
Insights from Large Scale Model Based Systems Engineering at Boeing

Robert Malone, Brittany Friedland, John Herrold and Daniel Fogarty

The Boeing Company

Agenda

- 1. Why is Model Based Systems Engineering Important at Boeing?
- 2. What Benefit Does Boeing Derive from System Architecture Modeling?

- 4. What Support Does Boeing Require from Standards Associations, Industry and Academia?
- 5. Conclusion

Edinburgh, UK

Boeing at a Glance

- Customers and customer support in 150 countries
 - Total revenue in 2012: \$81.7 billion
 - 70 percent of commercial airplane revenue from customers outside the United States
- Manufacturing, service & technology partnerships with companies around the world
 - Contracts with 22,000 suppliers and partners globally
- Research, design & technology-development centers & programs in multiple countries
- More than 170,000 Boeing employees in 50 states and 70 countries

A Sample of Diverse Boeing Products

Why is Model Based Systems (MBSE) Engineering Important at Boeing?

MBSE Comprises More Than One Type of Model

26 annual INCOSE international symposium
Edinburgh, UK
July 18 - 21, 2016

- 1. System Architecture Models
 - which feed and interact with -

- 2. Analytic Models
- 3. Verification Models

(John C. Watson, INCOSE IW 2012 MBSE Workshop, Systems Modeling)

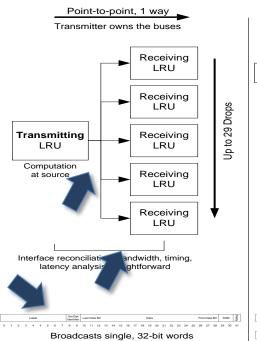
MBSE Comprises More Than One Type of Model

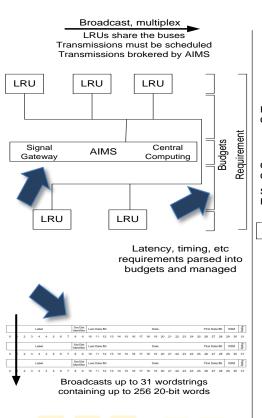
System Architecture Models

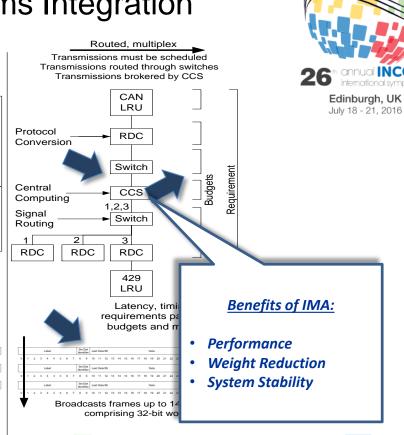
- Used to capture the system's behavior, structure, constraints, interfaces and requirements
- Repository-based to define product entities and their interrelationships
- A vehicle to define the needed analysis task including the task's goals, imposed constraints, and assumptions

(John C. Watson, INCOSE IW 2012 MBSE Workshop, Systems Modeling)

MBSE Comprises More Than One Type of Model




System Architecture Models


Address three major data management challenges:

- Bounding expanding data management effort resulting from integration of complex systems
- Coordination of data management activities within a global supplier base
- Schedule and cost risk imposed by the above

Evolution of Aerospace Systems Integration

A429 Network

www.incose.org/symp2016

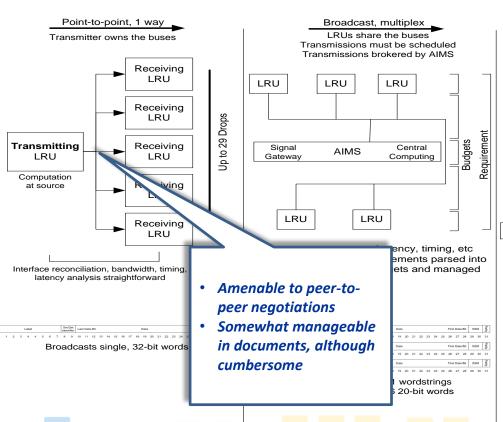
A629 Network Acronyms

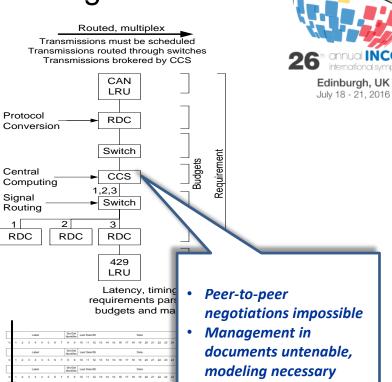
AIMS - Airplane Information Management System

CAN - Controller Area Network

CCS - Common Core System IMA - Integrated Modular Architecture

Integrated Modular Architecture


(IMA)


A664 Network

LRU - Line Replaceable Unit

RDC - Remote Data Concentrator

Evolution of Aerospace Systems Integration

A429 Network

www.incose.org/symp2016

A629 Network Acronyms

AIMS - Airplane Information Management System

CAN - Controller Area Network

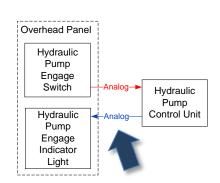
CCS - Common Core System IMA - Integrated Modular Architecture

Broadcasts frames up to 147:

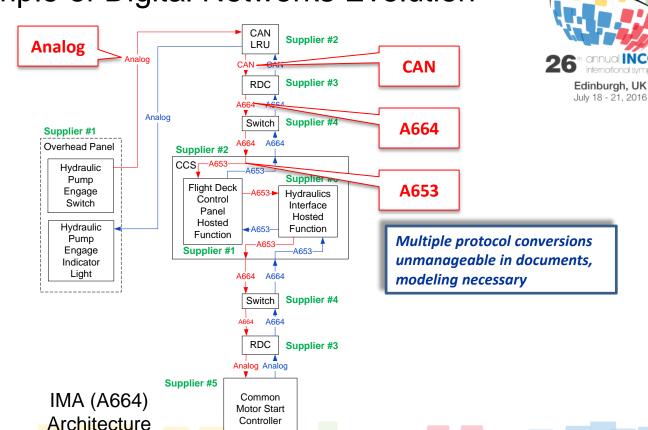
Integrated Modular Architecture

(IMA)

A664 Network

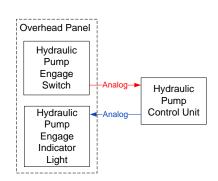

comprising 32-bit word

LRU - Line Replaceable Unit

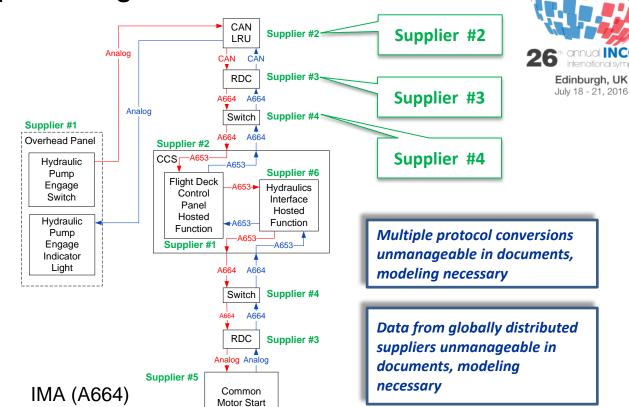

10

RDC - Remote Data Concentrator

Illustrative Example of Digital Networks Evolution



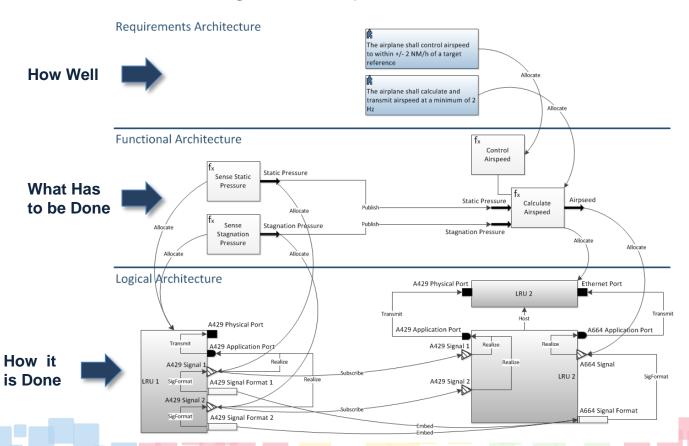
Legacy Architecture



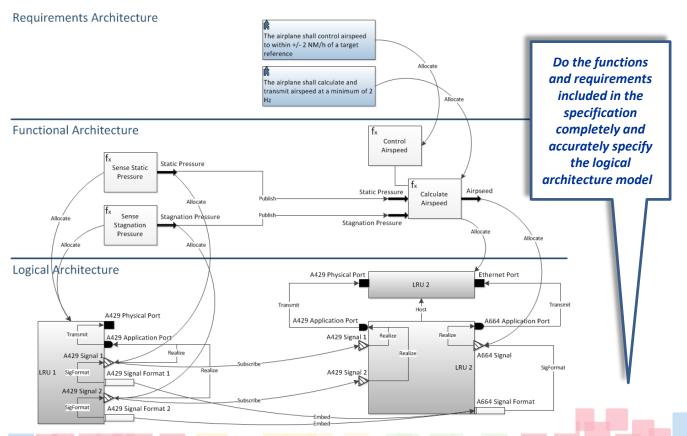
Illustrative Example of Digital Networks Evolution

Architecture

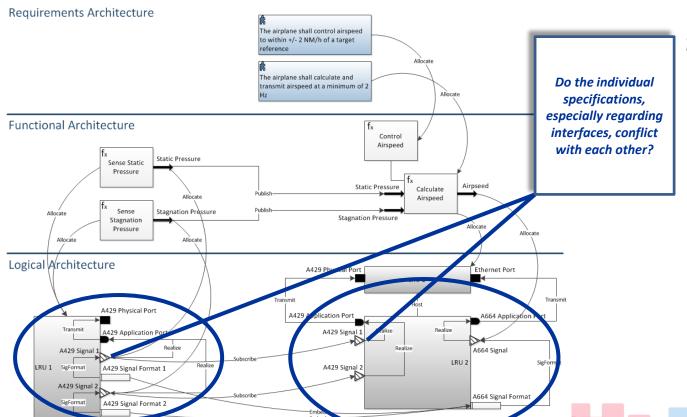
Legacy Architecture

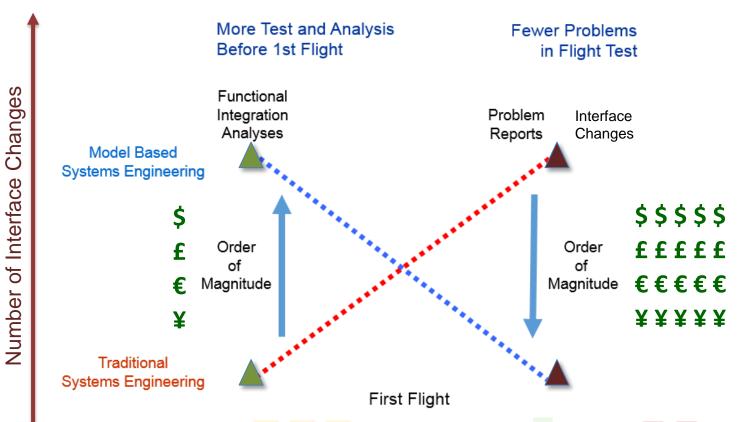

Controller

What Benefit Does Boeing Derive from System Architecture Modeling?


A Simple Integrated System Architecture Model

Edinburgh, UK July 18 - 21, 2016


A Simple Integrated System Architecture Model


Edinburgh, UK July 18 - 21, 2016

A Simple Integrated System Architecture Model

Edinburgh, UK July 18 - 21, 2016

Avoiding Test Errors Through Early System Architecture Modeling

Edinburgh, UK July 18 - 21, 2016

Benefit of MBSE

What Insight has Boeing Gained from Large Scale System Architecture Modeling?

Large Scale, Highly Integrated Systems : Large, Highly Integrated Models

26 nonual INCOSE international symposium

Edinburgh, UK July 18 - 21, 2016

Typical Digital Networks System Architecture Model Data Volume (Tens of GBytes)

~1,000 modelers	Functions	~2,300
	Functional Data Flows	~10,000
	Equipment Installations	~5,000
	Data Parameters Processed by Installed Equipment	~1,000,000
	Electrical Connections Between Installed Equipment	~9,000
	Objects in Model	~ 50,000,000 (~ 3 relationships (links)
		per 1 object)

www.incose.org/symp2016

Effective Modeling Requires Multiple Model Views

26 nonual INCOSE international symposium Edinburgh, UK

- Diagramming view impractical to create and view 50,000,000 objects and relationships
 - Time required to populate diagrams unacceptable
 - Number and size of diagrams untenable
- Diagramming view impractical to analyze 50,000,000 objects and relationships for integrity
 - Human analysis of drawings too slow and error prone
- Modeling tasks shift from structure (diagrams) to detail and analysis (querying) as model matures and grows.
- Need several model views to efficiently populate and review data:
 - Spreadsheet Views
 - Document Views
 - o etc

Other Insights

- Extensibility of the Modeling Environment is Essential
 - Higher fidelity models allow more precise analysis
 - Precise analysis captures specific design problems/errors early
 - Higher fidelity models require more detailed underlying data models
 - Boeing digital avionics data model comprises several dozen object types, several hundred relationship types, several thousand object attributes
- Import/Export Utilities Are Critical
- The Dataset Is The Model
 - Artifacts are views of the model
 - Model sharing is dataset sharing

Edinburgh, U

Other Insights

- A Standard Modeling Notation does not Achieve Data Integrity
 - A standard data model constrained by rules achieves integrity
- Model Analysis Utilities Are Critical (Query Engine)
 - Detecting modeling errors reduces schedule and cost risk
 - Takes longer to produce data in a database than in standard desktop applications (point of contention among users)
 - Payoff is the ability to analyze integrated model data for completeness and correctness
 - Well formed set of model analysis queries allow people not involved in system design nor model development to detect thousands of modeling errors daily

What Support Does Boeing Require from Standards Associations, Industry and Academia?

Support from Standards Associations, Industry and Academia

- Standards Associations
 - Standard MBSE data models, and accompanying composition/aggregation/construction rules
 - Data exchange and schema standards
- Boeing participating in INCOSE WGs
- Potential Boeing MBSE data model paper at IS 2017

Support from Standards Associations, Industry and Academia

- 26 nonual INCOSE international symposium
 - Edinburgh, UK

- Industry
 - A suite of tools based on a robust, flexible hub that provides multiple data creation and manipulation views, with data exchange utilities
 - persistent, robust database that allows hundreds of users to modify the models simultaneously and globally
 - extensible data model that can be easily constrained by a rule set
 - extensible API to support customized data creation and manipulation utilities
 - rich, natural language query engine
 - industry standard import/export utility
- Potential Boeing trade study paper at IS 2017

Support from Standards Associations, Industry and Academia

26 onnual INCOSE international symposium Edinburgh, UK

Academia

- Architects: MBSE tool and process architecting established as a component of MBSE course curricula
 - Use case, process and task, data model, business rule development
- Practitioners: Modeling principles taught as part of MBSE curricula, before the use of any particular modeling tool or language
 - Develop skills in extracting data and relationships from documents
 - Develop skills in effectively organizing data in terms of objects, relationships, attributes

Conclusion

www.incose.org/symp2016

Conclusion

- System architecture models indispensable at Boeing
- High fidelity modeling allows Boeing to accelerate development schedules
- Large model datasets bring data management challenges
- For large scale system architecture modeling, MBSE community should pursue:
 - standard data models and modeling rule sets
 - robust, capable tools; and,
 - education for tool and process architects and modeling practitioners

Questions?

