

January 28 - 31, 2017

PDES Requirements Traceability Project Update

www.incose.org/IW2017

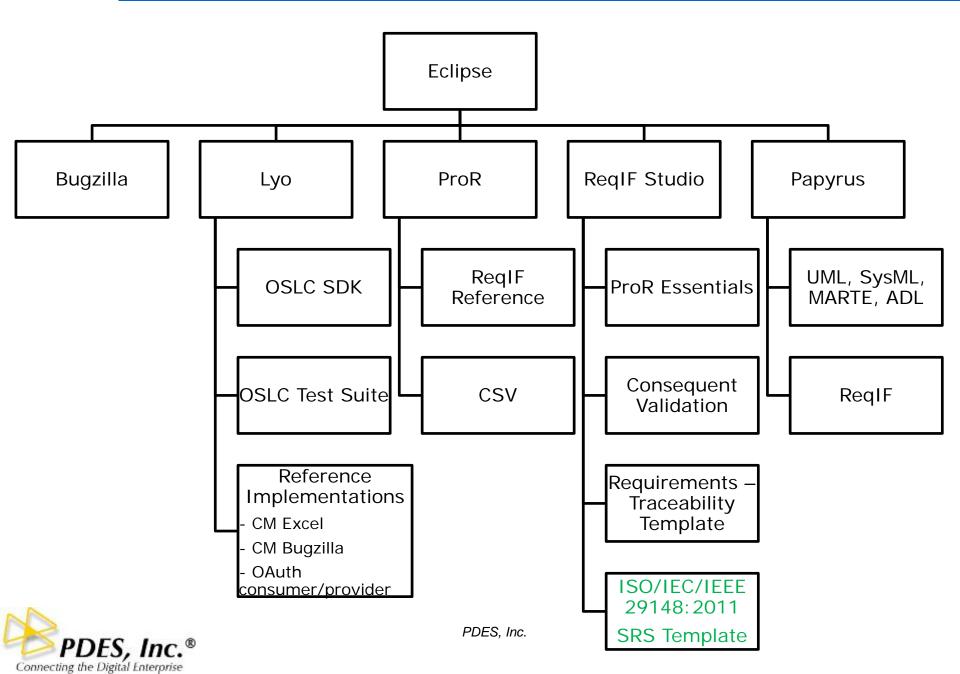
Requirements Traceability Test Case

Testing Environment

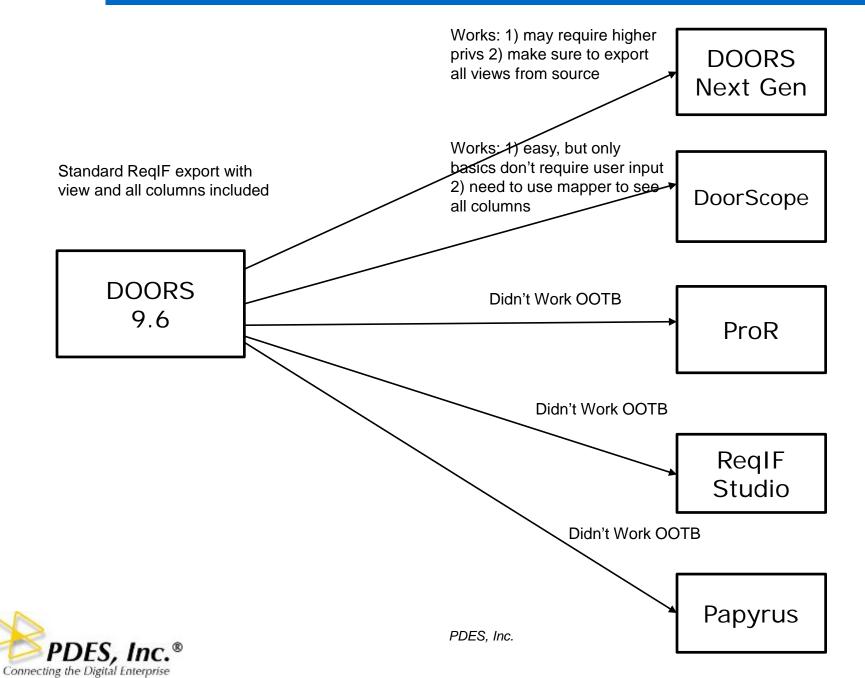
- Share-A-space 7.8 Test Instance up and supporting: AP233/AP239, ReqIF (Eurostep)
- Eurostep Nova In-Reach loading with requirements and tracing relationships, setting up for review – artifacts transmitted to Eurostep; more samples generated
- **DOORS 9.6 ReqIF** loaded with updates from SME feedback
- DOORS NextGen loading requirements; OLSC enabled but incomplete on trust relationships – ReqIF import from DOORS 9.6 successful
- Enterprise Architect 12 requirements imported through CSV; exported as XMI and transmitted to Eurostep research shows EA12 can only act as provider; Oauth support looks questionable; next step is to work with Sparx
 - References of ModelSIM wrappers to provide OSLC interoperability
 - Feedback from others regarding difficulties with this version of application
- Mentor Graphics Vx 1.2 update installed; both cards and flex tape converted. Conversion to Vx 2.1 in process and access to better STEP, ODB++, EDX translators. Have 3D library available but haven't converted entire design yet.
 - In discussion with Mentor about a Context SDM test instance with OSLC
- Creo 2 Have parts modeled with PMI; incomplete conversion to fully public models; PTC willing to convert to STEP AP242 in Creo 4 preliminary version – Pursuing conversion to Creo 4; seeking version with AP242 translator
- NX models not as well done as Creo (particularly for PBA's); available in NX 11; have access to preliminary STEP AP242 translator

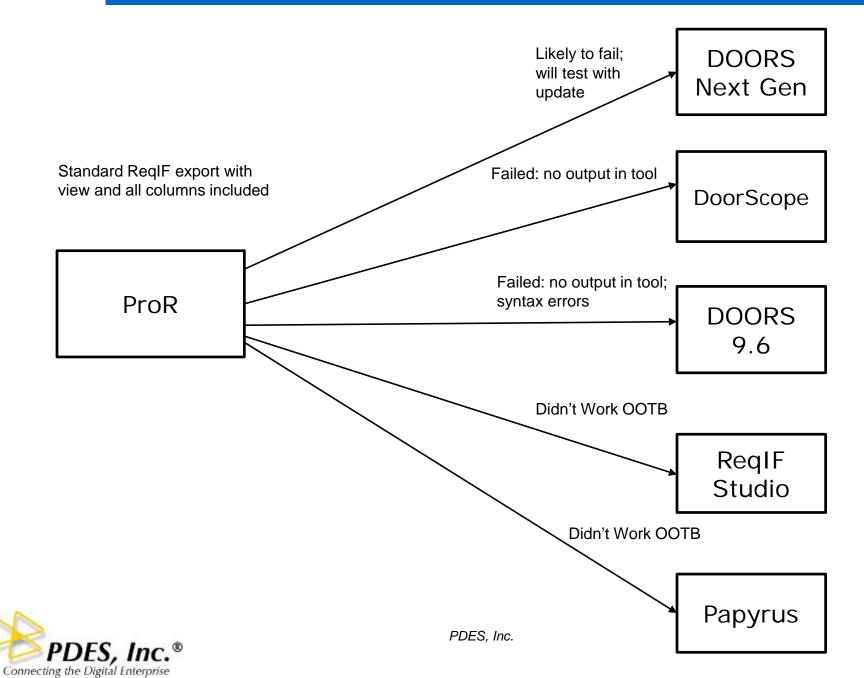
Requirements Traceability Status - 2

- **ARAS OSLC** IBM releasing OSLC connector for ARAS (paid model) in 2017.
 - Would prefer native support within Aras for OSLC, but not committed
- **PRO-R** updated to ReqIF Studio, new ReqIF import generated from DOORS.
 - Downloaded Eclipse Lyo; working through setup.
 - Includes interactive and command line validator for ReqIF syntax
- DoorScope installed and testing; did well with DOORS ReqIF but not reference files
- **Papyrus** installed and testing; developing requirements diagram.
 - Unsuccessful (to date) on getting XMI import / export working
- Tc 10 EBOM structure loaded; product structure loaded with both a Creo 2 version and NX 8.5 version. Reference documents and PDF visualizations produced and linked to EBOM structure. PLM/XML output successfully exported and imported to other test instances
 - Should be able to produce ASME BOM reports shortly first ones available but need to make generic
 - More test parts and public documents loaded
- Clear Case access enabled for use of test instance with OSLC function; delayed on build software example
- **ANARK** Working with latest versions and comment extraction function.
 - 1ST iteration of merged requirements, external attributes, and CAD data went well.
 - Need feedback on next steps


Requirements Traceability Status - 3

Test Data


- Refresh Mechanical Product Structure completed for Creo 2 & NX 8.5
 - Verify with NX 11 open
- ✓ Ported Mentor Expedition examples to Mentor Vx 1.2
 - ✓ Add additional trace links to requirements in tools completed
 - Investigate GUID links to requirements
 - Migrate to Vx 2.1 and xDM 2 60% complete
- ✓ PLM (DBOM) & PDM (EBOM) product structures completed
- Exchange XMI versions with Enterprise Architect and Eurostep tools in progress
- Build out software example complete in PLM/PDM environment but need reverification
- Build out Clear Case test cases not started
- Update mechanical models for feature set use cases not started
- Enter requirements into new version of Share-A-space 25% complete
- Generic version of mechanical design 3rd party made progress 50% complete
- Updating requirements/traces for better configuration management tracing complete, but concluding that including GUID's early in the process would help most exchange scenarios
- Obtain more analysis artifact examples progress with Open Modelica and Visio timing diagram module


Eclipse Resources: ReqIF & OSLC

ReqIF – 12/6/16

ReqIF – 12/6/16

Airbus STEP AP242e1 Requirements Test Case

Examples of information coming from the level 1 requirements file:

- -Identifier: Unique identifier for the object filled automatically by DOORS RMF
- -Requirement Version: Version number of the requirement that enables to manage requirements into configuration.
- -Requirement Statement: States an expected behavior or global performance of the product under consideration.
- -Working Status: Current version of the requirement/activity.
- -Rationale: Provides the justification and/or the reason for the activity/requirement. The rationale is particularly useful for orphan requirement (i.e. requirement that are not traced to an upper level requirement).

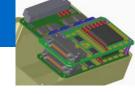
Manually generated with XML tools

- 10-15 requirements
- No V&V elements
- Some differences in tracing relationships with AP239/233

Public release accomplished

- Downloaded and planning to incorporate
- Exploring possibilities for creating physical artifacts to go with AP242 example

Contact: Claude Reyterou (Airbus)

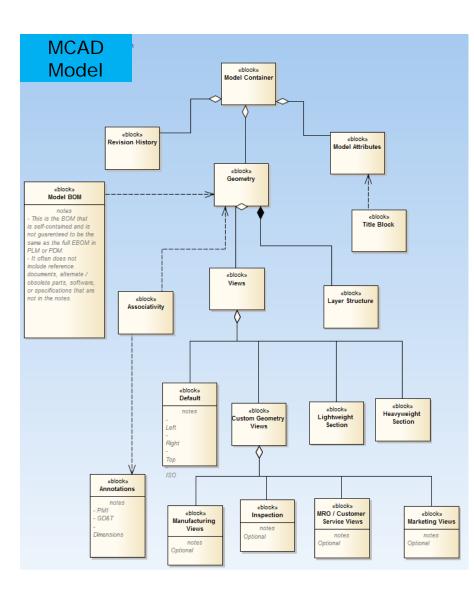


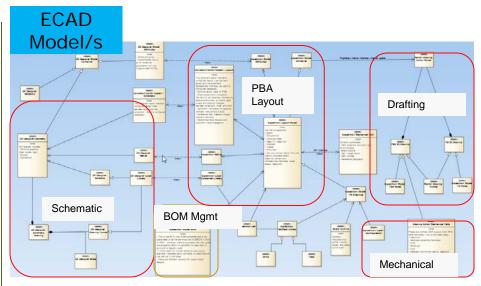
MCAD Model Considerations

- MBE Offers Major Advantages Over Drawing Based For Tracing
 - Drawings and models don't need to match in traditional approaches
 - Models are normally parametric, drawings are not
 - Assemblies and derivative designs often contain mixed modes
- Use Case Requirements
 - GUID / UUID for features and feature groups (surfaces, dimensions, parameter-driven elements, notes, holes, etc.)
 - Pull from model: linked references to features and collections of features that are stable throughout the life of the model
 - Push to model: requirements, CTQ's, and constraints from MBSE into MBE models that can be exchanged
- Challenges
 - Inconsistent MBE modelling practices many part model and especially assemblies not going through adequate V&V processes
 - Mix of MBE and legacy drawing approaches in large assemblies
 - Translation functions for textual requirements to usefully relate to features in MBE model – implementations not supporting all necessary features yet

•

- Modern and Legacy Designs Support Logical Component Tracing
 - Tools tend to support hierarchy well over last 25 years but translations don't always handle well
 - Common reporting functions down to component pin level or even gate and internal package – easy to pull during baselines
 - Rules engines enforce design, producibility, and consistency checks
- Use Case Requirements
 - GUID / UUID for component.pin structure, signal names, (surfaces, dimensions, parameter-driven elements, notes, holes, etc.)
 - Pull from model: linked references to features and collections of features that are stable throughout the life of the model
 - Push to model: requirements, CTQ's, and constraints from MBSE into MBE models that can be exchanged
- Challenges
 - Mechanical features that are not components or in the ECAD library will be treated differently
 - Navigating hierarchy could be complex particularly with programmed devices, ASICS, FPGA's and other components developed through external toolkits.




Schematic Diagram Considerations

- Many Different Types
 - Tools tend to be domain centric (e.g. ECAD, computer logical, mechanical, etc.)
 - Basic graphics exchanges work well, but logic content exchange is poor or non-existent.
 - Hierarchy often not handled well
- Use Case Requirements
 - GUID / UUID for component.port structure, signal names, flows, etc.
 - Pull from model: linked references to features and collections of features that are stable throughout the life of the model
 - Push to model: requirements, CTQ's, and constraints from MBSE into MBE models that can be exchanged
- Challenges
 - features that are not components or in the library may be treated differently
 - Navigating hierarchy sometimes complex particularly with components integrated through 3rd party toolkits and vendor libraries.
 - Representing bus, bundle, and manifold structures
 - Schematic tools for mechanical and electrical systems are not often the same

MCAD vs. ECAD Model Representations

ECAD design operates as multiple tools integrated with a local database while MCAD design models are often self contained models

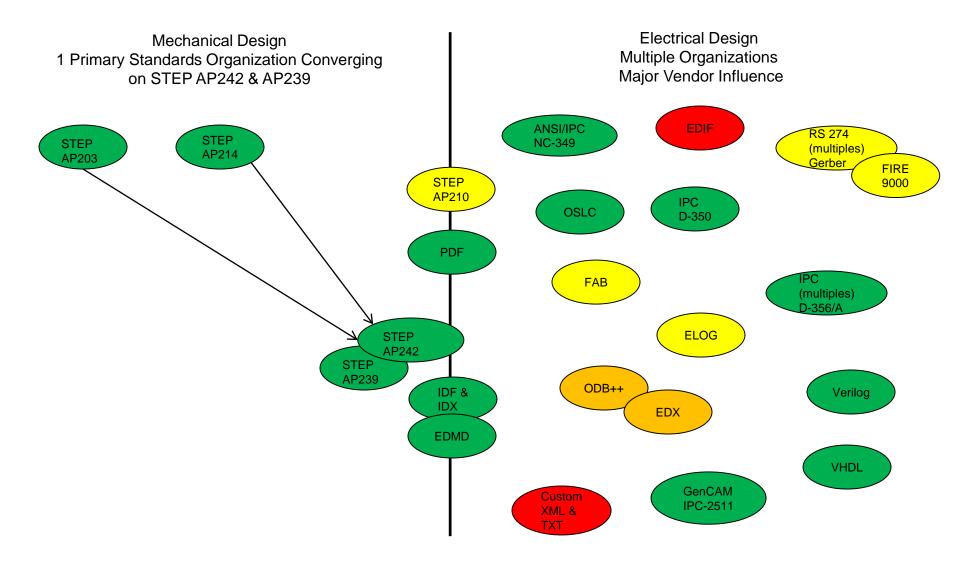
ECAD design for a single part number can incorporate tools from different vendors to create a native model. The designs are normally dependent on a central library for physical, logical, and analysis models.

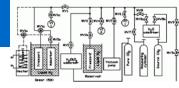
ECAD Designers are often tasked with maintaining configuration files to successfully manage their designs. Collaboration needs to be concerned about synchronization of a lot of files in many formats.

MCAD vs. ECAD Collaboration Differences

<u>MCAD</u>

 Modeling done in single tool; supply chain has common view throughout process


- Components are less of the content and have small amount of alternates.
- Piece part activities even in assemblies – are focus of design and supply chain collaboration. On-drawing partslists still popular.


ECAD

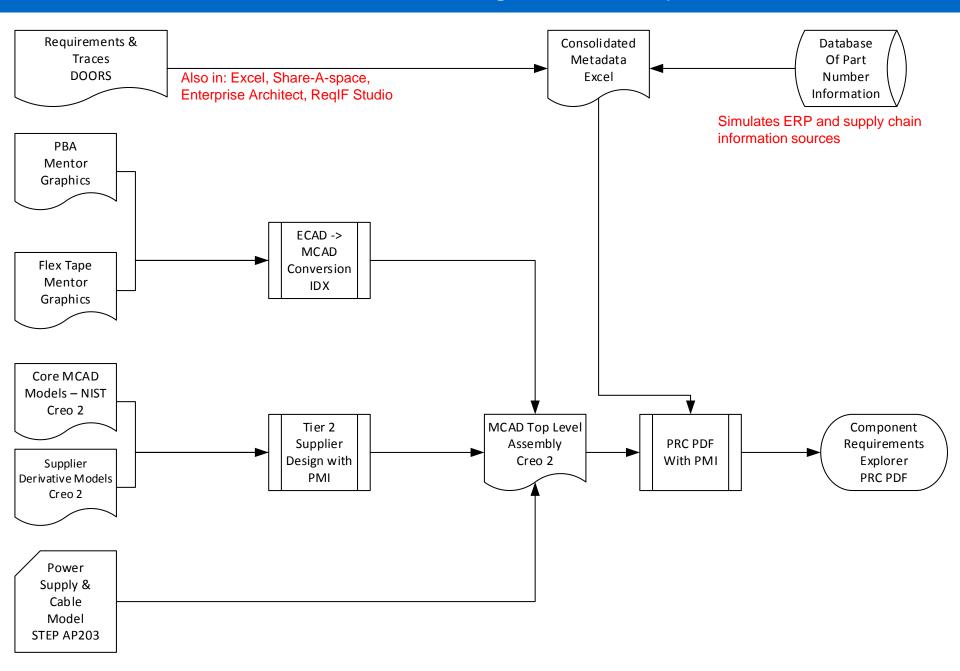
- Design process can be partitioned many ways among different tools but end result must reside in central PLM or library-connected repository
- Alternate parts, altered parts, and Source Control Documents are common.
 BOM primarily based on commodity items.
- Almost everything is an assembly – on drawing partslists don't work well

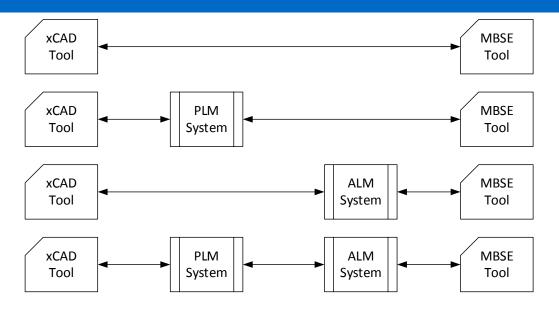
PLM Systems Traditionally Oriented Towards MCAD – That's Changing

Major Mechanical and Electrical CAx Standards

- Lack of Consistency
 - Project-developed macros and structures some linked to other custom artifacts and databases that may not have documented schemas.
- Use Case Requirements
 - GUID / UUID for component.port structure, signal names, preliminary partslists and alternates, costs
 - Common for early development and reuse of existing designs
- Challenges
 - Maintaining consistency through lifecycle so every update doesn't turn into a new translation and mapping project
 - Lack of defined, basic common templates that could be shipped with major tools
 - These could be out there, but not commonly recognized is this a potential activity?

PLM System Considerations


- Role of the PLM system in providing traceability
 - Primary objects: xBOM structures, reports, CAD models, schematics, change management objects, metadata status of objects
 - In an active environment that supports OSLC, what functionality does the PLM system offer when interacting with the models, artifacts, and metadata objects in the repository?
 - Should each artifact type (e.g. document, spreadsheet, MCAD model, schematic, ECAD model, etc.) be treated like a software language class so it could be addressed either by PLM or independently? This may entail a standards based API approach: AP239/233 representation of element relationships
 - Provides IP control, status, and one-stop shopping for hardware and product structure information
- Challenges
 - There is tremendous potential for PLM workflows, translators, and services to coordinate controlled access to CAD and cost relationships, but inconsistencies can thwart automation
 - During development, it is critical to classify CAx artifacts that may be in progress


- Visualization Useful for Physical Products
 - Can be static, manipulated, or animations
 - Best if reviewers and stakeholders can capture comments in viewing environment and have it compiled automatically.
 - Growing number of tools can do basic operations OOTB
 - Limited use for software; particularly with interactive animations
- Associating Multiple Requirements to 1 Object Not Always Supported
 - Many systems oriented towards display of block of text and part attributes vs. accessing individual requirements in a controlled fashion
 - Can be done, but requires some interface planning to be useful
- HTML-based Approach Preferred Internally
 - Easily integrated with PLM, ALM, ERP resources
 - Security an issue for people outside the organization: handling links to IP sensitive resources, account management, partitioning interactions and feedback of competitors, etc.
- File-based Artifact Exchange Approach Preferred Externally
 - Current systems find this easier to distribute and manage
 - Can be distributed to downstream suppliers both good and bad with that that.

Visualization of Tracing Relationships POC

Scenarios Considered

- Scenarios Change During Lifecycle
- Tool-only Scenarios Are Difficult to Track and do IP Control
 - Domain differences and common references need to be understood for meaningful results
 - Improvements in exchange standards requires better alignment with high priority use cases
- System-based Scenarios Are Difficult To Configure And Maintain
 - May not happen as often as they should
 - Standards are more complex but more complete

- Status Reporting & Queries
 - Links between ALM and PLM environments to enable real-time reporting on PLM objects that implement requirements
 - Real time access to program status
 - Ad-hoc rollups for Systems Engineering on PLM, ERP, and historical performance related to product structure
- Impact Analysis and Validation
 - Program risk accurately assessed with more automation
 - I/O validation and tracing
 - Workflows include ALM and PLM objects with increased granularity
- Reuse
 - Search for current and historical elements linked to product or platform structure
 - Expert identification
 - Functional block reuse and history on trade studies
 - Updates to PLM and hardware toolsuites improving reuse

- Status Reporting & Queries
 - Links between ALM and PLM environments to enable real-time and historical reporting on ALM objects that drive design constraints
 - Identification of analysis results not in PLM; eliminate investigations that were already rejected in trade studies
- Reuse and Impact Analysis
 - Program risk accurately assessed with more automation
 - Workflows can included ALM and PLM objects with more granularity
 - Access to studies to aid in cost reduction
 - Analysis date to improve test and inspection processes

- ALM PLM Exchanges
 - Metadata is easy; artifact features are difficult once we go past basic access to individual files
 - Building multiple views of linked data
 - Baseline and archival at project level
 - Exposure of MBSE activities and status to PLM users.
- Challenges
 - There are a huge amount of relationships that can be established that would need to be maintained:
 - Prioritizing use cases for business and product impact
 - IP controls easy to accidently expose information to customers and suppliers that is inappropriate
 - Persistence and archival of relationships, artifacts
 - Legal ramifications of object relationship archival

- ALM PLM Exchanges
 - Metadata is easy; artifact features are difficult once we go past basic access to individual files
- MCAD and ECAD Tracing to PMI or Model Features Possible If Model Based Design Practices Are Followed
 - Drawings Are NOT Models
- Publicly Available Test Cases Were Critical to Project
 - Need work on high priority use cases and test elements for software
 - Control of test artifacts by central organization preferred
- Maintaining Detailed Tracing Throughout Lifecycle Requires ALM and PLM Disciplne
 - Scenarios critical to business and process must be identified and supported for PMI traces – doesn't happen automatically (yet)
 - ALM <-> PLM likely to work more reliably than tool to tool situations

- How relevant is this project to your Systems Engineering practices or needs?
 - What would improve it?
- What examples would people like access to?
- Are there projects this activity should align with?
 - How could we pull this together into perhaps an MBSE community of practice?
 - Could INCOSE, NIST or some other entity host and inventory / control the artifacts?
- For useful software example, what could/should we build?
 - Is anyone willing to help with that? LOTAR and MoSSEC efforts could benefit from that
 - Are there standards for user interface prototyping or system interaction applications we should consider looking into / supporting?
- SAVI did some excellent work. Is there some way, we could build out / replicate a public version of the SAVI examples?

- What scenarios are people interested in and how do we trace down to potential artifacts that support them?
 - Then what derivative requirements are there on the artifacts and relationships so they support the scenarios?
- Missing in this are details around some standard, basic office automation tool templates commonly used in Systems Engineering, Requirements Management, and inter-company exchanges on large programs. Would it be of value to put out some pseudo-standard templates with filled out examples for:
 - Requirements
 - Tracing Matrix
 - EBOM's
 - Interconnect Tables / Wiring Lists

Los Angeles, CA, USA

January 28 - 31, 2017

www.incose.org/IW2017