pwr. Sys L	z24-xx-101_z24-xx-202	Secondary Power	z24-xx-202	Elec. Pwr. Dist. Unit - Wheel Well - R		PowerWire9 (1278, 716) - Bulkhead Connector (1265, 313) - PowerWire5 (1293, 776)			
4 z24-xx-101	Elec. Pwr. Sys L	z24-xx-101_z27-xx-104	Main Power	z27-xx-104	Rudder Pedal Rudder Position Sensor - L					
							PowerWire11 (1280, 724) - Bulkhead Connector (1125, 313) -			
5 z24-xx-101	Elec. Pwr. Sys L	z24-xx-101_z32-xx-101	Primary Power	z32-xx-101	BSCU - L		PowerWire16 (1285, 744)			
6 z24-xx-101	Elec. Pwr. Sys L	z24-xx-101_z32-xx-102	Main Power	z32-xx-102	L Rudder Pedal Brake Position Sensor - L					
7 z24-xx-101	Elec. Pwr. Sys L	z24-xx-101_z32-xx-103	Main Power	z32-xx-103	R Rudder Pedal Brake Position Sensor - L					
							PowerWire13 (1282, 732) - Bulkhead Connector (1126, 313) -			
8 z24-xx-101	Elec. Pwr. Sys L	z24-xx-101_z32-xx-201	Secondary Power	z32-xx-201	BSCU - R		PowerWire15 (1284, 740)			
9 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z29-xx-105	Main Power	z29-xx-105	Meter Valve - L Inboard					
10 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z29-xx-209	Main Power	z29-xx-209	Meter Valve - L Outboard					
11 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-105	Main Power	z32-xx-105	Hyd. Pressure Sensor - L Inboard		MirrorPower Supply Wire 2 (1315, 855)			
12 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-106	Main Power	z32-xx-106	Tire Pressure Sensor - L Inboard					
13 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-107	Main Power	z32-xx-107	Brake Temp. Sensor - L Inboard					
14 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-108	Main Power	z32-xx-108	Wheel Rotation Sensor - L Inboard					
15 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-109	Main Power	z32-xx-109	Weight-On-Wheels Sensor - L					
16 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-114	Main Power	z32-xx-114	Tire Temp. Sensor - L Inboard					
17 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-210	Main Power	z32-xx-210	Hyd. Pressure Sensor - L Outboard		MirrorPower Supply Wire 3 (1317, 863)			
18 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-211	Main Power	z32-xx-211	Tire Pressure Sensor - L Outboard					
19 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-212	Main Power	z32-xx-212	Brake Temp. Sensor - L Outboard					
20 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-213	Main Power	z32-xx-213	Wheel Rotation Sensor - L Outboard					
21 z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L	z24-xx-102_z32-xx-215	Main Power	z32-xx-215	Tire Temp. Sensor - L Outboard					
22 z24-xx-201	Elec. Pwr. Sys R	z24-xx-201_z24-xx-102	Secondary Power	z24-xx-102	Elec. Pwr. Dist. Unit - Wheel Well - L		PowerWire8 (1277, 712) - Bulkhead Connector (1270, 313) - PowerWire3 (1273, 696)			
23 z24-xx-201	Elec. Pwr. Sys R	z24-xx-201_z24-xx-202	Primary Power	z24-xx-202	Elec. Pwr. Dist. Unit - Wheel Well - R		PowerWire7 (1276, 708) - Bulkhead Connector (1264, 313) - PowerWire4 (1274, 700)			
24 z24-xx-201	Elec. Pwr. Sys R	z24-xx-201_z27-xx-204	Main Power	z27-xx-204	Rudder Pedal Rudder Position Sensor - R					
							Devent Mine 12 (1201 729) Buildhand Companies (1120 212)			

January 28 - 31, 2017

www.incose.org/IW2017