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Abstract. Systems of Systems (SoS) modeling is becoming increasingly important in both 

civilian and military systems. The Department of Defense (DoD) Defense Acquisition 

Guidebook, [1] defines a SoS as a “set or arrangement of systems that results when 

independent and useful systems are integrated into a larger system that delivers unique 

capabilities.” Organizations are changing their emphasis from “We need a new system” to “We 

need to achieve a specific outcome.” As these outcomes become more complex and the 

associated systems more complex, the management, modeling and simulation of these SoS 

becomes equally challenging. Often, the SoS is modeled in all its complexity, often at a single 

level of abstraction or level of detail. Instead of a “mega-model” approach, a standards-based 

“model of models” approach is what is necessary. This approach will use the Object 

Management Group (OMG) Unified Profile for DoDAF and MODAF (UPDM) for modeling 

enterprise architectures from capabilities to detailed components, and the Reusable Asset 

Specification (RAS) for defining reusable assets. Combining UPDM and RAS provides a 

Model of Models approach with the main model specifying assets in various levels of detail. 

The models specified by these assets can be referenced when detailed analysis is required, or 

hidden when a SoS viewpoint is required, allowing the analyst to see the forest through the 

trees. The paper will also include an assessment of the applicability and effectiveness of this 

approach. The International Conference on Systems Engineering (INCOSE) System of 

Systems Working Group (SoSWG) has collected a set of “Pain Points on SoS” from a variety 

of international sources. This paper will review these pain points and discuss how the 

application of a Model of Model approach, combined with standards-based modeling tools and 

a reusable assets approach can help to alleviate some of the pain currently being felt by SoS 

architects and managers. Hopefully, this response to their SOS will deliver some much-needed 

assistance. 

Introduction 

Systems of Systems (SoS) modeling is becoming increasingly important in both civilian and 

military systems. Guidance is being written, studies undertaken, standards created and national 

and international research projects funded. These projects are far-ranging and too numerous to 

mention, so only a few notable publications and projects will be mentioned. The Department of 

Defense (DoD) Defense Acquisition Guidebook, [1] defines an SoS as a “set or arrangement of 

systems that results when independent and useful systems are integrated into a larger system 

that delivers unique capabilities.” The guidebook further emphasizes the importance of 

systems engineering regarding SoS. “SE is increasingly recognized as key to addressing the 

evolution of complex systems of systems. SE principles and tools can be used to apply systems 

thinking and engineering to the enterprise levels. An enterprise in this usage is understood to be 

the organization or cross-organizational entity supporting a defined business scope and 



 

  

mission, and includes the interdependent resources (people, organizations, and technology) to 

coordinate functions and share information in support of a common mission or set of related 

missions, (reference Federal Enterprise Architecture Framework (FEAF)," September 

1999).”[16]  

The Systems Engineering Guide for Systems of Systems Version 1.0 August 2008 [2] goes 

further. It provides “today’s systems engineering practitioners with well grounded, practical 

guidance on what to expect as they work in today’s increasingly complex systems environment 

and tackle the challenges of systems of systems. This guide is a step in supporting the systems 

engineering community to adapt systems engineering processes to address the changing nature 

of today’s world increasingly characterized by networked systems and systems of systems.” [2] 

European Research projects 

Ongoing research in SoS includes the COMPASS and DANSE projects. DANSE[4] 

(Designing for Adaptability and evolutioN in System of systems Engineering), which aims to 

develop "a new methodology to support evolving, adaptive and iterative System of Systems 

life-cycle models based on a formal semantics for SoS inter-operations and supported by novel 

tools for analysis, simulation, and optimization". COMPASS[3] (Comprehensive Modeling for 

Advanced Systems of Systems), “aims to provide a semantic foundation and open tools 

framework to allow complex SoSs to be successfully and cost-effectively engineered, using 

methods and tools that promote the construction and early analysis of models.” COMPASS has 

provided useful guidance and publications regarding the definition and management of SoS. 

These include Semi-Formal and Formal Interface Specification for System of Systems 

Architecture [17], and Model-based requirements engineering for system of systems [18]. 

INCOSE 

The International Conference on Systems Engineering (INCOSE) System of Systems Working 

Group (SoSWG) has collected a set of “Pain Points on SoS” from a variety of international 

sources [5]. These will be discussed later in this paper. 

Systems of Systems 

Systems of Systems are generally large complex systems, with varying degrees of operational 

independence, managerial independence, evolutionary development, geographical distribution 

and lifecycle independence. Both individual systems and SoS conform to the accepted 

definition of a system in that each consists of parts, relationships, and a whole that is greater 

than the sum of the parts; however, although an SoS is a system, not all systems are SoS. SoS 

typically are not acquired or specified from scratch. They are modifications to ensembles of 

existing and new systems which together address capability needs. An SoS can be a logical 

configuration of existing and new systems, where the systems retain their identity, and 

management and engineering continue in the systems concurrently with the SoS. Systems can 

even simultaneously be parts of multiple systems of systems. A family of systems (FoS) is 

defined as a set of systems that provide similar capabilities through different approaches to 

achieve similar or complementary effects [6]. FoS are fundamentally different from SoS 

because, as [6] goes on to say, a family of systems lacks the synergy of a system of systems. 

However, many of the techniques described in this paper are applicable to FoS. 

Systems of Systems Engineering 

Systems of systems (SoS) systems engineering (SE) deals with planning, analyzing, 

organizing, and integrating the capabilities of new and existing systems into a SoS capability 

greater than the sum of the capabilities of its constituent parts. Consistent with the DoD 



 

  

transformation vision and enabling net-centric operations, SoS may deliver capabilities by 

combining multiple collaborative and independent-yet-interacting systems. The mix of 

systems may include existing, partially developed, and yet-to-be-designed independent 

systems. [1] The emphasis on the capability-driven nature of SoS SE is important to note here. 

It is the provided capabilities of these systems that provide the criteria to systems engineers to 

determine how the different systems fit together and whether or not the SoS as a whole will 

meet stakeholder requirements. Evaluation at the level of individual requirements is too low 

level, time consuming and complex a manner to determine how to assemble the SoS. This is 

further emphasized later in this paper when discussing architecture modeling languages. Due to 

the complexity of these systems, an essential aspect of SoS SE is MBSE.  

Model-Based Systems Engineering (MBSE) 

Modeling has always been an important part of systems engineering to support functional, 

performance, and other types of engineering analysis. Wayne Wymore introduced a 

mathematical foundation for MBSE in his book entitled Model-Based Systems Engineering 

[8]. However, the growth in computing technology and the introduction of modeling standards 

such as SysML, UPDM, Modelica, HLA, and others, are helping to enable MBSE as a standard 

practice, and provide a foundation to integrate diverse models needed to fully specify and 

analyze systems. Standards such as UPDM and SysML were driven by both industry and tool 

vendors. This ensures that the standards both meet user requirements and are available in a 

variety of different commercial and free-ware tools. Without this wide tool support, modelling 

languages and techniques tend to fall into disuse.  

The INCOSE SE Vision 2020 [7] defines Model-based systems engineering (MBSE) as “the 

formalized application of modeling to support system requirements, design, analysis, 

verification and validation activities beginning in the conceptual design phase and continuing 

throughout development and later life cycle phases. MBSE is part of a long-term trend toward 

model-centric approaches adopted by other engineering disciplines, including mechanical, 

electrical and software. In particular, MBSE is expected to replace the document-centric 

approach that has been practiced by systems engineers in the past and to influence the future 

practice of systems engineering by being fully integrated into the definition of systems 

engineering processes.” Applying MBSE is expected to provide significant benefits over the 

document centric approach by enhancing productivity and quality, reducing risk, and providing 

improved communications among the system development team. [7]  

The concrete and quantifiable benefits of MBSE are currently being realized in industry today. 

Hause et al, 2009 [19] in “Testing Solutions through SysML/UML” demonstrated a savings of 

70% in testing of safety critical rail signaling systems. Steve Saunders [20] in “Does a Model 

Based Systems Engineering Approach Provide Real Program Savings?” found a 68% 

reduction in specification defects since MBSE practices were introduced. This was for a 

project managing a fleet of submarines. Finally, the NDIA Systems Engineering Division 

M&S Committee Final Report on Model Based Engineering (MBE) [21] details savings on 

several projects both quantitative and anecdotal and includes useful guidance on adoption of 

model-based techniques on complex systems. 

Systems Of Systems Architecture 

Organizations are changing their emphasis from a platform focus to an emphasis on 

capabilities. In general, this is a change from “We need a new system” to “We need to achieve 

a specific outcome.” As these outcomes become more complex and the associated systems 

more complex, the management, modeling and simulation of these SoS becomes equally 

challenging. The Department of Defense Architecture Framework (DoDAF) [9] and Ministry 

of Defence Architecture Framework (MODAF) [10] were developed for modeling enterprise 
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architectures from capabilities to detailed components, and the technical and operational 

management of these architectures as they evolve over time. 

Military Architectural Frameworks such as DoDAF and MODAF define a standard way to 

organize an enterprise architecture (EA) or systems architecture into complementary and 

consistent views. DoDAF V1.0 contained four basic views: the overarching All Views (AV), 

Operational View (OV), Systems View (SV), and the Technical Standards View (TV/StdV). 

Each view is aimed at different stakeholders, and it is possible to create cross references 

between the views. Although they were originally created for military systems, they are 

commonly used by the private, public and voluntary sectors around the world, to model 

complex organizations such as humanitarian relief organizations and public services such as 

FEMA. Their goal is to improve planning, organization, procurement and management of these 

complex organizations. All major DoD weapons and information technology system 

procurements are now required to document their enterprise architectures using DoDAF.  

MODAF kept compatibility with the core DoDAF viewpoints in order to facilitate 

interpretation of architectural information with the US military. However, MODAF v1.0 added 

two new viewpoints. The new elements were the Strategic and Acquisition Viewpoints called 

the Capability and Project Views in DoDAF 2.0. These were added to better contribute to 

MOD processes and lifecycles, specifically the analysis of the strategic issues and 

dependencies across the entire portfolio of available military capabilities within a given time 

frame. In MODAF v1.2, Service views were added to support the development of Service 

Orientated Architectures (SOA). These were based on NAF 3.0 and have been included in 

DoDAF 2.0. In the same way that the existing views are integrated, the new views are as well. 

For example, the Project views specify when the capabilities defined within the Capability 

views will become available. Capabilities can be associated with systems that define the 

subsystems, organizations and people necessary to achieve required capabilities.  

UPDM 

The Object Management Group (OMG) Unified Profile for DoDAF and MODAF (UPDM) 

[13] was created by members of INCOSE and the OMG to define a consistent, standardized 

means to describe DoDAF V 2.02 

and MODAF architectures using 

the Systems Engineering 

Language (SysML)[11], [12]. 

The goals of UPDM are to 

significantly enhance the quality, 

productivity, and effectiveness 

associated with enterprise and 

system of systems architecture 

modeling, promote architecture 

model reuse and maintainability, 

improve tool interoperability and 

communications between 

stakeholders, and reduce training 

impacts due to different tool 

implementations and semantics. 

 

Figure 1. UPDM Views (DoDAF 2.0 Version) 

The facilities provided by SysML such as physical and logical modeling, interface definition, 

requirements, functional modeling, parametrics, and multiple levels of abstraction provide 



 

  

powerful modeling capabilities. UPDM is widely used for non-military applications. Use of 

UPDM will increase substantially as the US Federal Government adopts CAF (a framework 

that builds on DoDAF) across all federal departments. [14], [22], [24].It is important to stress 

that UPDM is not a new architecture framework. Instead, it provides a consistent, standardized 

implementation of DoDAF, MODAF and NAF architectures in UML-based tools as well as a 

standard for interchange. Figure 1 summarizes the different UPDM viewpoints described 

above. 

The Reusable Asset Specification 

Often, the SoS is modeled in all its complexity, often at a single level of abstraction or level of 

detail. These models consist of complex unreadable, network-style diagrams containing 

hundreds of objects. These are useless as analysis tools and are a turn-off to non-technical users 

and managers. Figure 2 provides 

an example of a typical system 

architecture diagram. It is a 

contrived example with the details 

of the system elements 

deliberately obscured [23]. The 

diagram was taken from a blog 

bemoaning the uselessness of 

complex system architecture 

diagrams and is illustrative of 

many of the diagrams presented by 

architects to bewildered 

stakeholders. 

 

Figure 2 – System of System and Related Interfaces [23] 

A Different Approach 

Instead of a “mega-model” approach, a standards-based “model of models” approach is what is 

necessary. The Reusable Asset Specification (RAS) [15] is used for defining reusable assets, 

their interfaces, characteristics and supporting elements. There are three key dimensions that 

describe reusable assets: granularity, variability (and visibility), and articulation. The 

granularity of an asset describes how many particular problems or solution alternatives a 

packaged asset addresses. The variability and visibility can vary from black-box assets, whose 

internals cannot be seen and are not modifiable, to white box assets which are visible and 

modifiable. Two other variations in between are clear-box assets and gray-box assets. The 

articulation dimension describes the degree of completeness of the artifacts in providing the 

solution. Asset specifications can also include supporting documentation, requirements 

addressed, interfaces, etc. Combining UPDM/SysML and RAS provides a Model of Models 

approach with the main model specifying the system of systems and referencing assets in 

various levels of detail. The models specified by these assets can be referenced when detailed 

analysis is required, or hidden when a SoS viewpoint is required, allowing the analyst to see the 

forest through the trees. To extend the metaphor further, details of the individual trees can also 

be examined when necessary. 

Elements Of SysML 

SysML includes diagrams that can be used to specify system requirements, behavior, structure 

and parametric relationships. These are known as the four pillars of OMG SysML. The system 



 

  

structure is represented by block definition diagrams and internal block diagrams. A block 

definition diagram describes the system hierarchy and system/component classifications. The 

internal block diagram describes the internal structure of a system in terms of its parts, ports, 

and connectors. The package diagram is used to organize the model. 

The behavior diagrams include the use case diagram, activity diagram, sequence diagram and 

state machine diagram. A use-case diagram provides a high-level description of the system 

functionality. The activity diagram represents the flow of data and control between activities. A 

sequence diagram represents the interaction between collaborating parts of a system. The state 

machine diagram describes the state transitions and actions that a system or its parts performs 

in response to events. 

The requirement diagram captures requirements hierarchies and the derivation, satisfaction, 

verification and refinement relationships. The relationships provide the capability to relate 

requirements to one another and to relate requirements to system design models and test cases. 

The requirement diagram provides a bridge between typical requirements management tools 

and the system models. The parametric diagram represents constraints on system parameter 

values such as performance, reliability and mass properties to support engineering analysis. 

SysML includes an allocation relationship to represent various types of allocation including 

allocation of functions to components, logical to physical components and software to 

hardware. 

Structural Elements of SysML 

The major structural extension in SysML is the «block» which extends the UML Structured 

Class. It is a general purpose hierarchical structuring mechanism that abstracts away much of 

the software-specific detail implicit in UML structured classes. Blocks can represent any level 

of the system hierarchy including the top-level system, a subsystem, or logical or physical 

component of a system or environment. A SysML block describes a system as a collection of 

parts and connections between them that enable communication and other forms of interaction. 

Ports provide access to the internal structure of a block for use when the object is used within 

the context of a larger structure. SysML provides standard ports which support client-server 

communication (e.g., required and provided interfaces) and FlowPorts (deprecated in the 

current version) that define flows in or out of a block. Ports are discussed in more detail below. 

Structured Diagram Types.  

Two diagrams are used to describe block relationships. The Block Definition Diagram (bdd), 

similar to a traditional class diagram, is used to describe relationships that exist between 

blocks. The Internal Block Diagram (ibd) is used to describe block internals. An example of a 

block definition diagram for a Distiller system is shown in Figure 3. In addition to the system 

structure, requirements traceability is also shown. 



 

  

 

Figure 3 – Block Definition Diagram of Distiller 

The Distiller is represented as a block composed of other blocks, including the Boiler, Heat 

Exchanger and drain Valve. The role names on the association ends correspond to the parts on 

the ibd. Note the use of compartments to show selected properties of the block; for example, 

the operations compartment describes the functional behavior of the block. A simple example 

of an internal block diagram (ibd) is shown in Figure 4. 

 

Figure 4 – Internal Block Diagram of Distiller 

Figure 4 shows the internal structure of the Distiller block. It shows the hx1, a Heat Exchanger, 

bx1, a Boiler, and the drain valve that are interconnected to allow material and energy to flow 

between them and via connections to their parent to external systems. The Heat Exchanger and 

Boiler each have a number of flow ports that describe what can flow in and out. These are then 

bdd [Package] Distiller Structure [Structural Breakdown]

«block»

operations
powerOn ()
powerOff ()
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Boiler

«block»

operations
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Valve

«block»

operations
TurnOn ()
TurnOff ()
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Distiller

«block»

operations
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

Heat Exchanger

hx1 bx1 drain

satisfies
«requirement» HeatExchanger

satisfies
«requirement» HeatExchanger

satisfies
«requirement» Boiler

satisfies
«requirement» Boiler

satisfies
«requirement» Drain

satisfies
«requirement» Drain

ibd [Block] Distiller [Initial with Item Flows]

«block»

Distiller

DSDirty_Out : H2O

bx1 : Boiler

BLHotDirty_In : H2O

BLSteam_Out : H2O

BLSteam_Out2 : Residue

BLPower_In : Power

BLExcess : H2O

drain : Valve

Fluid_In : Fluid Fluid_Out : Fluid

hx1 : Heat Exchanger

HEDirtyIn : H2O

HEClean_Out : H2O HEHotDirty_Out : H2O

HESteam_In : H2O

DSResidue_Out : Residue

DSClean_Out : H2O

DSPower_In : Power

DSExcess

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : H2O

«ItemFlow»

 : Residue

«ItemFlow»  : Residue

«ItemFlow»

 : Power

«ItemFlow»



 

  

connected to other compatible ports to enable the required flows in this context. The arrows on 

the connectors represent item flows that correspond to physical or logical items that actually 

flow through the system and whose properties can be constrained in parametric models  

Standard Ports. Standard Ports are the same as ports in UML 2.0 and used to specify service 

oriented (request-reply) peer-to-peer interaction which is typical for software component 

architectures. Standard ports are typed by required/provided interfaces detailing the set of 

provided/required services.  A provided interface specifies a set of operations that a block must 

provide and a required interface specifies a set of operations that it requires to be provided by 

another block. 

Flow Ports. FlowPorts are interaction 

points through which data, material or 

energy “can” enter or leave the owning 

block. A FlowPort specifies the input and 

output items that may flow between a 

block and its environment. The 

specification of what can flow is achieved 

by typing the FlowPort with a 

specification of things that flow. This can 

include typing an atomic flow port with a 

single item that flows in our out, or typing 

a non-atomic flow port with a 

“flowSpecification” which lists multiple 

items that flow. An atomic FlowPort can 

be typed by a Block, ValueType, 

DataType or Signal. Figure 5 shows the 

blocks used to define the interfaces used 

in the Distiller system. 

Figure 5 – Block Definition Diagram of Types 

Figure 5 shows the types of the interfaces as Heat and Fluid, with H2O and Residue as types of 

Fluid. The value properties of the blocks are also shown such as temperature, pressure, and 

mass flow rate. Interfaces can also be defined for data types. Other types of interaction are 

possible as well. A block representing an automatic transmission in a car could have an atomic 

flow port that specifies “Torque” as an input and another atomic flow port that specifies 

“Torque” as an output. A more complex flow port could specify a set of signals and/or 

properties that flow in and out of the flow port. In general, flow ports are intended to be used 

for synchronous, broadcast or send and forget interactions. FlowPorts extend UML2.0 ports. 

Atomic FlowPorts have an arrow inside them indicating the direction of the port with respect to 

the owning Block. Non-atomic FlowPorts have two open arrow heads facing away from each 

other (i.e. <>).  

Later versions of SysML have further extended ports. Blocks with ports can type other ports 

(nested ports). Ports nest other ports in the same way that blocks nest other blocks. The type of 

the port is a block (or one of its specializations) that also has ports. For example, the ports 

supporting torque flows in the transmission example might have nested ports for physical links 

to the engine or the driveshaft. [12] 

Proxy Ports and Full Ports 

SysML identifies two usage patterns for ports, one where ports act as proxies for their owning 

blocks or its internal parts (proxy ports), and another where ports specify separate elements of 

the system (full ports). Both are ways of defining the boundary of the owning block as features 

bdd [Package] Item Types

«block»

values
degrees C : temp
kg/gm^2 : press
gm/sec : massFlowRate

Residue

«block»

values
degrees C : temp
kg/gm^2 : press
gm/sec : massFlowRate

Fluid

«block»

values
cal/sec : dQ/dt

Heat

«block»

operations
Remove Latent Heat of Vaporisation ()
Add Latent Heat of Vaporisation ()

values
degrees C : temp
kg/gm^2 : press
gm/sec : massFlowRate
cal/gm : specificHeat
cal/(gm*deg C) : latentHeat

H2O



 

  

available through external connectors to ports. Proxy ports define the boundary by specifying 

which features of the owning block or internal parts are visible through external connectors, 

while full ports define the boundary with their own features. Proxy ports are always typed by 

interface blocks, a specialized kind of block that has no behaviors or internal parts. Full ports 

cannot be behavioral in the UML sense of standing in for the owning object, because they 

handle features themselves, rather than exposing features of their owners, or internal parts of 

their owners. Ports that are not specified as proxy or full are simply called “ports.” [12] 

Regardless of how the interfaces have been specified, a consistent and standardized format is 

required for a viable integration of systems. 

Reuse Of Elements In A SoS 

As has been stated earlier, SysML blocks are reusable elements. For example, the Valve block 

can be reused within the architecture within any of the systems as a component. In the Distiller 

example for instance which is further detailed in the SysML specification [12], an additional 

valve is added to the design of the distiller. Having defined the valve properties, behavior, 

interfaces, and constraints, the valve is a known element and does not have to be continually 

redefined. In addition, if the properties of the Valve block are changed, they are changed for all 

usages of that block. This is similar to electronic components in a parts catalog. For a simple 

system such as the valve, there is very little overhead involved in its reuse. When systems start 

to become complex, this can add considerable overhead to the model in terms of size, 

performance and complexity. In addition, reuse of components within a model can be 

problematic. Reuse of model elements within an organization is even more unlikely. In order to 

achieve effective reuse of design and other high-level assets, along with a re-use culture and 

good reuse discipline, an organization needs an intelligent asset library that, in effect, goes out 

and encourages people to find and re-use its assets. The Reusable Asset Specification, coupled 

with a library of assets and a model of models architecture provides these capabilities. An asset 

library will also provide a means by which models can be assembled of reused assets rather 

than built from scratch every time.  

To illustrate the problem, we will use an 

example from a recent INCOSE Tool 

Vendor Challenge held at the 2013 

INCOSE IS in Philadelphia. For further 

information and the complete solution see 

http://www.incose.org/symp2013/downl

oad/TVC/Atego-TVC-IS2013.pdf . The 

problem involved an emergency response 

system. As part of the initial emergency 

response, ice must be provided to sustain 

perishables such as medicine and foods, 

and to support first aid needs. Power and 

potable water are to be provided with the 

shelter solution.  

Figure 6 – Operational Concept for Disaster Relief 

The task was to model the system of systems providing the solution and demonstrate how the 

eventual configuration met the requirements. Subtasks involved the analysis of alternatives, 

requirements developments, compare and select operational scenario, develop architecture and 

systems analysis. Figure 6 shows the disaster recoverry concept normally called an OV-1 in 

UPDM and how ice provision fits into the context.  



 

  

Capabilities 

An ice provision capability is just one of the capabilities required for the disaster response 

team. This capability also needs to fit in the wider operational context of disaster relief and the 

lower level capabilities for the provision of food, water and shelter. The UPDM capability 

views (CV) provide a means of defining required capabilities on the CV-2 diagram. The 

capabilities can be linked to realizing 

resources (systems, people, 

organizations, etc.). The project views 

provide a means of defining timescales 

for the deployment of these resources and 

therefore the realization of the required 

capabilities. The CV-4 diagram is used to 

define the dependencies between these 

capabilities. Figure 7 shows the 

capabilities required for Disaster Relief 

and the dependencies between them. The 

dashed lines with arrows indicate a 

capability that depends on another. This 

implies that systems supporting these 

capabilities depend on the systems that 

support other capabilities. 

Figure 7 – Disaster Management Capabilities 

As shown in Figure 7, Provide Ice requires Logistics for the delivery of the ice. Food Provision 

requires Cold Storage, which requires ice. And finally, Medical requires Cold Storage, which 

again requires ice. By mapping out the capabilities as well as the dependencies between them, 

the architect is provided with a logical system architecture of the eventual system interfaces 

and dependencies.  

Systems Architecture 

The Systems views (SVs) describe the physical implementation of the operational and service 

orientated views and, thereby, define the solution. The SVs are a set of views that describe 

resources that realize the required capabilities. The SVs describe resource functions and 

interactions between resources and can also provide detailed system interface models. A recent 

development in the system views is the involvement of humans in both the operation of 

systems and in carrying out functions in their own right. This is essential as most systems 

involve humans as their operations. The SVs can be used to specify solutions to requirements 

specified in the OVs, or simply to provide more detail to the logical OV architecture. 

The Resource Interaction Specification or SV-1 defines how the resources are structured and 

how they interact and collaborate to realize the capabilities as well as the logical architecture. 

Multiple variations can be defined to determine an optimal configuration of systems as well as 

which systems are fit for purpose. The resources can be decomposed to any level required by 

the architect and depending on the complexity of the solution architecture. Figure 8 shows the 

SV-1 architecture for victim support. 

CV-4 [Capability] Manage Environmental Incidents [CV-4]

CS : Cold Storage

CM : CommunicationsFD : Food Provision

LG : Logistics

MD : Medical SC : Security SH : Shelter

TS : Temperate Storage

MG : Management

PI : Provide Ice



 

  

 

Figure 8 – System Architecture for Victim Support 

Figure 8 shows the interactions between the different systems. Interactions include not only 

data, but also systems, power, and materiel including ice. In the same way that blocks can be 

reused throughout an architecture, resources can also be reused. Having defined the systems 

and their interface requirements, more 

detailed interfaces can be elaborated and 

specified in detail in the SV-2 diagram. 

These interfaces are similar to those 

defined using the SysML Internal Block 

Diagram (IBD) as shown in Figure 9. 

Figure 9 shows the Ice Plant 

configuration with the specific systems 

that will be deployed. The UPDM 

implementation of DoDAF uses SysML 

Blocks and Ports interfaces explicitly. 

This is because systems and materiel are 

defined as specialized SysML blocks. 

Additional systems such as the Fuel 

Supply had been identified during 

analysis as the Power Supply will need 

fuel to operate.  

Figure 9 – System Architecture for the Ice Plant 

In addition, the Distiller defined previously has been reused in this model. Figure 10 shows the 

reused Distiller system in the model browser. 

 

 

SV-1 Victim Support - [SV-1]

Victim Support

SP : Shelter Provision

FSD : Food Storage And Distribution

SC : Support CoordinationWP : Water Purification

ID : Ice Distribution

IM : Ice Machine

MS : Medical Services

PG : Power Generation

Victim : Member of Public

SC-SP:SR : Shelter Request

SC-FSD:FR : Food Request

WP-SC:WS : Water Status

WP-IC:WT : Water

IM-ID:IC : Ice

IR : Ice Request

PG-WP:PW : Power

PG-IM:PW : Power

MR : Medical Request

FSD-MP:FD : Food

SP-MP:SH : Shelter

MS-MP:MD : Medicine

MS-MP:MS : Medical Supplies

ID-MP:IC : Ice

ID-MS:IC : Ice
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Figure 10 shows the reused characteristics of the distiller system. These include the blocks, 

constraint blocks used for parametrics, flow specifications, requirements associated with the 

distiller, types and the interface ports and 

attributes owned by the distiller. This provides a 

means of inserting the distiller system into the 

architecture for reuse. Figure 9 shows the 

Distiller connected to the Power Supply and 

Water Supply via the Power and Clean Water 

ports. The Excess, Residue and Dirty Water ports 

have not yet been connected. This indicates a 

need for additional systems and procedures and 

personnel for the system. This structure mirrors 

that found in the Distiller asset in the asset library 

as shown in Figure 11 

  

Figure 10 – Distiller System Asset in Model 

Figure 11 shows an example of an asset library with the defined Distiller system in an asset 

catalog. Included with the asset is a description, interface, references, values, etc. This level of 

detail is appropriate for reuse of the system as a black box component in a system of systems. 

However, since the requirements, interfaces, behavior, and parametric characteristics are also 

included, quantitative as well as qualitative analysis can be done on the asset to determine if it 

is the best fit for the problem at hand. Included with the asset is the specification of the source 

model from which the asset definition was taken. The architect can access the source model 

when these details are required, described above as examining an individual tree. Assets stored 

in the library can be searched, versioned, updated and queried by architects looking to reuse 

component elements. In addition, 

engineers can express interest in an asset 

and be informed when it has been 

updated. If required, the entire model in 

all of its detail can also be stored along 

with the asset. However, this lessens the 

benefits of the asset library and the reuse 

of systems. Otherwise, engineers may 

resort to typical “clone and own” methods 

of development. In this scenario, the 

traceability to the original component is 

lost along with the attendant benefits of 

reuse. 

Figure 11 – Distiller System Asset in Library 

Finally, the RAS interface to the asset library is essential to ensure interoperability of tools and 

models. There are a variety of modeling tools on the market supporting SysML, UPDM and 

other methods. Often multiple tools are used within the same project for legacy as well as 

budgetary reasons. The standards-based definition of the assets provides a means of reusing 

assets modeled in a different tool without having to support bespoke tool to tool interfaces. The 

UML XML Metadata Interchange (XMI) interchange format is currently the means by which 

UML-based tools can exchange data. However, complete interchange has not yet been 

achieved. See [14] for more information. In addition, the tool independent interface will allow 

non UML-based tools to reuse assets as well.  



 

  

Finally, the examples used in this paper were by necessity simple so as to illustrate the 

techniques and concepts in such a way as they can be easily understood. The problem with all 

examples is that if they are too simple, then the techniques for more complex problems have 

not been proven. If they are too complex, then the concepts are too difficult to understand. 

Therefore, it is worth noting that SysML, UPDM, and RAS have been used for the past several 

years on projects that were both complex and ultimately successful [19], [20], [21].  

System Of System Pain Points 

The International Conference on Systems Engineering (INCOSE) System of Systems Working 

Group (SoSWG) has collected a set of “Pain Points on SoS” from a variety of international 

sources. These include Lack of SoS Authorities and Funding, leadership, Constituent Systems, 

Capabilities and Requirements, Autonomy, Interdependencies and Emergence, Testing 

Validation and Learning, and SoS Principles. [5]. As stated in the abstract, this paper explores 

the combination of UPDM, RAS, SysML and an asset library in order to determine whether or 

not they can provide relief the SoS pain points listed previously. The techniques defined 

previously cannot help with all of these. However, it is worth looking at these briefly to 

examine whether or not any impact can be made. MBSE has been around for quite some time 

and only recently has the return on Investment (ROI) been demonstrated via quantitative 

studies. In the same way, it is hoped that over time, the use of these techniques will demonstrate 

their ROI and alleviate the pain currently being felt on projects. 

Lack of SoS Authorities and Funding 

No modelling technique or procedure can provide authority or funding. However, as MBSE 

has begun to demonstrate true ROI, it is hoped that these techniques can provide ROI to 

decrease the cost of developing SoS. Built into the asset library is an analysis system that 

provides metrics in terms of cost savings for reuse. This built-in capability will provide 

automatic analysis of ROI often lacking in processes. 

Constituent Systems 

Integrating constituent systems is difficult, especially when these systems are already in 

existence and often not well understood. Clearly defined system interfaces, capabilities, 

requirements, behavior, characteristics, etc. is essential for any meaningful integration. By 

separating out the individual system models, and integrating them as black box systems, 

engineers can concentrate on the individual system definitions without worrying about the 

other systems. Also, having clearly defined the interfaces to the systems, development of these 

systems can take place in parallel without affecting other models and the systems. Integration 

in the SoS model can then examine the interaction of the individual systems as a whole.  

Capabilities and Requirements 

As stated above, defining systems in terms of capabilities provides a means of determining the 

purpose and benefits of a system at a very high level. Capabilities describe desired outcomes as 

well as specifying stakeholders and realizing resources. By defining systems in this way, 

architects and engineers can determine capability overlaps as well as capability gaps. These 

capabilities can then be evaluated using the technique described in Figure 7 to determine how 

the systems work together at a capability level. This is particularly useful when no model exists 

of the existing system(s). When models do exist, detailed system functions as well as the 

requirements that they satisfy can also be a part of the SoS model for more detailed analysis 

examination. 



 

  

Autonomy, Interdependencies and Emergence 

As spelled out in the report, emergent behavior is often unpredictable. As an experienced 

systems engineer of many years, I am aware that the real problems of systems integration only 

come to light when they are being integrated together in the field under real conditions. The 

modeling and simulation of these systems and SoS can certainly help, but no test or set of tests 

could ever predict all possible outcomes. Recent problems with the Boeing Dreamliner have 

certainly borne this out. However, as modeling simulation techniques improve and a critical 

mass of system models is built up, problems involving emergent behavior can be found, 

diagnosed and mitigated before the systems are fielded. 

Testing Validation and Learning 

The models used for simulations and test of the rail system described in Hause, 2009 [19] had 

been developed over the space of 10 years. They were extremely complex safety critical 

systems involving the interaction of multiple complex systems. It was only when this critical 

mass of the system model was reached that the system testing became practical and lead to the 

extraordinary ROI of 70% savings on systems testing. This is not always possible or even 

practical and will depend on individual project circumstances. It should also be noted that the 

engineers involved did not have automated testing in mind when the system models were 

originally built. It was only through experimentation that these benefits were realized.  

Conclusions 

Systems of Systems (SoS) have been in existence for some time. However, the definition, 

analysis and modeling of these SoS is a fairly recent phenomenon. This has been driven by the 

complex nature of today’s systems for commercial reasons, as well as to support government 

guidance such as net-centric warfare. Modeling these systems has yielded mixed results for a 

variety of reasons already spelled out in this paper. Rather than simplify the analysis of the 

SoS, modeling has often further complicated it. This paper has provided examples of how a 

standards-based approach using UPDM, RAS, SysML and an asset library will allow architects 

and engineers to assemble complex systems models without the attendant overhead 

encountered by existing techniques. They will also provide the real possibility of reuse that up 

until now has eluded both software and systems engineers. As MBSE has started to 

demonstrate ROI, it is hoped that these techniques will provide ROI in time, money and 

superior systems architectures and possibly some relief for the pain that we have all been 

feeling. 
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