

Model Lifecycle Management for MBSE

Amit Fisher
IBM Rational

amfisher@us.ibm.com

Sanford Friedenthal
SAF Consulting

safriedenthal@gmail.com

Mark Sampson
Siemens PLM

mark.sampson@siemens.com

Lonnie VanZandt
No Magic

lvanzandt@nomagic.com

John Palmer
Boeing

john.r.palmer2@boeing.com

Mike Nolan
Raytheon IDS

MKNolan@raytheon.com

Michael Loeffler
General Motors

michael.loeffler@gm.com

Manas Bajaj
InterCAX

manas.bajaj@intercax.com

Krista Hovey
Configuration & Data
Management Analytics

kfhovey@cdmanalytics.com

Laura Hart
Lockheed Martin

laura.e.hart@lmco.com

Abstract Model Based Systems Engineering (MBSE) is an evolving practice in the
early stages of adoption similar to the mechanical, electrical and software domains
20 to 30 years ago. Today there is increasing recognition of the potential MBSE
brings to system life cycle processes with the increasing complexity of systems and
the demands of the global marketplace. In order for the practice to realize this
potential, system modeling and MBSE must be part of the larger model based
engineering effort, and integrate with other engineering discipline models and
modeling activities across the life cycle of a system. This is placing increasing
demands on the need for Model Lifecycle Management (MLM) as an essential part
of an MBSE infrastructure. This paper establishes the motivation for MLM, as well
as laying the foundation for addressing challenges that lay ahead. The paper is
focused on describing key concepts, requirements, current practices, and future
directions of MLM, and setting the basis for more in depth overview of MLM
solutions and vendor offering that are beyond the scope of this paper.

1. Motivation - Model Lifecycle Management as an Enabler of
Model-Based Systems Engineering (MBSE)

Smarter and more complex products enter our lives every day. The modern society
in the 21th century is more dependent than ever on such systems that serve our basic
needs for health, communication, transportation, financial management, education,
entertainment and much, much more. These smarter products today are not
independent. They usually consist of collections of other constituent systems, and
often dependent on the behavior of external systems. Products are more and more
autonomous, capable of optimizing their operation and perform goal-seeking
behaviors. Moreover, we witness the growing importance of smarter, cyber-physical
systems that combine software, hardware, mechanical and electrical components.
Ever increasing demands on system performance is driving tighter integration of the
engineering disciplines to provide this performance. This convergence of
engineering disciplines, as well as growing business challenges such as shorter time
to market, strict safety requirements, higher product quality and stricter regulatory
compliance increase the need for new and holistic system approaches and
methodologies that support system design. These factors have led to the the
engineering domain innovators to modeling, abstraction and multi-disciplinary

analysis techniques during the design, and the increasing importance of model-based
methodologies for product development.

Model Based System Engineering (MBSE) formalizes the application of systems
engineering through the development and use of a unified model that is consistent
with various domain-specific models of a product, and persists throughout the
system life cycle. It is often contrasted with a Document Based Systems Engineering
(DBSE), which is characterized by system design information captured and
controlled through a variety of separate and distinct document artifacts that must be
aligned and reconciled via manual processes. While models might be used in a
DBSE approach, they are mostly standalone and not linked or connected via formal
point-to-point relationships. Within organizations, system engineering teams have
traditionally relied on documents—hard copies or electronic files—to coordinate
system information between stakeholders (users, designers, testers, and suppliers). In
the MBSE approach, a unified system model includes information about the
specification, design, analysis, and verification of the system and its elements
including their requirements, structure, behavior, and performance, and physical
characteristics. MBSE helps to ensure a more complete, consistent and traceable
system design, while at the same time enabling communication, and reuse of the
system information.

Central to MBSE is the notion of a ‘model’. While we provide a formal definition
for this term we can think about a ‘model’ as a representation of a ‘thing’ using a
modeling language that is well understood by the model creator and the model
consumer. MBSE aims for cohesion and integration of models that support
stakeholder information through the entire system lifecycle, and includes the model
creation, modification, refinement, analysis, release, management and archival.
Each model may represent different facets of the system, such as the system
architecture, geometric design, and various analytical perspectives such as
performance or reliability. The different types of models represent important facets
of the system being developed which should collectively represent the best
understanding of the system at a given point in time. Systems engineering focuses on
ensuring that all these different facets of a system are addressed to meet the
stakeholder needs.

Model Lifecycle Management (MLM) involves the synchronization of the modeling
information over time to ensure a consistent representation of the system being
modeled. The MLM challenges are multi-dimensional. MLM must account for
different types of models being developed by different users that are often
geographically distributed, and using different tools. The models are being updated
by different users at different times. The tool revision may also change over time. In
addition, other information that results from the model, such as analysis results and
model queries must be synchronized with the models that produced them. In addition
to maintaining consistency of all this information at a snapshot in time, the revision
history (including what changed and why) must also be retained in order to fully
understand and validate the design information. Finally, model management must
account for models of product families and system variants, where substantial
commonality combines with unique features to satisfy different customers and
different requirements.

Figure 1: A Representative Model Management Concept

Figure 1 is an illustration of a typical MLM concept. The ‘system of interest’ is
represented by several different types of models including architecture, analysis, and
geometric models of the system. The architecture model typically includes a high
level representation of the product structure and behavior. The CAD models cover
mechanical and geometric aspects of the system, and the analysis models include
simulation and other engineering analysis models and the resulting data from their
execution or computation. . As the figure shows, models evolve over time through
different revisions, refer to each other to define dependency/traceability
constraints/objectives. Moreover, the specific tool revision/version that was used to
author the models is changing and must be linked to its associated model artifacts.
The paper is organized as follows: Section 2 provides a scope and comprehensive
definitions for the main vocabulary used in this paper and in the Model Management
community. Section 3 provides a list of requirements and use cases for effective
Model Lifecycle Management, while section 4 highlights some of the current
practices for Model Lifecycle Management and compares it with adjacent artifact
management approaches such as Source Code Management (SCM) and Product
Lifecycle Management (PLM). Finally, section 5 provides a suggested starting
roadmap for the MBSE Model Management community.

.

2. Definition and Scope of Model Management

2.1 Definitions and Scope

This section defines the main concepts and terms used in this paper, as a critical step
to establish a common understanding needed for model lifecycle management. These
terms are further used to help bound the scope of MLM. The glossary of the
INCOSE Systems Engineering Body of Knowledge (SEBoK) as the main source for
systems engineering terms used throughout this document. Moreover, some of these
definitions are heavily influenced by similar concepts in more mature adjacent
management domains such as Application Lifecycle Management (ALM) and
Source Code Management (SCM) , Product Lifecycle Management (PLM) and
Enterprise Content Management (ECM) . Lastly, several of these definitions are
taken from common practices within MLM systems vendors such as IBM, Siemens
and No Magic.

 Let us start with the most basic concept, a Model:

A Model is an abstraction of something meaningful and relevant to the model
stakeholder. In the context of Model Based Systems engineering, a model that
represents a system and its environment is of particular importance to the system
engineer who must analyze, specify, design, and verify systems, as well as share
information with other stakeholders .

A variety of system models are used to represent different types of systems and
different facets of systems such as its geometry, functions, and performance. Any
specific model is described in a modeling language that has clear and well-defined
representation rules, or abstract syntax and semantics. All models used throughout a
systems life cycle to represent the system may be considered within the scope of
MLM.. The scope of MLM includes formal models with well-defined syntax and
semantics such as simulation and analysis models, architecture models such as S
such as simulation and analysis models, architecture models such as SysML and
AADL, and CAD/CAE models, The scope of MLM excludes informal documents
where the syntax and semantics are not well defined via a modeling language, such
as text documents, drawings, slides, and other less formal descriptions of a system,
unless the information is derived directly from a more formal model, such as the
result of a model query or model execution. . For example, a free text requirement
document will not be in scope, while a requirement stored in a DB with well defined
schema is. This scope may change over time, but it was felt by the authors that this is
a reasonable starting point. A specific and important model in the context of MBSE
is the System Model:

A System Model contains the information about the system at any given stage
during its lifecycle. It includes the system architecture model and model-based
connections between the system architecture model to the various domain-specific
models, such as CAD and CAE models that describe various aspects of the system
and its sub-systems [2, 3]. The connections between the system architecture model
(or model elements) and domain-specific models (or model elements) may have
different behaviors [4], such as (1) reference connections for basic traceability, (2)

data map connections for exchange for parameter values, (3) function wrap
connections for wrapping executable code in system model elements, and (4) model
transform connections for generating and synchronizing model structures
bi-directionally. Also, the scope of the system model may vary. Sometimes, the
system model is viewed as an abstract specification model of the system and its
elements and other times, it may include the detailed element design information.

A wide variety of engineering methods, computer models, and software tools and
databases are used throughout the lifecycle of a complex system, such as a satellite
or an automobile. During the early phases of system development, system engineers
develop requirements, concept sketches, block diagrams, flow charts,
back-of-the-envelope calculations such as mass and cost roll-ups and performance
parameter estimates, and architectural trade-off models. As the system definition
matures, the focus shifts to developing high-fidelity design (structural and
functional), analyses, and optimization models of various subsystems and
components. This includes, but is not limited to, 3D geometric models of parts and
assemblies (CAD), finite element analysis and computational fluid dynamics model
to compute physics-based behavior, discrete event simulation models, and complex
control algorithms. Although these models are developed by different teams,
software tools, methodologies/workflows, and at different stages in the system
lifecycle, they all represent different aspects of the same system. It is not the goal of
this paper to come up with a common way to describe all models. However, in order
to provide common definitions for MLM, a generic model structure is proposed as
shown in Figure 2, using the UML notation.

A Model consists of one or more Model Elements. A Model Element may consist
of other Model Elements, in which it becomes a Model Element Container. Model
elements can relate to each other. These allowable relationships are specified by the
modeling language abstract syntax.

Fig 2 - UML meta-model for generic model structure representation

For example, all SysML Model Elements are part of a SysML Model, while some
SysML Model Elements (such as Package and Blocks) can also be a Model Element
Container. A SysML Package is a Model Element Container that contains Blocks
that are also Model Elements. Blocks can be related to other Blocks through
associations, generalizations, etc. A Simulink Model is constructed of Simulink
blocks (basic Model Element) that can also contain additional Simulink blocks (and
serve as Model Element Container). While this simplified model structure may not
represent all possible model structures, it aids in understanding the problem and
specifying the MLM requirements described in Section 3.

Models Elements can reference each other. A reference is a link between two
Model Elements that allow users to navigate between them. Internal reference is a
reference between two Model Elements that belong to the same Model. External
reference is a reference between two model elements that belongs to different
models.

During the model lifecycle, the models and model elements and references are being
created, read, updated and deleted over time. A Model as well as any Model Element
and its references can be part of a Model Configuration Item:

A Model Configuration Item is a logical part of the model that is maintained in a
controlled fashion, i.e. have a trackable revision history. A Model Configuration
Item satisfies an end-use function and is designated for independent configuration
management by the product developer and by the customer. A Model Configuration
Item can be defined in different granularities, from an individual fine grained Model
Element, a set of model elements, to the entire Model. An increment update to an
entire Model MCI is often called a Model baseline.

Model Configuration Items are managed to maintain the integrity of the models.
The granularity of the MCI as well as the organization of the MCI’s are an important
decision for MLM .The organization is often influenced by the organization of the
teams creating the model. Good organization of the model can minimize resource
conflicts and the need for complicated merging of changes.

The following configuration management terms also apply to model lifecycle
management:

Version – A version is a state associated with the lifetime of a Model Configuration
Item at a given point in time. Versions can be managed by logical time index (most
common use) or by other unique identifier that can distinctly differentiate between
two versions.

Variant model – A variant model represents a model of a variant of the system
being modeled. As opposed to Version that represents a change in state, a variant is
usually used to reflect a change of a Model Configuration Item for a given context.
Variants reflect a change in a parameter of Model Configuration Item, such as an
automobile with an automatic or manual transmission or a SmartPhone for North
America or Europe.

Configuration - A configuration is a set of Model Configuration Items with their
associated Versions and Variants. Within a specific Configuration, every Model
Configuration Item has a single and unique Version/Variant. . It is worth mentioning
that configurations do not guarantee model consistency – configuration is a
mechanism that that allow user to capture set of Model Configuration Items, with its
respective version/variants, but do not guarantee that this set is semantically
consistent (i.e. a configuration can include inconsistent models, for examples
models that were not synced after an update).

Baseline- a Baseline is an immutable Configuration. A Baseline uniquely defines an
“unchanged over time” set of Model Configuration Items with its associated versions
and variants. Model Baselines are often used to freeze Model Configuration Items at
critical points in the model development life cycle.

The following terms relate to the capabilities used to create, edit, and store Models,
also known as Model CRUD functionality:

Modeling Tool is a software application that is used to produce a model, and is part
of a systems development environment that allow user to create, update, read and
delete a model using its model language and by enforcing the model abstract syntax
and semantics.

Model Repository is the logical location and/or physical storage space of the
Model and its Model Elements. It is considered to be common that different
disciplines using different modeling languages and modeling tools store them in
different Model Repositories (such as file-based verus database).

Metadata is the information about the model, and may include information about
who created or modified the model or model element, what was changed, when and
why it was changed, as well as information about how the model is used in particular
contexts.

Building on these terms, we can provide a comprehensive definition of Model
Lifecycle Management:

Model Lifecycle Management (MLM) is a governance process synchronizing the
create, read, update, and delete (CRUD) operations on heterogeneous models within
the supporting modeling tools and model repositories, throughout the system
development lifecycle. This is accomplished through the management of Model
Configuration Items, including versions, variations, configurations and baselines of
models, simulations, analysis results, and the tools that are used by multiple
geographically dispersed users. In addition, MLM includes the management of all
the metadata associated with the models, tools, and analysis results including who
made the change, what changes were made, when and why, as well as information
regarding the application of the model. A Model Lifecycle Management System
(MLMS) is a set of elements that implement a model lifecycle management process,
and may include people, hardware, software, data, and procedures.

2.2 MLM and Related Configuration Management Approaches

Through its governance process, Model Lifecycle Management Systems need to
address multiple aspects of controls and functionality. MLM solutions can gain and
adopt current practices from adjacent management domains that have proven to be
both robust and extremely valuable in its specific domains. This section provides a
brief overview of these domains and practices as a basis for comparison with MLM
systems. Section 3 extends these characterizations and provides further analysis of
MLM solutions’ requirements and use cases.

Source Code Management (SCM). In Application Lifecycle Management (ALM),
Source Code Management (SCM) systems provide version and revision control of
program source code and other text files. SCM systems are realized by tools that
track the development of a source file to prevent it from being altered by more than
one person at a time. It is commonly used for projects where multiple source files
are used or where multiple people are working with the same source files. The most
common pattern of use of SCM system is “Branch and Merge”. When it is necessary
to develop two versions of the software concurrently (for instance, where one
version is used for testing, and the other version is where new features are worked
on), a “branch” is created and allows users to work on independent “source code
streams”. When the first change is made after a branch, a new revision is created.
Each revision is associated with a timestamp and/or revision number and the person
making the change. Revisions can be compared, restored, and merged - a process
that combines two or more source files from different branches back into a single
source file.

In comparison to MLM, SCM systems are dealing with files as their sole
configuration items, while MLM systems can and should support different Model
Configuration Item granularities and their relationships. SCM is a well-established
practice, and users of models in MBSE projects will expect similar functionality
from their MLM system, especially when it comes to the Branch and Merge
functions. The main challenge will be to support such functionality beyond
“difference and compare” utilities on the text file level and to generalize this
functionality to any Model Configuration Item (such as Model, Model Element
Container or Model element).

Product Lifecycle Management (PLM)/ Product Data Management (PDM) As
computer-aided everything became pervasive, the problems of keeping up with the
many models in product development lead to product data management systems
(PDM) to manage Mechanical CAD, Manufacturing, Analysis, and other models.
Typically these are associated with a structure of Bill of Materials (BOM) which
includes version and release management. As products have begun to cross
domain/design boundaries the PDM systems have morphed into Product Lifecycle
Management (PLM) systems to include all possible information about the product’s
lifecycle (not just a design/CAD model) from initial needs, requirements, down
through purchasing, suppliers, manufacturing, and even warranty and inservice
information—providing as its goal the single source for all product information.
PLM’s perspective on model management is merely extending its philosophy to
include all types of models associated with the product—cost, reliability, behaviors,
and more can all be associated with the BOM structure—bringing all models under

control with the rest of the product information does synchronize models at a more
granular level than is being addressed by MLM.

Configuration Management (CM) is the engineering discipline which will provide
the planning, oversight, reporting and validation of products and all supporting data
sets for any given project. The CM effort begins with the management of validated
requirements, linking to all products produced from those requirements, and
providing control and stewardship of the data sets describing the products. As with
Product Lifecycle Management, CM has evolved into a discipline which starts much
earlier in the lifecycle, and extends into the fields of logistics and operations. While
the details of Model Management methodology are still in the discussion stage
within many organizations, the simplest forms of naming conventions (model
numbers) and state identities (revisions, versions, variations) will provide the
groundwork for CM to track, control and manage models effectively. Models that
are identified per an organization’s approved naming conventions and marked for
CM control at the appropriate lifecycle states can be managed much as any other
product format. Fluidity in the development of configuration control procedures for
models

Enterprise Content Management (ECM). Enterprise Content Management
(ECM) refers to the business management processes and tools required to manage all
unstructured operational information created in the daily operation of any business.
Business data such as electronic or paper operations documents and business forms,
email messages or text messages have lifecycles and must be managed throughout
those lifecycles in support of a business’s operational needs. While ECM tool sets
may include a Product Lifecycle Management system, management of models and
their associative data are governed by configuration and data management processes
created uniquely for the product in development.

Most of ECM considers the “document artifact” as the main configurable item. The
“document artifact” is considered as a single resource that contains unstructured data
that is not further analyzed by the ECM system. While basic revision control in
MLM could be similar to ECM systems, MLM systems need to support a larger
range of configuration item granularity.

Data Management. Data management is a process focused on ensuring the
integrity of data generated for each operational area of a business and is a major part
of the basic capabilities of Database Management Systems (DBMS). Data
management teams work concurrently with other management teams at the
enterprise and project levels to define appropriate control processes for identified
data sets.

MLM systems should be able to leverage current Data Management practices. Data
from each phase of model generation may be developed in independent databases or
a single consolidated database operated as a collaborative workspace for remotely
located teams of authors in independent enterprises. Models and supporting data
should be identified with the level of control required according to the Configuration
and Data Management plans governing the project. Data managers will continually
oversee data security, assign access controls as defined by the identified project

lifecycle controls, and ensure data integrity throughout the projected retention period
of the completed data sets.

3. Model Lifecycle Management Requirements and Use Cases

As was discussed in section 2, the scope of MLM can encompass a broad range of
models and artifacts. Therefore, it will be hard to formulate a precise list of
requirement that will be inclusive and true for all MLM systems. Requirements for
MLMS need to address different management, business, usability, functionality and
performance aspects, regales of the technology being used to implement such a
system This section and its supportive appendix is intended to provide the
foundation for the requirement for a MLM system. It is expected that specific
implementation of an MLM system may address those requirements that are relevant
to their scope.

MLMS systems are expected to support variety of usage patterns and use cases. In
item most basic form, MLMS should support the CRUD (Create, Read, Update,
Delete) aspects for heterogynous modeling environments, provide basic
configuration and data management services, collaboration and notifications,
governance, control and security. Appendix A provides a detailed list of MLMS
requirement that can serve as a starting point for industry benchmark when
evaluating MLMS.

As indicated before, MLMS addresses a large scope of models. It is beyond the
scope of this paper to provide a complete list of use cases, processes and best
practices for MLMS usage. However, a set of representative use cases is provided
below to complement the requirements in the previous subsection.

1. A stakeholder of a Model/Model Element who is not the editor of the entire set of
information within the Model/Model Element needs curated information within the model
in order to make decisions or present definitive information to other parties.

2. During an exchange of information between parties engaged in argumentation, one party
challenges the veracity of Model/Model Element information and the other party must
obtain the provenance of the curated information in order to provide a warrant for the
claims made by the information.

3. A stakeholder responsible for contributing to or curating numerous models has too little
spare time to poll each model in their scope of responsibility; this stakeholder needs to be
notified when an area of interest within a particular model is subject to access or
modification by selected individuals or communities of interest.

4. Two or more stakeholders are collaborating on a common model yet are not present in the
same actual meeting place. Lacking body language clues, the stakeholders need to receive
indication of their peer activities within the shared model.

5. A community of stakeholders with differing permissions to view, modify, and relate
information form a joint venture that exploits their respective capabilities to solve a
complex problem. Meanwhile, the providers of information retain their information
confidentiality rights.

6. An organization is requested to describe, present, or instantiate a system that was created
some past time even perhaps with different knowledge tools and by individuals no longer

associated with the organization. During such a representation, the organization is
requested to demonstrate the differences between the current systems and the legacy
systems.

7. An enterprise-scale team which aggregates functional and domain teams from a variety of
corporations works contemporaneously and serially on a common problem that requires
access to different model elements in different lifecycle phases, different levels of
abstraction, in different disciplines, and with different information access rights.

4. Current Practices

With the growing importance of Model Based System engineering, enterprises are
looking for better ways to manage their heterogeneous modeling environments. The
market is seeing growing demand for smarter MLMS, demands that results in the
emergence of new technologies and approaches for Model Management. This
section provides a brief overview of current and emerging directions in model
management solutions, with emphasis on two important aspects of these
technologies: Specifically, the model repository/storage mechanism and security
model. Furthermore, this section also provides examples of product manufacturers
approaches for their Model Management functions.

4.1 Model Repository Approaches

The following outlines different dimensions of storage and control as applied across
industry, recognizing that any given project may have a mix of approaches, which
may not be followed in an identical fashion across the multiple projects in work by a
given enterprise. Moreover, it is important to notice that some of these approaches
differentiate between physical and logical repositories as follows:

Physical Repository: A Physical Model Repository is a concrete location when the
model artifacts are being stored. It is a representation of the physical storage place
where the digital representation of Model and Model Elements are maintained.

Logical Repository: A logical model repository is the virtual location where model
can be accessed. It is the location in which model are maintained from a MLMS user
perspective. Different physical repositories that are used to store Models and Models
Elements can be mapped to single logical repository, and multiple logical
repositories can be mapped to a single physical repository. The association between
physical and logical repositories is also called mapping.

Below are the three current approaches for model management repositories:

Multiple Local Repository Approach - This is the default and most common
approach in organizations for model management. In this approach team members in
a single team or teams within a group/organization use file systems on their
individual computers or shared drives to store models that they develop. In many
cases, the logical and physical repositories are the same, and are part of local storage
area.

Often, there is no formal version control where the history of models can be tracked

except for identifying changes in the timestamp on the model files; where formal
version control is applied, the execution may be a highly manual process and subject
to incomplete adherence. Sharing of models within and across teams is achieved by
file transfers via emails or shared drives. Notification of updates to constituent
models may be ad hoc or non-existent. There is limited to no tracking of design
models to analysis models or to corresponding analysis results.

The multiple local repository approach may be combined with the other approaches
for portions of the system models that have not been considered significant to the
model management. For example, the design model may be fully controlled through
a multiple version-controlled model repository, yet which may not encompass the
analysis model (or more commonly the model analysis results).

Single Version-controlled Model Repository Approach - In this approach, a team
or organization selects a single repository with formal version control (ability to
track model history) to manage all of the different types of models - Requirement,
architecture, CAD, CAE, software, part libraries and more. This implies a single
physical model repository that might be mapped into multiple logical repositories
serving multiple team, projects or engineering domains.

In most modern enterprises, this approach is not realistic due to the involvement of
multi-disciplinary engineering artifact in the product development. Each repository
type is often designed to manage specific categories of models - PLM system for
CAD, CAE, and BOM; SCM systems for software code; Databases for large
collections of instance data; ERP systems for supply chain information. Due to this
complexity, consolidating all of this information into a single location is considered
to be hard-to-impossible.

Multiple Version-controlled Model Repository Approach - This approach
provides a better mechanism for model management than the single
version-controlled repository approach. It allows different engineering teams to
select the best tools and repositories suited for the types of models they are
managing, e.g. a PLM system for CAD,CAE,BOM; SCM system for software code;
and databases for libraries. Each repository provides formal version control. Most
organizations have multiple version-controlled repositories.

While the management of individual system model is easier with this approach, the
challenge of model synchronization, notification and traceability is becoming harder.
As models are being manages independently, technology that will allow linking,
tracing, monitoring and reporting on multiple distributed model resources is
required. Some of the new promising technical directions are being discussed in
Section 5 as part of the Emerging MLMS Technologies chapter.

4.2 Governance and Security of Models

Many of the modern product development environments require strict security
considerations. While this is obvious requirement in military and defense
application, this is also true in modern consumer electronic product, automotive,
medical devices etc. when IP protection is major concern. While MLMS will
typically resides within the enterprise intranet that is protected with the appropriate

Authorization/Authentication mechanism (e.g. LDAP) , this is usually not sufficient
for effective MLM governance. MLMS needs to manage security and access rights
in different level of granularity, and therefore requires further mechanism beyond
the enterprise intranet security model.

When analyzing current MLMS, these are the current governance and security
models observed:

1. None, A Single User Owns All Rights and Content - For small projects of short duration

this may be acceptable, but otherwise the single owner becomes a bottleneck to the
update and management of the constituent models or model configuration items.

2. OS Authentication, A Multi-User OS restricts Access but Content is Non-Attributable.
For small and static teams this may be acceptable if procedural model governance
mechanisms are established and followed, but otherwise the incomplete tracking of
change invariably lead to the desire to question the rationale for a change, or some other
query of the change author is needed that can not be accomplished. Absence of
individually assigned access controls introduces challenges to the information assurance
in the situation of changing team composition.

3. LDAP, An External Server manages Users and Access but Content is Non-Attributable -
this approach is only marginally better than the prior alternative, inasmuch as it provides
a better mechanism to limit access to authorized users. However, the approach still
requires procedural model governance mechanisms.

4. Change-Managed Content, A CM system tracks who made commits but atomic
modifications are Non-Attributable - this approach improves on the prior methods by
virtue of greater granularity of records of change of the model configuration items, and is
essential for large multidisciplinary teams that change over time periods that are
considered short with respect to the product lifecycle.

5. Authenticated, Role-Based-Access with Atomic-Level Attributability - Atomic-level
access control, change control and attribution enable the most accurate and trackable
Model management system that allow a complete security model in different level of
model element granularities. This is considered to be the most advanced MLMS security
model and very few current system support it in practice.

4.3 A Sampling of Approaches and Challenges in Various
Industrial Settings

This section provides three current MLM examples from organizations that are
applying MBSE techniques in their product development lifecycle.

4.3.1 Manufacturers of Large, Complex Consumer Product Lines with Significant
Optional Variability and Software Driven Features (“Mass Customizable”
Mechatronic Products). In design and construction of complex product lines, models
play an increasingly important role. System level models are becoming the “glue”
that holds the software and hardware design artifacts together and provides the basis
for the definition of the product line. In product line engineering, individual products
can be more quickly designed and constructed from patterns that are composed of
model elements and connections with variation settings, allowing them to meet a

range of requirements and provide many “levels” of capability to individual products
built from that product line. Models are used to describe the product lines
themselves, their possible variation dimensions, the requirements they can satisfy
and the rules governing their instantiation. Because the number of possible
individual buildable product configurations can be huge, analysis of the models is
increasingly important for verification. Deriving the correct configuration of all the
models to perform large scale simulation of a particular individual variant, at a
particular effective point during the life of the entire product line, is difficult without
strong model management capabilities. Manual model variant configuration and
effectivity methods have hit practical limits; by the time the analyst can get the
models configured to do the simulation the design has already changed.

Increasingly, for building the software and hardware parts of these products the
models are transformed directly into the actual product components through auto
code generation or model driven manufacturing systems. Since the models must
comprehend many dimensions of variability, including option-based variants,
time-based, serialized or lot effectivities, model management systems must support
these capabilities. In today’s practice, most Product Lifecycle Management (PLM)
systems contain these capabilities, but their integrations to modeling tools are
limited, mainly due to lack of standards and defined modeling language support for
those concepts. In the rare cases where models are used to handle this complex
variability they have been integrated into PLM systems with significant effort and
custom code.

Application Lifecycle Management (ALM) systems are beginning to gain product
line capabilities, but take a software-centered view on the problem that does not
always match the hardware or system design approach. The modeling of the
mechanical Computer Aided Design (CAD) elements is supported in these variation
dimensions better than the software or systems level models, owing to the history of
PLM systems predecessors, the Product Data Management (PDM) systems that
evolved to handle the CAD data in complex variable assemblies.

4.3.2 Manufacturers of Large, Complex Defense System of Systems and
Mission Systems Integration. A major industry challenge we are facing today in
integrating modeling tools is in the choice of investment. In order to make a good
modeling investment decision, it’s important to accurately forecast future capability
and future cost. As standards become more comprehensive and more widely
accepted, industry members will be able to increase investment based on increased
confidence of future usefulness. Standards supporting protection of intellectual
property will help address the challenge of developing an agile environment with
suppliers and other partners in a business environment where protection of
intellectual property is important.

The second important aspect of MLM adoption is collaboration. Collaboration
depends on some level of standardization and more the standardization, more the
possibilities for collaboration. For example, internal standards on modeling
practices, model schemas, model quality check rules, etc., are the first step to
collaborate within an organization. As standards are adopted by a company, its
customers and supply chain, it builds capability for further collaboration of the
system data. Understanding that the standards are important we must constantly

evaluate the value of adopting a new standard relative to the cost of working with
incomplete standards. Vendors tend to promote the standards or parts of the
standards that they adopt in order to capture a larger share of the market. They are
not always ready for real world deployment. Model management depends on
specifying the model types that will be managed, the scope of control, and the
method of governance.

4.3.3 Manufacture of Large Aerospace, Defense and Security Systems. A typical
environment might include several modeling tools used to address different accepts
of the System Model including, an UML or SysML tool, an analysis tool, a data
management tool and other support tools such as a SCM tool, defect management
tool, workflow tool and requirement management tool. For the creation of our
System model we use a SysML modeling tool that stores the physical model as a set
of files. The individual files represent a Configuration Item (CI). The granularity of
the files is configurable through properties of the modeling tool. So the user can
specify whether a CI’s “physical file” represents a package or a block or some other
model element. This particular modeling tool does not have an inherent version
control mechanism built in but does provide an interface to various configuration
management tools. This is possible since the model repository is a set of files.

Typically for system models we specify the CI granularity at the package level.
When developing software we can work at a lower level such as an object class.
Now that we have specified the CI level, we need to determine the physical file
system structure. We have the option to specify a hierarchical file system to store the
physical model to reflect the package hierarchy of the logical model or a flat file
system where CIs are stored in one directory regardless of the logical model’s
package structure. This decision impacts the size of your namespace so it’s
important. Now we organize these CIs in a way to minimize the need for concurrent
checkouts which minimize the need for merging.

Unlike software code merging where different software developers are making
changes in different areas of a module, it is not obvious to the modeler how far
reaching a model change can affect a CI. This makes model merging significantly
more challenging. The creation of a relationship between two blocks can potentially
change both blocks and their CI containers. What appears to be a simple model
change can create changes across an entire model. Consider the creation of ports, a
connector, an item flow and their corresponding element containers. We now
specify the particular configuration management tool that we will be utilizing. We
have tried and are currently using several different SVN tools each with their own
challenges. There will be special configuration for each of these as well in order to
integrate properly with our modeling tool. We often exploit features of a tool in
unconventional ways to accomplish our objectives. We have combined both creative
modeling techniques with unconventional software configuration management usage
in an attempt to support variant modeling and composable construction.
We may create separate packages and branches to support major modifications prior
to review and acceptance. Even for the day to day user checking out a part of the
model for edit there is a certain level of understanding of the underlying physical
representation of the model that is needed. Of course we want to show full
traceability to our requirements which reside in a separate requirement management
tool which must stay synchronized with the content of our model. Once you start

supporting variants and composable models you probably have corresponding
variant and composable requirements as well that need to be coordinated. We too
consider the system model as the “glue” providing consistency across the various
aspects of the product definition and being able to reach across the entire lifecycle
product line in support of analysis, trades, change impact, and reuse through variant
and composable architectures. There is lot of moving parts and we have not found
silver bullet yet but with the advancements of standards and cooperation of industry
and tool vendors, we are getting closer.

5. Model Lifecycle Management - Future Business and Technical
Foundations

With the growing importance of MBSE in modern system design, MLMS will
become a critical component of the end-to-end design and development tool chain.
As with Databases, Source Code Configuration Management, Product Lifecycle
Management and Enterprise Content Management - MLMS will be considered as a
“must have” capability. This will require significant industry focus and investment,
both on the business and technical side, as well as pushing the boundaries of current
MLM state of the art into new realms.

5.1 Emerging Business Challenges and Opportunities

On the business track, enterprises are starting to realize the importance (and
complexity) of managing heterogeneous models across the design and development
lifecycle. These enterprises will challenge its vendors to come up with more mature
end-to-end solutions that address MLMS requirements. Growing need for new
integrations, collaborations and industry standards will emerge to allow multiple
vendors to work together towards a common goal. New roles, such as “Model
Management Administrator” will emerge in these organizations, roles that will be
focusing on the lifecycle management aspect of models across the product design,
development and supply chain. Topics like Model Intellectual Property management
and abstractions will become increasingly important as companies will start to
collaborate using model-based versus document-based artifacts. MLM will require
much deeper evaluation of model integrity, risk and governance.
Moreover, one of the main challenges in adopting MBSE in large scale is the lack of
supporting MLM capabilities. Organization who adopt MBSE usually do it on a
project level, where individuals who are considered “modeling experts” work with
current MLM systems to manage the complexity of such development process. As
MLM systems mature, more organization will be willing to adopt MBSE as
enterprise-level best practice which will result and better reuse, product analysis and
overall ROI.

5.2 Technical Foundations

The increasing importance of MLMS will require leveraging a broad spectrum of
technologies, both current and upcoming. It is beyond the scope of this paper to
provide a broad survey of these technologies. In this section, we provide a simple
classification of technologies from a model management perspective. We identify

four different categories of technologies that are foundational to communicating
between heterogeneous models.

(1) Languages and Data Representations - This category includes technologies
that provide the basis for representing and communicating data across a
heterogeneous set of tools and repositories. This includes (1) data representation
languages, such as XML, JSON [5], RDF [6], EXPRESS [7]; (2) data
manipulation/programming languages, such as Java, C++, and Python; and (3) data
communication languages and protocols, such as SOAP [9], WSDL [10], and REST
[11]. Modeling/simulation tools and model repositories typically support one or
more of these languages for interfacing with the information/models being managed
by them.

(2) Information Schemas and Ontologies - This category includes information
schemas (or ontologies), both standards-based and tool-specific, that provide the
semantics for the models managed in the tools. The ontologies could be used to
represent: (1) a broad spectrum of systems/products, such as SysML / UPDM
[12,13] standard for representing architecture of systems or system-of-systems, (2) a
specific family of products, such as ISO 10303 (STEP) AP203 and AP210 standards
[8] for representing mechanical and electromechanical product families respectively,
or (3) a specific aspect of product information, such as Modelica for representing
equation-based behavior models, STEP Part 42 for representing product
geometry/topology, STEP AP233 and Requirement Interchange Format (RIF) for
representing requirements [14], Functional Mockup Interface (FMI) for representing
dynamic simulation models [15], and PLCS [16] and OSLC [17] for representing
lifecycle information.

(3) Tool and Repository-specific Interfaces - This category includes application
programming interfaces (APIs) available with modeling/simulation tools and
repositories. The APIs provide services to connect to, query from, and transfer
models and model elements to/from these tools and repositories. The APIs are built
upon languages and approaches (as identified in category 1 above) and may support
open standards (as identified in category 2 above) to varying levels of compliance.
Examples of these API interfaces include SOA API for Teamcenter [18] and
Info*Engine API [19] for Windchill PLM systems, Java and C++ SDAI [20, 21]
bindings to communicate with STEP models.

One of the toughest challenges in model lifecycle management is the lack of
complete and robust APIs or standard / custom meta-models to interface with
commercial-off-the-shelf modeling and simulation tools and repositories.

5.3 Research Roadmap for the INCOSE MBSE Model Management
Community

The authors of this paper strongly believe the MLM is a broad and wide research
topic that is critical to the adoption of MBSE as mainstream Systems Engineering
practice. This paper provides an overview of the MLM current opportunities,
challenges, requirement and existing practices. The main opportunities and

challenges are ahead of us and need to be addressed by coordinated community
based effort. Specifically, we recommend pursuit of the following
research/organization directions:

1. Creation of an INCOSE MLM Workgroup (Other INCOSE mechanisms?) to

further advance the community and its related research topics. Tool vendors,
practitioners, and researchers are encouraged to engage in this effort. This has
been initiated as part of the INCOSE MBSE Initiative.

2. Publish follow up papers with more in depth analysis of MLMS requirements
and potential technologies. Encourage the community to publish real life and
detailed MLM case studies.

3. Publish follow up papers with analysis of the organizational aspects of Model
Management within enterprises: risks, budget, schedule, quality, culture etc.

4. Leverage current practices and subject matter experts from adjacent areas such as
Configuration Management, Product Lifecycle Management and Enterprise
Content Management. Accelerate MLM practices adoption by embracing
successful patterns and avoiding past mistakes.

5. Spread the word: initiate and facilitate new academic and industrial seminars,
workshops and conferences promoting an Model Lifecycle Management agenda.

6. Evaluate the need for new MLM standards and/or extensions to current standards
efforts to address MLM requirements.

7. Create an agreed “challenge problem” to be use as benchmark for MLMS
vendors.

Appendix A – MLMS requirements

1. The MLM System (MLMS) shall provide services for managing the creation, review,
update, and deletion of individual constituent models and model elements, their
interfaces, and related artifacts.

2. MLMS shall keep a strict governance mechanism for any CRUD (Create, Read, Update,
Delete) operation executed on the Model Configuration Item.

3. The MLMS services shall include:
i. Models of different kinds including geometric, analysis, and logical

models (refer to model taxonomy in SEBoK Part 2 ‘Representing Systems
with Models’}

ii. Artifacts that result from the execution of models such as simulation and
analysis results.

iii. Needed inputs to stimulate the models .
iv. Artifacts that are generated as views of the models including documents

and reports.
v. The tools and environments used to create, review, update and delete the

models and related artifacts.
vi. Metadata about the models, the related artifacts, the tools and

environments, and the users of the models and related artifacts.
4. The MLMS shall not modify the model content (excluding its metadata).
5. The MLMS shall provide services to identify Model Configuration Item (MCI) and

related artifacts to be managed. MCI related artifacts are any other MCIs that have direct
or indirect dependency with the original MCI. Dependency can be defined as :

i. Direct or indirect model interface dependency

ii. Direct or indirect model association
iii. Explicit dependency defined between the MCI and any other data source

6. The MLMS shall provide services to identify different versions of a MCI and related
artifacts, and maintain a history of the versions

7. The MLMS shall provide services to identify different variations of an MCI and related
artifacts, and maintain a lineage of the variations (e.g., their source and dependencies)

8. The MLMS shall provide services to generate reports of the differences between versions
and variants of MCI’s or collections of MCI’s (include comparison of MCI’s resulting
from different tool versions)

9. The MLMS shall provide services to manage dependencies between versions and variants
of MCI’s that may be the same or different model kind. The management shall include:

i. Create and identify a dependency
ii. Delete a dependency

iii. Generate a query/report of the dependencies between an MCI and any
other MCI’s

10. The MLMS shall provide a service to identify and alert on model inconsistencies, for
example models synchronizations after an update to one of the Model Elements .

11. The MLMS shall provide services to enable 2 or more users to collaborate on the
creation, review, update, and deletion of the same and different MCI’s within one or more
models. This includes:

i. Multiple users reviewing the same or different MCI’s at the same or
different time

ii. Multiple users updating the same or different MCI’s at the same or
different time

iii. Updating a model that contains updated MCI’s, newly created MCI’s, or
deleted MCI’s

iv. Identifying and tracking the change log in such collaboration
v. The MLMS shall provide services to maintain information about the

modeling tool/environment that was used to create, review, update or
delete the MCI. This should include the tool name and version, release
date and any other relevant tool metadata.

12. The MLMS shall provide services to create, review, update, and delete metadata for each
revision and variant that includes:

i. Time of revision
ii. System identification (which system is being modeled)

iii. Model version identification
iv. Previous model version identification
v. Dependency information to other MCI’s and modeling artifacts

vi. Author information
vii. Tool/Environment version information

viii. External sources
ix. Rationale and assumptions

13. The MLMS shall provide different metrics such as the number, type and frequency of
changes for NCI over time. This may result from query and analysis of the metadata or
MCI content over its evolution.

14. The MLMS shall provide services to assess the impact of changes in tool versions on an
MCI, collection of MCI’s, or models.

15. The MLMS shall provide policy-based security and access controls to the MCI’s, models,
and related artifacts. At minimum, the MLMS should enable authentication and
authorization based security model in the MCI level.

16. The MLMS shall not significantly degrade the performance and availability of the
modeling environment as it relates to creating, reviewing, updating and deleting MCI’s
and Models

17. Once models are configured and executed, the MLMS shall support the identification,
analysis and storage of the analysis results within the MLMS boundaries. The MLMS
systems should provide analysis result visualization and summary information.

18. Search and Navigation:
i. The MLMS should allow a user to look search for Model Element

ii. The MLMS should allow a user to browse the models managed within the
MLMS and to open a Model or Model Element when it was found.

iii. The MLMS should allow a user tag Model Elements and to use these tags
in searching and browsing (private and public tags).

References

1. http://www.sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Know
ledge_(SEBoK)
2. Satellites to Supply Chains, Energy to Finance — SLIM for Model-Based Systems
Engineering, Part 1: Motivation and Concept of SLIM. Manas Bajaj, Dirk Zwemer,
Russell Peak, Alex Phung, Andy Scott, Miyako Wilson (2011). Presented at the 21st
Annual INCOSE International Symposium, Denver, CO, June 20-23, 2011. PDF
available at http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part1.pdf
3. Satellites to Supply Chains, Energy to Finance — SLIM for Model-Based Systems
Engineering, Part 2: Applications of SLIM. Manas Bajaj, Dirk Zwemer, Russell Peak,
Alex Phung, Andy Scott, Miyako Wilson (2011). Presented at the 21st Annual INCOSE
International Symposium, Denver, CO, June 20-23, 2011. PDF available at
http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part2.pdf
4. Introduction to SLIM – www.intercax.com/slim
5. JSON - http://www.json.org/
6. RDF - http://www.w3.org/RDF/
7. EXPRESS (ISO 10303-11) -
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=5415
8&published=on
8. ISO 10303 (STEP) - See all standards in ISO 10303 family -
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=5415
8&published=on
9. SOAP - http://www.w3.org/TR/soap/
10. WSDL – http://www.w3.org/TR/wsdl
11. REST - http://www.w3.org/2001/sw/wiki/REST
12. SysML - http://www.omgsysml.org/
13. UPDM - http://www.omg.org/spec/UPDM/
14. RIF - http://www.omg.org/spec/ReqIF/
15. FMI - https://www.fmi-standard.org/
16. PLCS – https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=plcs
17. OSLC - http://open-services.net/

18. Teamcenter SOA API -
http://www.plm.automation.siemens.com/pt_br/Images/Siemens-PLM-Teamcenter-Servic
e-Oriented-Architecture-wp_tcm882-24383.pdf
19. Windchill Info*Engine API - http://www.ptc.com/product/windchill/info-engine
20. JSDAI (Java binding to STEP SDAI) - http://www.jsdai.net/overview/features
21. ST-Developer (C++ binding to STEP SDAI) -
http://www.steptools.com/products/stdev/

Biography
Amit Fisher is IBM Rational's Technical Client Relationship Manager for the Systems Industry, in
charge of promoting and pushing forward new innovative Systems Engineering solutions in the
Aerospace and Defense, Automotive Electronic Medical Devices and more. He is also a member of
IBM Industry Academy, the most prestige IBM Industry forum. Prior to joining IBM Software Group,
Amit was a senior manager at IBM Research, Haifa, where he worked closely with selective IBM
clients in developing new approaches for complex systems design and analysis, optimization and
transformation solutions. Prior to joining IBM, Amit served as Information Systems engineer officer
at the Israeli Air Force.

Sanford Friedenthal is an independent consultant in model-based systems engineering
(MBSE). Previously, at Lockheed Martin, he led the effort to enable Model-Based Systems
Development (MBSD) and other advanced practices across the company. Mr. Friedenthal has
been a leader of the Industry Standards effort through the Object Management Group (OMG)
and INCOSE to develop the Systems Modeling Language (OMG SysML) that was adopted
by the OMG in 2006. He is co-author of A Practical Guide to SysML.
Mark Sampson is the product manager/evangelist in charge of integrating systems
engineering and requirements within the product-lifecycle management (PLM) business at
Siemens—enabling systems engineering and requirements to participate/influence all aspects
of product development.
Lonnie VanZandt

 John Palmer’s experience spans the design, analysis, verification, and operation of complex
integrated hardware and software systems. He has worked at the level of detailed HW/SW
integration in high integrity aviation electronics, through to the level of systems of systems
mission critical communication. John's responsibilities aim at improving system engineering
processes and tools, and planning for long range implications of disruptive technology.

Mike Nolan has been with Raytheon for 8 years and works on the SVTAD staff. He leads a
modeling and simulation IRAD, works in the Design For Six Sigma area and is co-chair of
the IV&V TIG. Mike is a retired USAF Test Pilot and Squadron Commander with experience
in the F-15 and T-38. He is a graduate of MIT, RPI and NMSU with degrees in electrical
engineering, industrial engineering and management.

Mike Loeffler is Systems Engineering IT specialist at GM. Mike is focused on application of
PLM and ALM to support Systems Engineering across the entire vehicle development life
cycle. Mike has vehicle engineering domain experience in both electrical hardware and
embedded software development.
Manas Bajaj, PhD is the Co-Founder and Chief Systems Officer at InterCAX. He focuses on
next-generation software and services for MBSE, and has over 14 years of experience in
systems engineering, CAD/CAE, PLM, and SCM, working with leading organizations in
aerospace, defense, automotive, energy, telecommunications, and transportation. He has
authored several papers and won best paper awards. He is a contributor to ISO STEP and
OMG SysML standard, and co-author of OCSMP certification program at OMG. He also
conducts SysML/MBSE courses for the industry which have now been attended by over 2700
engineers since 2008.
Krista Hovey has been a Configuration Manager in the NASA aerospace environment for
sixteen years, and a product designer/project lead in the DoD aerospace environment for 14
years prior. Krista’s current focus as an independent consultant is to provide assessment and
implementation expertise to companies in the beginning stages of developing CM processes

for their unique environments, and training and mentoring the CM practitioners tasked with
implementing those processes.

 Laura Hart

