

Help for Systems of Systems:
Using UPDM and RAS for SoS Modeling

Matthew C Hause

Atego

5930 Cornerstone Court West

Suite 250, San Diego, CA 92121

917-514-7581

Matthew.Hause@Atego.com

Copyright © 2013 by Matthew Hause. Published and used by INCOSE with permission.

Abstract. Systems of Systems (SoS) modeling is becoming increasingly important in both

civilian and military systems. The Department of Defense (DoD) Defense Acquisition

Guidebook, [1] defines a SoS as a “set or arrangement of systems that results when

independent and useful systems are integrated into a larger system that delivers unique

capabilities.” Organizations are changing their emphasis from “We need a new system” to “We

need to achieve a specific outcome.” As these outcomes become more complex and the

associated systems more complex, the management, modeling and simulation of these SoS

becomes equally challenging. Often, the SoS is modeled in all its complexity, often at a single

level of abstraction or level of detail. Instead of a “mega-model” approach, a standards-based

“model of models” approach is what is necessary. This approach will use the Object

Management Group (OMG) Unified Profile for DoDAF and MODAF (UPDM) for modeling

enterprise architectures from capabilities to detailed components, and the Reusable Asset

Specification (RAS) for defining reusable assets. Combining UPDM and RAS provides a

Model of Models approach with the main model specifying assets in various levels of detail.

The models specified by these assets can be referenced when detailed analysis is required, or

hidden when a SoS viewpoint is required, allowing the analyst to see the forest through the

trees. The paper will also include an assessment of the applicability and effectiveness of this

approach. The International Conference on Systems Engineering (INCOSE) System of

Systems Working Group (SoSWG) has collected a set of “Pain Points on SoS” from a variety

of international sources. This paper will review these pain points and discuss how the

application of a Model of Model approach, combined with standards-based modeling tools and

a reusable assets approach can help to alleviate some of the pain currently being felt by SoS

architects and managers. Hopefully, this response to their SOS will deliver some much-needed

assistance.

Introduction

Systems of Systems (SoS) modeling is becoming increasingly important in both civilian and

military systems. Guidance is being written, studies undertaken, standards created and national

and international research projects funded. These projects are far-ranging and too numerous to

mention, so only a few notable publications and projects will be mentioned. The Department of

Defense (DoD) Defense Acquisition Guidebook, [1] defines an SoS as a “set or arrangement of

systems that results when independent and useful systems are integrated into a larger system

that delivers unique capabilities.” The guidebook further emphasizes the importance of

systems engineering regarding SoS. “SE is increasingly recognized as key to addressing the

evolution of complex systems of systems. SE principles and tools can be used to apply systems

thinking and engineering to the enterprise levels. An enterprise in this usage is understood to be

the organization or cross-organizational entity supporting a defined business scope and

mission, and includes the interdependent resources (people, organizations, and technology) to

coordinate functions and share information in support of a common mission or set of related

missions, (reference Federal Enterprise Architecture Framework (FEAF)," September

1999).”[16]

The Systems Engineering Guide for Systems of Systems Version 1.0 August 2008 [2] goes

further. It provides “today’s systems engineering practitioners with well grounded, practical

guidance on what to expect as they work in today’s increasingly complex systems environment

and tackle the challenges of systems of systems. This guide is a step in supporting the systems

engineering community to adapt systems engineering processes to address the changing nature

of today’s world increasingly characterized by networked systems and systems of systems.” [2]

European Research projects

Ongoing research in SoS includes the COMPASS and DANSE projects. DANSE[4]

(Designing for Adaptability and evolutioN in System of systems Engineering), which aims to

develop "a new methodology to support evolving, adaptive and iterative System of Systems

life-cycle models based on a formal semantics for SoS inter-operations and supported by novel

tools for analysis, simulation, and optimization". COMPASS[3] (Comprehensive Modeling for

Advanced Systems of Systems), “aims to provide a semantic foundation and open tools

framework to allow complex SoSs to be successfully and cost-effectively engineered, using

methods and tools that promote the construction and early analysis of models.” COMPASS has

provided useful guidance and publications regarding the definition and management of SoS.

These include Semi-Formal and Formal Interface Specification for System of Systems

Architecture [17], and Model-based requirements engineering for system of systems [18].

INCOSE

The International Conference on Systems Engineering (INCOSE) System of Systems Working

Group (SoSWG) has collected a set of “Pain Points on SoS” from a variety of international

sources [5]. These will be discussed later in this paper.

Systems of Systems

Systems of Systems are generally large complex systems, with varying degrees of operational

independence, managerial independence, evolutionary development, geographical distribution

and lifecycle independence. Both individual systems and SoS conform to the accepted

definition of a system in that each consists of parts, relationships, and a whole that is greater

than the sum of the parts; however, although an SoS is a system, not all systems are SoS. SoS

typically are not acquired or specified from scratch. They are modifications to ensembles of

existing and new systems which together address capability needs. An SoS can be a logical

configuration of existing and new systems, where the systems retain their identity, and

management and engineering continue in the systems concurrently with the SoS. Systems can

even simultaneously be parts of multiple systems of systems. A family of systems (FoS) is

defined as a set of systems that provide similar capabilities through different approaches to

achieve similar or complementary effects [6]. FoS are fundamentally different from SoS

because, as [6] goes on to say, a family of systems lacks the synergy of a system of systems.

However, many of the techniques described in this paper are applicable to FoS.

Systems of Systems Engineering

Systems of systems (SoS) systems engineering (SE) deals with planning, analyzing,

organizing, and integrating the capabilities of new and existing systems into a SoS capability

greater than the sum of the capabilities of its constituent parts. Consistent with the DoD

transformation vision and enabling net-centric operations, SoS may deliver capabilities by

combining multiple collaborative and independent-yet-interacting systems. The mix of

systems may include existing, partially developed, and yet-to-be-designed independent

systems. [1] The emphasis on the capability-driven nature of SoS SE is important to note here.

It is the provided capabilities of these systems that provide the criteria to systems engineers to

determine how the different systems fit together and whether or not the SoS as a whole will

meet stakeholder requirements. Evaluation at the level of individual requirements is too low

level, time consuming and complex a manner to determine how to assemble the SoS. This is

further emphasized later in this paper when discussing architecture modeling languages. Due to

the complexity of these systems, an essential aspect of SoS SE is MBSE.

Model-Based Systems Engineering (MBSE)

Modeling has always been an important part of systems engineering to support functional,

performance, and other types of engineering analysis. Wayne Wymore introduced a

mathematical foundation for MBSE in his book entitled Model-Based Systems Engineering

[8]. However, the growth in computing technology and the introduction of modeling standards

such as SysML, UPDM, Modelica, HLA, and others, are helping to enable MBSE as a standard

practice, and provide a foundation to integrate diverse models needed to fully specify and

analyze systems. Standards such as UPDM and SysML were driven by both industry and tool

vendors. This ensures that the standards both meet user requirements and are available in a

variety of different commercial and free-ware tools. Without this wide tool support, modelling

languages and techniques tend to fall into disuse.

The INCOSE SE Vision 2020 [7] defines Model-based systems engineering (MBSE) as “the

formalized application of modeling to support system requirements, design, analysis,

verification and validation activities beginning in the conceptual design phase and continuing

throughout development and later life cycle phases. MBSE is part of a long-term trend toward

model-centric approaches adopted by other engineering disciplines, including mechanical,

electrical and software. In particular, MBSE is expected to replace the document-centric

approach that has been practiced by systems engineers in the past and to influence the future

practice of systems engineering by being fully integrated into the definition of systems

engineering processes.” Applying MBSE is expected to provide significant benefits over the

document centric approach by enhancing productivity and quality, reducing risk, and providing

improved communications among the system development team. [7]

The concrete and quantifiable benefits of MBSE are currently being realized in industry today.

Hause et al, 2009 [19] in “Testing Solutions through SysML/UML” demonstrated a savings of

70% in testing of safety critical rail signaling systems. Steve Saunders [20] in “Does a Model

Based Systems Engineering Approach Provide Real Program Savings?” found a 68%

reduction in specification defects since MBSE practices were introduced. This was for a

project managing a fleet of submarines. Finally, the NDIA Systems Engineering Division

M&S Committee Final Report on Model Based Engineering (MBE) [21] details savings on

several projects both quantitative and anecdotal and includes useful guidance on adoption of

model-based techniques on complex systems.

Systems Of Systems Architecture

Organizations are changing their emphasis from a platform focus to an emphasis on

capabilities. In general, this is a change from “We need a new system” to “We need to achieve

a specific outcome.” As these outcomes become more complex and the associated systems

more complex, the management, modeling and simulation of these SoS becomes equally

challenging. The Department of Defense Architecture Framework (DoDAF) [9] and Ministry

of Defence Architecture Framework (MODAF) [10] were developed for modeling enterprise

Dave
Highlight

architectures from capabilities to detailed components, and the technical and operational

management of these architectures as they evolve over time.

Military Architectural Frameworks such as DoDAF and MODAF define a standard way to

organize an enterprise architecture (EA) or systems architecture into complementary and

consistent views. DoDAF V1.0 contained four basic views: the overarching All Views (AV),

Operational View (OV), Systems View (SV), and the Technical Standards View (TV/StdV).

Each view is aimed at different stakeholders, and it is possible to create cross references

between the views. Although they were originally created for military systems, they are

commonly used by the private, public and voluntary sectors around the world, to model

complex organizations such as humanitarian relief organizations and public services such as

FEMA. Their goal is to improve planning, organization, procurement and management of these

complex organizations. All major DoD weapons and information technology system

procurements are now required to document their enterprise architectures using DoDAF.

MODAF kept compatibility with the core DoDAF viewpoints in order to facilitate

interpretation of architectural information with the US military. However, MODAF v1.0 added

two new viewpoints. The new elements were the Strategic and Acquisition Viewpoints called

the Capability and Project Views in DoDAF 2.0. These were added to better contribute to

MOD processes and lifecycles, specifically the analysis of the strategic issues and

dependencies across the entire portfolio of available military capabilities within a given time

frame. In MODAF v1.2, Service views were added to support the development of Service

Orientated Architectures (SOA). These were based on NAF 3.0 and have been included in

DoDAF 2.0. In the same way that the existing views are integrated, the new views are as well.

For example, the Project views specify when the capabilities defined within the Capability

views will become available. Capabilities can be associated with systems that define the

subsystems, organizations and people necessary to achieve required capabilities.

UPDM

The Object Management Group (OMG) Unified Profile for DoDAF and MODAF (UPDM)

[13] was created by members of INCOSE and the OMG to define a consistent, standardized

means to describe DoDAF V 2.02

and MODAF architectures using

the Systems Engineering

Language (SysML)[11], [12].

The goals of UPDM are to

significantly enhance the quality,

productivity, and effectiveness

associated with enterprise and

system of systems architecture

modeling, promote architecture

model reuse and maintainability,

improve tool interoperability and

communications between

stakeholders, and reduce training

impacts due to different tool

implementations and semantics.

Figure 1. UPDM Views (DoDAF 2.0 Version)

The facilities provided by SysML such as physical and logical modeling, interface definition,

requirements, functional modeling, parametrics, and multiple levels of abstraction provide

powerful modeling capabilities. UPDM is widely used for non-military applications. Use of

UPDM will increase substantially as the US Federal Government adopts CAF (a framework

that builds on DoDAF) across all federal departments. [14], [22], [24].It is important to stress

that UPDM is not a new architecture framework. Instead, it provides a consistent, standardized

implementation of DoDAF, MODAF and NAF architectures in UML-based tools as well as a

standard for interchange. Figure 1 summarizes the different UPDM viewpoints described

above.

The Reusable Asset Specification

Often, the SoS is modeled in all its complexity, often at a single level of abstraction or level of

detail. These models consist of complex unreadable, network-style diagrams containing

hundreds of objects. These are useless as analysis tools and are a turn-off to non-technical users

and managers. Figure 2 provides

an example of a typical system

architecture diagram. It is a

contrived example with the details

of the system elements

deliberately obscured [23]. The

diagram was taken from a blog

bemoaning the uselessness of

complex system architecture

diagrams and is illustrative of

many of the diagrams presented by

architects to bewildered

stakeholders.

Figure 2 – System of System and Related Interfaces [23]

A Different Approach

Instead of a “mega-model” approach, a standards-based “model of models” approach is what is

necessary. The Reusable Asset Specification (RAS) [15] is used for defining reusable assets,

their interfaces, characteristics and supporting elements. There are three key dimensions that

describe reusable assets: granularity, variability (and visibility), and articulation. The

granularity of an asset describes how many particular problems or solution alternatives a

packaged asset addresses. The variability and visibility can vary from black-box assets, whose

internals cannot be seen and are not modifiable, to white box assets which are visible and

modifiable. Two other variations in between are clear-box assets and gray-box assets. The

articulation dimension describes the degree of completeness of the artifacts in providing the

solution. Asset specifications can also include supporting documentation, requirements

addressed, interfaces, etc. Combining UPDM/SysML and RAS provides a Model of Models

approach with the main model specifying the system of systems and referencing assets in

various levels of detail. The models specified by these assets can be referenced when detailed

analysis is required, or hidden when a SoS viewpoint is required, allowing the analyst to see the

forest through the trees. To extend the metaphor further, details of the individual trees can also

be examined when necessary.

Elements Of SysML

SysML includes diagrams that can be used to specify system requirements, behavior, structure

and parametric relationships. These are known as the four pillars of OMG SysML. The system

structure is represented by block definition diagrams and internal block diagrams. A block

definition diagram describes the system hierarchy and system/component classifications. The

internal block diagram describes the internal structure of a system in terms of its parts, ports,

and connectors. The package diagram is used to organize the model.

The behavior diagrams include the use case diagram, activity diagram, sequence diagram and

state machine diagram. A use-case diagram provides a high-level description of the system

functionality. The activity diagram represents the flow of data and control between activities. A

sequence diagram represents the interaction between collaborating parts of a system. The state

machine diagram describes the state transitions and actions that a system or its parts performs

in response to events.

The requirement diagram captures requirements hierarchies and the derivation, satisfaction,

verification and refinement relationships. The relationships provide the capability to relate

requirements to one another and to relate requirements to system design models and test cases.

The requirement diagram provides a bridge between typical requirements management tools

and the system models. The parametric diagram represents constraints on system parameter

values such as performance, reliability and mass properties to support engineering analysis.

SysML includes an allocation relationship to represent various types of allocation including

allocation of functions to components, logical to physical components and software to

hardware.

Structural Elements of SysML

The major structural extension in SysML is the «block» which extends the UML Structured

Class. It is a general purpose hierarchical structuring mechanism that abstracts away much of

the software-specific detail implicit in UML structured classes. Blocks can represent any level

of the system hierarchy including the top-level system, a subsystem, or logical or physical

component of a system or environment. A SysML block describes a system as a collection of

parts and connections between them that enable communication and other forms of interaction.

Ports provide access to the internal structure of a block for use when the object is used within

the context of a larger structure. SysML provides standard ports which support client-server

communication (e.g., required and provided interfaces) and FlowPorts (deprecated in the

current version) that define flows in or out of a block. Ports are discussed in more detail below.

Structured Diagram Types.

Two diagrams are used to describe block relationships. The Block Definition Diagram (bdd),

similar to a traditional class diagram, is used to describe relationships that exist between

blocks. The Internal Block Diagram (ibd) is used to describe block internals. An example of a

block definition diagram for a Distiller system is shown in Figure 3. In addition to the system

structure, requirements traceability is also shown.

Figure 3 – Block Definition Diagram of Distiller

The Distiller is represented as a block composed of other blocks, including the Boiler, Heat

Exchanger and drain Valve. The role names on the association ends correspond to the parts on

the ibd. Note the use of compartments to show selected properties of the block; for example,

the operations compartment describes the functional behavior of the block. A simple example

of an internal block diagram (ibd) is shown in Figure 4.

Figure 4 – Internal Block Diagram of Distiller

Figure 4 shows the internal structure of the Distiller block. It shows the hx1, a Heat Exchanger,

bx1, a Boiler, and the drain valve that are interconnected to allow material and energy to flow

between them and via connections to their parent to external systems. The Heat Exchanger and

Boiler each have a number of flow ports that describe what can flow in and out. These are then

bdd [Package] Distiller Structure [Structural Breakdown]

«block»

operations
powerOn ()
powerOff ()
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Boiler

«block»

operations
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Valve

«block»

operations
TurnOn ()
TurnOff ()
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Distiller

«block»

operations
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Heat Exchanger

hx1 bx1 drain

satisfies
«requirement» HeatExchanger

satisfies
«requirement» HeatExchanger

satisfies
«requirement» Boiler

satisfies
«requirement» Boiler

satisfies
«requirement» Drain

satisfies
«requirement» Drain

ibd [Block] Distiller [Initial with Item Flows]

«block»

Distiller

DSDirty_Out : H2O

bx1 : Boiler

BLHotDirty_In : H2O

BLSteam_Out : H2O

BLSteam_Out2 : Residue

BLPower_In : Power

BLExcess : H2O

drain : Valve

Fluid_In : Fluid Fluid_Out : Fluid

hx1 : Heat Exchanger

HEDirtyIn : H2O

HEClean_Out : H2O HEHotDirty_Out : H2O

HESteam_In : H2O

DSResidue_Out : Residue

DSClean_Out : H2O

DSPower_In : Power

DSExcess

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : Residue

«ItemFlow» : Residue

«ItemFlow»

 : Power

«ItemFlow»

connected to other compatible ports to enable the required flows in this context. The arrows on

the connectors represent item flows that correspond to physical or logical items that actually

flow through the system and whose properties can be constrained in parametric models

Standard Ports. Standard Ports are the same as ports in UML 2.0 and used to specify service

oriented (request-reply) peer-to-peer interaction which is typical for software component

architectures. Standard ports are typed by required/provided interfaces detailing the set of

provided/required services. A provided interface specifies a set of operations that a block must

provide and a required interface specifies a set of operations that it requires to be provided by

another block.

Flow Ports. FlowPorts are interaction

points through which data, material or

energy “can” enter or leave the owning

block. A FlowPort specifies the input and

output items that may flow between a

block and its environment. The

specification of what can flow is achieved

by typing the FlowPort with a

specification of things that flow. This can

include typing an atomic flow port with a

single item that flows in our out, or typing

a non-atomic flow port with a

“flowSpecification” which lists multiple

items that flow. An atomic FlowPort can

be typed by a Block, ValueType,

DataType or Signal. Figure 5 shows the

blocks used to define the interfaces used

in the Distiller system.

Figure 5 – Block Definition Diagram of Types

Figure 5 shows the types of the interfaces as Heat and Fluid, with H2O and Residue as types of

Fluid. The value properties of the blocks are also shown such as temperature, pressure, and

mass flow rate. Interfaces can also be defined for data types. Other types of interaction are

possible as well. A block representing an automatic transmission in a car could have an atomic

flow port that specifies “Torque” as an input and another atomic flow port that specifies

“Torque” as an output. A more complex flow port could specify a set of signals and/or

properties that flow in and out of the flow port. In general, flow ports are intended to be used

for synchronous, broadcast or send and forget interactions. FlowPorts extend UML2.0 ports.

Atomic FlowPorts have an arrow inside them indicating the direction of the port with respect to

the owning Block. Non-atomic FlowPorts have two open arrow heads facing away from each

other (i.e. <>).

Later versions of SysML have further extended ports. Blocks with ports can type other ports

(nested ports). Ports nest other ports in the same way that blocks nest other blocks. The type of

the port is a block (or one of its specializations) that also has ports. For example, the ports

supporting torque flows in the transmission example might have nested ports for physical links

to the engine or the driveshaft. [12]

Proxy Ports and Full Ports

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning

blocks or its internal parts (proxy ports), and another where ports specify separate elements of

the system (full ports). Both are ways of defining the boundary of the owning block as features

bdd [Package] Item Types

«block»

values
degrees C : temp
kg/gm^2 : press
gm/sec : massFlowRate

Residue

«block»

values
degrees C : temp
kg/gm^2 : press
gm/sec : massFlowRate

Fluid

«block»

values
cal/sec : dQ/dt

Heat

«block»

operations
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

values
degrees C : temp
kg/gm^2 : press
gm/sec : massFlowRate
cal/gm : specificHeat
cal/(gm*deg C) : latentHeat

H2O

available through external connectors to ports. Proxy ports define the boundary by specifying

which features of the owning block or internal parts are visible through external connectors,

while full ports define the boundary with their own features. Proxy ports are always typed by

interface blocks, a specialized kind of block that has no behaviors or internal parts. Full ports

cannot be behavioral in the UML sense of standing in for the owning object, because they

handle features themselves, rather than exposing features of their owners, or internal parts of

their owners. Ports that are not specified as proxy or full are simply called “ports.” [12]

Regardless of how the interfaces have been specified, a consistent and standardized format is

required for a viable integration of systems.

Reuse Of Elements In A SoS

As has been stated earlier, SysML blocks are reusable elements. For example, the Valve block

can be reused within the architecture within any of the systems as a component. In the Distiller

example for instance which is further detailed in the SysML specification [12], an additional

valve is added to the design of the distiller. Having defined the valve properties, behavior,

interfaces, and constraints, the valve is a known element and does not have to be continually

redefined. In addition, if the properties of the Valve block are changed, they are changed for all

usages of that block. This is similar to electronic components in a parts catalog. For a simple

system such as the valve, there is very little overhead involved in its reuse. When systems start

to become complex, this can add considerable overhead to the model in terms of size,

performance and complexity. In addition, reuse of components within a model can be

problematic. Reuse of model elements within an organization is even more unlikely. In order to

achieve effective reuse of design and other high-level assets, along with a re-use culture and

good reuse discipline, an organization needs an intelligent asset library that, in effect, goes out

and encourages people to find and re-use its assets. The Reusable Asset Specification, coupled

with a library of assets and a model of models architecture provides these capabilities. An asset

library will also provide a means by which models can be assembled of reused assets rather

than built from scratch every time.

To illustrate the problem, we will use an

example from a recent INCOSE Tool

Vendor Challenge held at the 2013

INCOSE IS in Philadelphia. For further

information and the complete solution see

http://www.incose.org/symp2013/downl

oad/TVC/Atego-TVC-IS2013.pdf . The

problem involved an emergency response

system. As part of the initial emergency

response, ice must be provided to sustain

perishables such as medicine and foods,

and to support first aid needs. Power and

potable water are to be provided with the

shelter solution.

Figure 6 – Operational Concept for Disaster Relief

The task was to model the system of systems providing the solution and demonstrate how the

eventual configuration met the requirements. Subtasks involved the analysis of alternatives,

requirements developments, compare and select operational scenario, develop architecture and

systems analysis. Figure 6 shows the disaster recoverry concept normally called an OV-1 in

UPDM and how ice provision fits into the context.

Capabilities

An ice provision capability is just one of the capabilities required for the disaster response

team. This capability also needs to fit in the wider operational context of disaster relief and the

lower level capabilities for the provision of food, water and shelter. The UPDM capability

views (CV) provide a means of defining required capabilities on the CV-2 diagram. The

capabilities can be linked to realizing

resources (systems, people,

organizations, etc.). The project views

provide a means of defining timescales

for the deployment of these resources and

therefore the realization of the required

capabilities. The CV-4 diagram is used to

define the dependencies between these

capabilities. Figure 7 shows the

capabilities required for Disaster Relief

and the dependencies between them. The

dashed lines with arrows indicate a

capability that depends on another. This

implies that systems supporting these

capabilities depend on the systems that

support other capabilities.

Figure 7 – Disaster Management Capabilities

As shown in Figure 7, Provide Ice requires Logistics for the delivery of the ice. Food Provision

requires Cold Storage, which requires ice. And finally, Medical requires Cold Storage, which

again requires ice. By mapping out the capabilities as well as the dependencies between them,

the architect is provided with a logical system architecture of the eventual system interfaces

and dependencies.

Systems Architecture

The Systems views (SVs) describe the physical implementation of the operational and service

orientated views and, thereby, define the solution. The SVs are a set of views that describe

resources that realize the required capabilities. The SVs describe resource functions and

interactions between resources and can also provide detailed system interface models. A recent

development in the system views is the involvement of humans in both the operation of

systems and in carrying out functions in their own right. This is essential as most systems

involve humans as their operations. The SVs can be used to specify solutions to requirements

specified in the OVs, or simply to provide more detail to the logical OV architecture.

The Resource Interaction Specification or SV-1 defines how the resources are structured and

how they interact and collaborate to realize the capabilities as well as the logical architecture.

Multiple variations can be defined to determine an optimal configuration of systems as well as

which systems are fit for purpose. The resources can be decomposed to any level required by

the architect and depending on the complexity of the solution architecture. Figure 8 shows the

SV-1 architecture for victim support.

CV-4 [Capability] Manage Environmental Incidents [CV-4]

CS : Cold Storage

CM : CommunicationsFD : Food Provision

LG : Logistics

MD : Medical SC : Security SH : Shelter

TS : Temperate Storage

MG : Management

PI : Provide Ice

Figure 8 – System Architecture for Victim Support

Figure 8 shows the interactions between the different systems. Interactions include not only

data, but also systems, power, and materiel including ice. In the same way that blocks can be

reused throughout an architecture, resources can also be reused. Having defined the systems

and their interface requirements, more

detailed interfaces can be elaborated and

specified in detail in the SV-2 diagram.

These interfaces are similar to those

defined using the SysML Internal Block

Diagram (IBD) as shown in Figure 9.

Figure 9 shows the Ice Plant

configuration with the specific systems

that will be deployed. The UPDM

implementation of DoDAF uses SysML

Blocks and Ports interfaces explicitly.

This is because systems and materiel are

defined as specialized SysML blocks.

Additional systems such as the Fuel

Supply had been identified during

analysis as the Power Supply will need

fuel to operate.

Figure 9 – System Architecture for the Ice Plant

In addition, the Distiller defined previously has been reused in this model. Figure 10 shows the

reused Distiller system in the model browser.

SV-1 Victim Support - [SV-1]

Victim Support

SP : Shelter Provision

FSD : Food Storage And Distribution

SC : Support CoordinationWP : Water Purification

ID : Ice Distribution

IM : Ice Machine

MS : Medical Services

PG : Power Generation

Victim : Member of Public

SC-SP:SR : Shelter Request

SC-FSD:FR : Food Request

WP-SC:WS : Water Status

WP-IC:WT : Water

IM-ID:IC : Ice

IR : Ice Request

PG-WP:PW : Power

PG-IM:PW : Power

MR : Medical Request

FSD-MP:FD : Food

SP-MP:SH : Shelter

MS-MP:MD : Medicine

MS-MP:MS : Medical Supplies

ID-MP:IC : Ice

ID-MS:IC : Ice

ID-FSD:IC : Ice

ibd [block] Ice Plant

«block»

Ice Plant

FS : Fuel Supply

fuelOut : Fuel

IC : Ice Container

iceIn : Ice

iceOut : Ice

PS : Power Supply pwrOut : Power

fuelIn : Fuel

WS : Water Supply
wtrOut : Water

Clean : Water

IM : IceMachine

pwnIn : Power

wtrIn : Water
IceOut : Ice

: Distiller

DSClean_Out :

DSPower_In : Power
DSDirty_Out :

DSResidue_Out :

DSExcess :

IceOut : Ice

FS-PS:PW : Fuel

«ItemFlow»

PS-IM:PW : Power

«ItemFlow»

WS-IM:WT : Water

«ItemFlow»

IM-IC:IC : Ice

«ItemFlow»

Power : Power

«ItemFlow»

CleanWater : Water

«ItemFlow»

IC-IP:IC : Ice

«ItemFlow»

Figure 10 shows the reused characteristics of the distiller system. These include the blocks,

constraint blocks used for parametrics, flow specifications, requirements associated with the

distiller, types and the interface ports and

attributes owned by the distiller. This provides a

means of inserting the distiller system into the

architecture for reuse. Figure 9 shows the

Distiller connected to the Power Supply and

Water Supply via the Power and Clean Water

ports. The Excess, Residue and Dirty Water ports

have not yet been connected. This indicates a

need for additional systems and procedures and

personnel for the system. This structure mirrors

that found in the Distiller asset in the asset library

as shown in Figure 11

Figure 10 – Distiller System Asset in Model

Figure 11 shows an example of an asset library with the defined Distiller system in an asset

catalog. Included with the asset is a description, interface, references, values, etc. This level of

detail is appropriate for reuse of the system as a black box component in a system of systems.

However, since the requirements, interfaces, behavior, and parametric characteristics are also

included, quantitative as well as qualitative analysis can be done on the asset to determine if it

is the best fit for the problem at hand. Included with the asset is the specification of the source

model from which the asset definition was taken. The architect can access the source model

when these details are required, described above as examining an individual tree. Assets stored

in the library can be searched, versioned, updated and queried by architects looking to reuse

component elements. In addition,

engineers can express interest in an asset

and be informed when it has been

updated. If required, the entire model in

all of its detail can also be stored along

with the asset. However, this lessens the

benefits of the asset library and the reuse

of systems. Otherwise, engineers may

resort to typical “clone and own” methods

of development. In this scenario, the

traceability to the original component is

lost along with the attendant benefits of

reuse.

Figure 11 – Distiller System Asset in Library

Finally, the RAS interface to the asset library is essential to ensure interoperability of tools and

models. There are a variety of modeling tools on the market supporting SysML, UPDM and

other methods. Often multiple tools are used within the same project for legacy as well as

budgetary reasons. The standards-based definition of the assets provides a means of reusing

assets modeled in a different tool without having to support bespoke tool to tool interfaces. The

UML XML Metadata Interchange (XMI) interchange format is currently the means by which

UML-based tools can exchange data. However, complete interchange has not yet been

achieved. See [14] for more information. In addition, the tool independent interface will allow

non UML-based tools to reuse assets as well.

Finally, the examples used in this paper were by necessity simple so as to illustrate the

techniques and concepts in such a way as they can be easily understood. The problem with all

examples is that if they are too simple, then the techniques for more complex problems have

not been proven. If they are too complex, then the concepts are too difficult to understand.

Therefore, it is worth noting that SysML, UPDM, and RAS have been used for the past several

years on projects that were both complex and ultimately successful [19], [20], [21].

System Of System Pain Points

The International Conference on Systems Engineering (INCOSE) System of Systems Working

Group (SoSWG) has collected a set of “Pain Points on SoS” from a variety of international

sources. These include Lack of SoS Authorities and Funding, leadership, Constituent Systems,

Capabilities and Requirements, Autonomy, Interdependencies and Emergence, Testing

Validation and Learning, and SoS Principles. [5]. As stated in the abstract, this paper explores

the combination of UPDM, RAS, SysML and an asset library in order to determine whether or

not they can provide relief the SoS pain points listed previously. The techniques defined

previously cannot help with all of these. However, it is worth looking at these briefly to

examine whether or not any impact can be made. MBSE has been around for quite some time

and only recently has the return on Investment (ROI) been demonstrated via quantitative

studies. In the same way, it is hoped that over time, the use of these techniques will demonstrate

their ROI and alleviate the pain currently being felt on projects.

Lack of SoS Authorities and Funding

No modelling technique or procedure can provide authority or funding. However, as MBSE

has begun to demonstrate true ROI, it is hoped that these techniques can provide ROI to

decrease the cost of developing SoS. Built into the asset library is an analysis system that

provides metrics in terms of cost savings for reuse. This built-in capability will provide

automatic analysis of ROI often lacking in processes.

Constituent Systems

Integrating constituent systems is difficult, especially when these systems are already in

existence and often not well understood. Clearly defined system interfaces, capabilities,

requirements, behavior, characteristics, etc. is essential for any meaningful integration. By

separating out the individual system models, and integrating them as black box systems,

engineers can concentrate on the individual system definitions without worrying about the

other systems. Also, having clearly defined the interfaces to the systems, development of these

systems can take place in parallel without affecting other models and the systems. Integration

in the SoS model can then examine the interaction of the individual systems as a whole.

Capabilities and Requirements

As stated above, defining systems in terms of capabilities provides a means of determining the

purpose and benefits of a system at a very high level. Capabilities describe desired outcomes as

well as specifying stakeholders and realizing resources. By defining systems in this way,

architects and engineers can determine capability overlaps as well as capability gaps. These

capabilities can then be evaluated using the technique described in Figure 7 to determine how

the systems work together at a capability level. This is particularly useful when no model exists

of the existing system(s). When models do exist, detailed system functions as well as the

requirements that they satisfy can also be a part of the SoS model for more detailed analysis

examination.

Autonomy, Interdependencies and Emergence

As spelled out in the report, emergent behavior is often unpredictable. As an experienced

systems engineer of many years, I am aware that the real problems of systems integration only

come to light when they are being integrated together in the field under real conditions. The

modeling and simulation of these systems and SoS can certainly help, but no test or set of tests

could ever predict all possible outcomes. Recent problems with the Boeing Dreamliner have

certainly borne this out. However, as modeling simulation techniques improve and a critical

mass of system models is built up, problems involving emergent behavior can be found,

diagnosed and mitigated before the systems are fielded.

Testing Validation and Learning

The models used for simulations and test of the rail system described in Hause, 2009 [19] had

been developed over the space of 10 years. They were extremely complex safety critical

systems involving the interaction of multiple complex systems. It was only when this critical

mass of the system model was reached that the system testing became practical and lead to the

extraordinary ROI of 70% savings on systems testing. This is not always possible or even

practical and will depend on individual project circumstances. It should also be noted that the

engineers involved did not have automated testing in mind when the system models were

originally built. It was only through experimentation that these benefits were realized.

Conclusions

Systems of Systems (SoS) have been in existence for some time. However, the definition,

analysis and modeling of these SoS is a fairly recent phenomenon. This has been driven by the

complex nature of today’s systems for commercial reasons, as well as to support government

guidance such as net-centric warfare. Modeling these systems has yielded mixed results for a

variety of reasons already spelled out in this paper. Rather than simplify the analysis of the

SoS, modeling has often further complicated it. This paper has provided examples of how a

standards-based approach using UPDM, RAS, SysML and an asset library will allow architects

and engineers to assemble complex systems models without the attendant overhead

encountered by existing techniques. They will also provide the real possibility of reuse that up

until now has eluded both software and systems engineers. As MBSE has started to

demonstrate ROI, it is hoped that these techniques will provide ROI in time, money and

superior systems architectures and possibly some relief for the pain that we have all been

feeling.

References

 [1] DoD, 2013, Defense Acquisition Guidebook, Production Date:15 May 2013 Available

at http://at.dod.mil/docs/DefenseAcquisitionGuidebook.pdf, Accessed Nov, 2013

[2] DoD, 2008, Systems Engineering Guide for Systems of Systems Version 1.0 August

2008, Available at http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf, Accessed

Nov, 2013

[3] COMPASS, 2013, Available at http://www.compass-research.eu/, Accessed Nov, 2013

[4] DANSE, 2013, Available at

https://www.danse-ip.eu/home/index.php/about/main-project-objectives, Accessed

Nov, 2013

[5] Dahmann, J, 2013, SoS Pain Points & Implications for MBSE, Presented at INCOSE

IW, 2013, Available at

http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/NDIA-SE-

MS-SoS_2013-08-20_Dahmann.pdf

[6] Chairman of the Joint Chiefs of Staff (CJCS), 2007(1), CJCS Instruction 3170.01F

Joint Capabilities Integration and Development System, Washington, DC: Pentagon,

May 1.

[7] INCOSE SE Vision 2020, September 2007, Available at

http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf,

Accessed Nov 2013

[8] Wymore, A Wayne, 1993, Model-Based Systems Engineering, CRC Press, Boca

Raton, Florida, ISBN 0-8493-8012-X

[9] DoD CIO, 2012, DoD Architecture Framework Version 2.02, DoD Deputy Chief

Information Officer, Available online at

http://dodcio.defense.gov/dodaf20/dodaf20_pes.aspx, accessed Nov, 2013.

[10] MOD Architectural Framework, Version 1.2.004, May, 2010, Office of Public Sector

Information,

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/36757/

20100602MODAFDownload12004.pdf

[11] Friedenthal, S., Moore, A., Steiner, R. Practical Guide to SysML: The Systems Modeling

Language Second Edition, Morgan Kaufman, Oct 31, 2011

[12] Object Management Group (OMG), June, 2012, OMG Systems Modeling Language

(OMG SysML™), V1.3, OMG Document Number: formal/2012-06-01,

http://www.omg.org/spec/SysML/1.3/PDF/, Accessed November, 2013

[13] UPDM, 2013, Object Management Group (OMG), 2013, Unified Profile for

DoDAF/MODAF (UPDM) 2.1, formal/2013-08-04, available at

http://www.omg.org/spec/UPDM/2.1/PDF

[14] Hause, M, 2013, Rebuilding the Tower of Babel - The Case for a Unified Architecture

Framework, presented at INCOSE International Symposium, 2013 proceedings

[15] OMG, 2005, Reusable Asset Specification (RAS), Version 2.2,

http://www.omg.org/spec/RAS/2.2/PDF, formal/05-11-02

[16] Federal Enterprise Architecture Framework (FEAF), Version 1.1, September 1999,

Available online at

http://www.enterprise-architecture.info/Images/Documents/Federal%20EA%20Frame

work.pdf, Accessed Nov, 2013

[17] Jeremy Bryans, Richard Payne, Jon Holt, Simon Perry. Semi-Formal and Formal Interface

Specification for System of Systems Architecture. In Proceedings of the 7th

International Systems Conference, IEEE SysCon 2013, IEEE, April 2013.

[18] Jon Holt. Model-based requirements engineering for system of systems. In Proceedings of

the 7th International Conference on System of System Engineering, IEEE SoSE 2012,

IEEE, July 2012.

[19] Hause, M. Richards, D. Stuart, A., , June, 2009, Testing Solutions through SysML/UML,

INCOSE IS 2009

[20] Steve Saunders, FIEAust CPEng, Raytheon, Does a Model Based Systems Engineering

Approach Provide Real Program Savings? Informal Symposium on Model-Based

Systems Engineering DSTO, Edinburgh, South Australia, 2012

[21] Jeff Bergenthal (Subcommittee Lead), NDIA Systems Engineering Division, M&S

Committee, February 2011, Final Report, Model Based Engineering (MBE),

Subcommittee, available online at

http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Committee

s/M_S%20Committee/Reports/MBE_Final_Report_Document_(2011-04-22)_Marked

_Final_Draft.pdf

[22] Okon, Walt, 2012, Moving Towards a Unified Architecture and the US Government

Information Sharing Environment, 1105 Enterprise Architecture Conference, 28

November 2012

[23] NQ Logic, If It Ain't Broke, Fix It, Available at

http://www.nqlogic.com/2009/07/cit-definition.html, accessed Nov 2013

[24] [WH 2012] The Common Approach To Federal Enterprise Architecture, Executive

Office Of The President Of The United States, May 2, 2012,

http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/common_approa

ch_to_federal_ea.pdf

Biography

Matthew Hause is Atego’s Chief Consulting Engineer, the co-chair of the UPDM group a

member of the OMG Architecture Board, and a member of the OMG SysML specification

team. He has been developing multi-national complex systems for almost 35 years. He started

out working in the power systems industry and has been involved in military command and

control systems, process control, communications, SCADA, distributed control, office

automation and many other areas of technical and real-time systems. His roles have varied

from project manager to developer. His role at Atego includes mentoring, sales presentations,

standards development, presentations at conferences, specification of the UPDM profile and

developing and presenting training courses. He has written over 100 technical papers on

architectural modeling, project management, systems engineering, model-based engineering,

human factors, safety critical systems development, virtual team management, systems

development, and software development with UML, SysML and Architectural Frameworks

such as DoDAF and MODAF. He has been a regular presenter at INCOSE, the IEEE, BCS, the

IET, the OMG, DoD Enterprise Architecture, Embedded Systems Conference and many other

conferences. He was recently a keynote speaker at the Model-based Systems Engineering

Symposium at the DSTO in Australia. Matthew studied Electrical Engineering at the

University of New Mexico and Computer Science at the University of Houston, Texas. In his

spare time he is a church organist, choir director and composer.

