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Category theory provides a formal foundation for engineering modelling, as well as,

mathematics and science. Both structure and behaviour, as they occur in engineering

models for manufactured products and biomedicine, can be embedded as axiom sets

within a mathematical formalism, called Algos. The Algos language is a two sorted first

order Horn clause theory based on topos language constructions. An Algos theory,

generated by Horn clause axioms is an elementary topos. The Horn clause formalism

lends itself to automated reasoning. Algos has both a linear syntax and a graphical

syntax based on the engineering modelling language SysML. The use of Algos for axiom

development is illustrated with axioms for two classes of engineering models, one called

Structure Descriptions and the other called Composite Structure models. An example of

a Structure Description is the class of 2-amino acids. The problem exhibits common

issues of constraining realizations of descriptions to have a specific graph theoretic

structure. Algos contains the language of a Description Logic and generalizes several

formalisms which have been used for modelling structure descriptions. Composite

Structure models represent systems which have behaviour, as well as component

structure. Following the topos lead, the terminal object of these models have a time

structure. State machines, as well as equations representing physical laws, can be

represented and are used to axiomatize these models. An example of a vehicle test

system illustrates how behaviour is represented. A description of the formalism including

soundness and decidability results for restricted axiom sets is presented, together with

comparisons to other logic based formalisms.
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1. Introduction

This paper describes how engineering models, as they are constructed for manufactured

products and biomedicine, can be embedded as axiom sets within a logic-based formal-

ism, called Algos (Graves and Blaine 1985; Graves and Blaine 1986). By embedding

engineering models as axiom sets automated reasoning can be used to solve everyday

engineering problems. In this sense the formalism, Algos, provides a formal foundation
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for engineering modeling. Algos is based on elementary topos theory and follows in the

path of topos foundations for mathematics and physics. Algos has a graphical syntax

based on the engineering modeling language, SysML, as well as a linear syntax. Algos

has been implemented as a computer based reasoning system. Examples of axiomatic

descriptions in Algos have been given in (Graves and Bijan 2011; Graves 2012). Algos,

with its validation by axiomatizing a variety of engineering models, offers a practical

approach to developing logic-based formalisms for engineering, as well as mathematics

and science.

Embedding an engineering model as an axiom set provides the means to integrate au-

tomated reasoning with product development and analysis. Reasoning occurs throughout

a system lifecycle. In the design process, before a product is built, care must be taken

that design modifications do not lead to inconsistent designs; in verifying that a product

meets its requirements it may not be possible or feasible to verify all requirements by

test; in product maintenance and medical diagnostics one is attempting to infer the cause

of a fault from symptoms. These situations all require a precise use of inference based

on engineering models. Much of the reasoning and analysis from engineering models is

informal and manual. As a result the analysis is error prone and inefficient due to the

complexity of the models.

When axioms in a logic are used to describe an application domain, the theory of

the domain is the collection of statements derivable from the axioms by the inference

mechanism of the logic. Application domains may be broad, such as a domain of physical

laws, or narrow, such as molecules with a specific structure. There are a wide variety of

logic-based formalisms candidates. A formalism provides the specifics for a language of

terms, formulae, and inference rules. Embedding an engineering model as an axiom set

within a logic-based formalism offers the potential for precise efficient ways of solving

engineering problems. The problem is to find a suitable formalism.

Perhaps the best known logic-based formalisms are subsets of first order logic which

only use variables of a single type. Patrick Suppes calls these formalisms Standard For-

malisms (Suppes 2002). Suppes makes the argument that giving axioms in a Standard

Formalism for most domains in the empirical sciences is not possible (Suppes 2002)

page 27. His argument is based on the fact that one needs to include mathematics and

physics. At a more abstract level the argument is that an empirical science theory uses

constructions that are higher order in a standard formalism.

Logic Programming and Description Logic (Baader et al. 2007) formalisms, when

viewed as a fragment of first order logic, are standard formalisms. Their advantage for

use with application domains is that reasoning is not only computationally tractable,

but in many cases the consistency of the theory generated by an axiom set is decidable.

Description Logic and the Logic Programming formalisms have been employed for mod-

elling in engineering, human anatomy, and molecular biology (Motik et al. 2008; Magka

et al. 2012 ; Hastings et al. 2010 ). Finding an axiomatic description in these formalisms

which sufficiently constrain the possible interpretations has proven difficult (Magka et al.

2012 ). This difficulty is consistent with Suppes’s argument that axioms in a Standard

Formalism are not possible for many applications.

Suppes argues for the use of set theory for empirical foundations to overcome the
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limitations of a Standard Formalism. However, set theory is not the only alternative.

There there are mathematical formalisms (Lambek and Scott 1980; Bell 1986; Graves

and Blaine 1985; Graves and Bijan 2011) which generalize set theory and have language

constructions familiar from set theory, but are more algebraic in form. In these formalisms

axiomatic properties of directed graphs which represent class and object models in pro-

gramming and modelling languages can be expressed as first order statements. Further,

these formalisms can provide an axiomatic representation for behaviour and can incor-

porate physics. In Standard Formalisms some of these properties cannot be expressed as

they would be higher order.

William Lawvere (Lawvere 1964) advocates use of category theory to serve as not

only a foundation for mathematics, but physics. The first order axiomatization of topos

theory by Lawvere (Lawvere 1964) is a notable example of an alternative to set theory.

An elementary topos is a first order theory, but not a Standard Formalism as it uses

variables of two kinds, maps and types (objects), term constructions familiar from set

theory, and axioms for these language constructions. A considerable amount of physics

has been worked out in the topos context.

If a Standard Formalism is extended to mean a first order logic formalism with a type

system then Extended Standard Formalisms are also candidates for axiomatic descrip-

tions in the empirical sciences. A type system is a collection of term and type construc-

tions with axioms for its term constructions. The theory of an application domain in an

Extended Standard Formalism is the theory generated by the application axioms and the

axioms for the term constructions. Elementary topos theory is an Extended Standard

Formalism. In elementary topos theory the objects in the language are the types of the

type system. The type constructions include Cartesian product of types and the power

type construction. Other type constructions, such as sum and exponential are definable.
†

While an elementary topos is a first order theory, it is not directly amenable to imple-

mentation as a computer based reasoning system. The elementary topos axioms include

the axioms for a typed lambda calculus which are known to be implementable as a compu-

tation and reasoning system. However, the elementary topos axioms also include axioms

for subobject classification which postulates an isomorphism between certain types, but

does not provide a construction for the isomorphism. However, with a slightly stronger

axiom, known to be satisfied in many topos examples, a canonical construction for the

isomorphism can be given which makes these systems amenable to implementation (See

Section 3).

† In addition to the Extended Standard Formalisms, type theories have also been suggested as founda-

tion formalisms for mathematics and for software. A type theory is a type system with an inference
mechanism. Generally type theory deductions are represented as entailment from axioms and inference

rules. Type theories are closely related to topos theories. This relationship is discussed in (Lambek

and Scott 1980).
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1.1. Engineering Modelling

Engineering modeling as it is practiced for manufactured products and biomedicine is in

need of a logic-based semantic formalism. Engineers have always built models for their

systems of interest. Engineering models are used to specify or describe systems and their

interaction with their environment. The model may describe a unique system such as

an oil refinery, but the models are often used to describe a class of systems such as cell

phones which satisfy a specific design model. In both cases engineering models are used

to analyse and reason about the systems that they describe. The size and complexity of

models leads to the need to reason within and about these models as a way to understand

the systems. However, valid reasoning rests on the formal semantics being in accord with

the informal semantics. The valid use of automated reasoning rests on embedding the

models within a sound logic-based formalism.

The idea of using axiom sets to describe systems of interest to engineers has been

around since the mid 1960s, but has not gained much traction. Axiom sets are difficult

to construct and do not always capture the class of intended interpretations correctly.

However, with the advent of engineering modelling languages in the UML family such as

SysML (SysML 2010) the situation has changed. Attempts to use automated reasoning in

the context of engineering models has generated interest in converting or embedding engi-

neering models into axiom sets within a logic-based formalism. The axioms are intended

to describe the same thing as the model, but more precisely, and provide justification for

integration with automated reasoning. Embedding a model as an axiom set often surfaces

implicit assumptions made by the modellers.

While science develops broad physics-based theories engineering specific domains gen-

erally develop circumscribed theories for a specific class of systems or manufactured

products. From the formalization viewpoint this amounts to adding application axioms

for the specific theory to any general theory needed, for physics assumptions. Engineer-

ing models in a formal language such as SysML (SysML 2010) have term constructions

which are a type system. These language constructions are used to represent the systems

of interest in terms of their component decomposition and connections between compo-

nents. For some applications, considerable physics is needed while for other applications

no physics may be needed. The molecular descriptions considered here are sufficiently

abstract that no physics needs to be included. When these descriptions are expanded to

include material properties and dynamics physical laws are needed. Engineering mod-

elling confronts these issues on a day-to-day basis.

Two examples of engineering modelling are used for illustration here. One case, com-

mon to manufactured products, human anatomy, and molecular biology, is how to repre-

sent an axiomatic description for a class of structures each of which conforms to a specific

graph theoretic pattern of components and interconnections between components. A real-

ization of a description is a graph structure which conforms to, or satisfies the description.

Given the complexity of many applications manual analysis of a structure description is

time consuming and error prone, if it is even possible. When analysing a specific structure

it may not be possible to take it apart; one must rely on prior knowledge that it conforms
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to a known description. This problem has resisted attempts to give an axiomatization

which can be used in the context of automated reasoning (Magka et al. 2012 ).

The other case illustrated here is a model that represents the behaviour of a vehicle

system operating within its environment. This example uses the concepts of Structure De-

scriptions but extends them. The behavior of the vehicle is a composite of the behaviour

of its subsystems, as mitigated by the physical laws of the operating environment. The

solution to this kind of behavioral modeling build on and extends the structural de-

scriptions encountered in the static structural models of biomedicine and manufactured

products. Modeling languages provide language constructions such as state machines

which are effective for constructing complex models, but they lack a formalized seman-

tics. Finding a formalized semantics for behavioural constructions is currently a topic

of interest to the Object Management Group (OMG) which maintains standards for a

number of modelling languages. The Algos solution, following topos theory, employed

for behaviour representation, uses axioms which imply that the terminal object has a

space-time structure.

By axiomatizing a description in a logical formalism, with or without a type system, one

has the potential to use automated reasoning to answer questions about the structures

described. For example one might want to know if every structure satisfying a molecule

description contains a carbon ring. For a manufactured product one might want to know

what components are connected to the electrical system. Many engineering problems

translate directly into whether the theory of the axiom set is consistent (Graves 2012).

In product design the addition of a mechanical device component to a design model may

render the design inconsistent, as the component may violate constraints such as the

total amount of power that the electrical system can supply.

When an axiom set in a logical formalism is used as a description for a class of struc-

tures the logical formalism supplies a precise definition of what constitutes a valid in-

terpretation (model) of the axiom set. Reasoning from an axiom set applies to all valid

interpretations of the axioms. Theoretically, the problem is to find a logical formalism

to represent structural descriptions as axiom sets in which the axioms can constrain the

models sufficiently. Practically the problem for converting an informal description to an

axiom set is to avoid under or over specifying the models one is attempting to describe.

When using any automated inference procedure to reason about valid interpretations

(models in the logicians sense) of the axioms, one is concerned that the inference pro-

cedure is sound. Are the conclusions derived from the axioms satisfied in the structures

being described? In a Standard Formalism, with the absence of term constructions, sound-

ness is not generally a problem, as commonly employed inference procedures are known

to be sound. The reasoning in a logic-based formalism may be sound, yet an application

axiom set may be inconsistent or contradictory. Detecting that an axiom set is inconsis-

tent is a primary application of reasoning in engineering, as many practical engineering

problems are equivalent to the consistency of a theory.

However, with an Extended Standard Formalism which contains term constructions

soundness becomes an issue. Can the term constructions be interpreted in the applica-

tion domain and are they non-contradictory? The approach in logic has been to show

that the consistency of a mathematical formalism is equivalent to the consistency of set
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theory. For a rich term language there may be real questions of whether there are math-

ematical formalisms, in which the term constructions can coexist, without contradiction.

For example, Bertrand Russell used a term construction in his type theory which assigns

to a formulae of the form ∀x.∃yR(x, y) an operator τP which satisfies the formula. The

operator τP is called a description operator. At that time the validity of the description

operator axiom was considered problematic. As the description operator was needed this

had a negative impact on the acceptance of his type theory. The description operator can

be defined within a topos or Algos theory. This operator is used to replace a functional

relation with a map, as is done in set theory.

When an Extended Standard Formalism is used for application domains then in ad-

dition to logical soundness there is a question of physical soundness. The term and type

constructions have to be interpreted in the physical world and the term construction ax-

ioms have to be satisfied. The ability to interpret the terms and axioms of an Extended

Standard Formalism in the application domain can be viewed as a question of physical

soundness. If the constructions do not reflect the reality then the type system is inap-

propriate for the application. When interpreting an axiom set of an Extended Standard

Formalism in an application domain one is concerned that the term constructions have a

well defined interpretation in the application domain, that the description axioms do not

violate the assumed knowledge about the domain, and that the description is sufficiently

precise for application usage. While these kinds of questions have not been in the fore-

front of logic research, they are critical questions for science and engineering modelling.
‡

When choosing an Extended Standard Formalism for applications the considerations

start with formalisms that are well developed and debugged, such as set theory, in which

the application mathematics can be done. The considerations also include what specific

choice of language primitives are suitable for physical interpretation. In addition, what

language works practically for modelling in science and engineering. Further, to use

automated reasoning the formalism needs to be as directly implementable as possible.

While a complete discussion of these topics is beyond the scope of this paper, the design

of Algos meets these criteria.

1.2. Algos

Algos (Graves and Blaine 1985) is an Extended Standard Formalism based on topos the-

ory (Graves and Blaine 1986). Topos theory uses types for Cartesian product, exponential

(function), and Power types, with corresponding map constructions. Other language con-

structions are definable. Topos theory uses two kinds of terms, maps and types. Each

map has a domain and a range type. A map is analogous to a function in set theory, but

is a more general concept. For example, the paths of arrows in a directed graph satisfy

the properties of a category (Lambek and Scott 1980) where the nodes are types and the

‡ One well known example is the interpretation of attributes that represent measurable quantities of
a system. Engineering models which represent physical quantities such as weight or distance have to

prescribe the units of measure to be applied in the interpretation for the interpretation to be precise.
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maps are paths of arrows. The characteristic property of a map f is that it assigns to an

individual a in its domain a value f(a) which may also be written as a.f in its range.

There is no presumption how this assignment is made. The Algos primitives, following

topos theory, have been validated first for algorithms (Graves and Blaine 1986) and more

recently in engineering applications (Graves and Bijan 2011; Graves 2012).

The Algos term language uses two sorts (Zarba 2007), maps and types (objects for

category theorists ). The abstraction of sets and functions in set theory to types and maps

in category theory places a different burden upon physical interpretation. For example,

manufactured products may be described in terms of types of component with maps

used for describing component decomposition and connections between components. The

physical interpretation of a type is a recognition procedure for instances of the type. In

many applications the procedure to recognize instances measures attribute values of an

instance to determine how to classify it. The physical interpretation of a map is often a

procedure to recognize that a component serves a particular role, or recognize a particular

connection between components. This is the kind of physical interpretation used on an

everyday basis. For example, in servicing manufactured products the physical product is

compared to a design specification for malfunction diagnosis. An Algos theory contains

a natural numbers type N which satisfies the Lawvere axioms (Lawvere 1964). This type

is not used in the molecular examples beyond its implicit use to enable the definition of

integer cardinalities. However, the type N enables abstract data types to be defined in

terms of the Algos term constructions. Abstract data types are used as the range types

of attributes defined for application types such as a hydrogen atom.

The map and type terms can be used to represent individuals, classes, and relations

as terms in the language. The term language uses a number of topos language construc-

tions such as images of maps, as well as a form of the description operator. The term

language includes Description Logic concept (class) and role (relation) constructions as

type constructions. The axioms for the map and type term constructions and application

axioms are Horn clauses written as universally quantified logical implications in literals

of atomic formulae. The inference rules, while satisfied by first order inference systems,

correspond to type theory inference rules for entailment. As a result Algos is computa-

tionally tractable and has been implemented as a computational and reasoning system

(Graves and Blaine 1985). The physical interpretation of Algos theories fits well with

engineering modelling practice.

An Algos theory, generated by application axioms and the language construction ax-

ioms, satisfy the axioms for an elementary topos. In addition to the logic in which the

term construction axioms and application axioms are expressed (the external logic), an

internal logic is defined within the term language. An internal formula is a map whose

range type is a logic type, Ω. The internal logic of an Algos or topos theory is a higher

order logic, which without other assumptions, satisfies intuitionist rules of deduction.

The Algos term construction axioms are derived from elementary topos axioms by use of

Skolemization to eliminate the existential quantifiers of the topos axioms. The resulting

topos generated by an Algos theory is a topos with canonical subobjects (Lambek and

Scott 1980). The mathematical soundness of topos theory is accepted. Reasoning in an

Algos theory is sound in that formulae derived from an axiom set are true in any structure
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Fig. 1. Water

which models the axioms. The fact that an Algos theory generates a topos enables use

of constructions such as the description operator without concern for logical soundness.

Restrictions on axiom sets are introduced which yield decidability results which apply

to the molecular biology use cases. The axiom sets used for the structure descriptions such

as amino acids are a very restricted class of Algos axioms. The language constructions

with their axioms provide an axiomatic semantics for a generalized Description Logic.

The subtypes of any type in Algos have the properties of a Description Logic. The

symbols in the water axiomatization are identified as classes, in that they are subtypes

of a universal type symbol, Thing. Thing can be taken to be molecules. The translation of

informal structure descriptions into a language using the topos type constructions serves

as evidence that these constructions not only make sense, but are needed for applications.

The language can represent composite structures which have states and actions to change

states. Algos, following topos theory, can be used to express and reason about properties

of objects that vary in time.

1.2.1. Physical Interpretation To use a mathematical formalism for an application do-

main requires describing how the terms in the language are to be interpreted in the

domain. The water molecule provides an example of how Algos terms are used to de-

scribe structure. A more detailed and complete axiomatic description is worked out in

Section 2. Each water molecule has three atoms, one oxygen and two hydrogen atoms

which are bonded appropriately. A description of a class of water molecules may use a

type for H2O and types for the atoms, Oxygen and Hydrogen. Conceptually the physical
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interpretation of a type is a recognition procedure which can recognize if an individual

is a water molecule or a particular kind of atom. The recognition procedure for H2O is

that the molecule has the specified components and connections. The H2O molecule has

three maps which assign a respective atom to each water molecule. For example a map

Oxygen assigns an oxygen atom to each water molecule. This map has domain H2O and

range Oxygen which is written as

oxygen : H2O → O. (1)

The interpretation of the map oxygen is again a procedure which can recognize which

oxygen atom has been assigned to a specific water molecule. This interpretation does not

make the physical assumption that the domain of the application contains a set of water

molecules. Nor are the maps assumed to be set theoretic functions whose domains are

water molecules and whose ranges are the sets of atoms. A realization of the description

of a water molecule consists of four individuals, a water molecule, one oxygen atom and

two hydrogen atoms.

Figure 1 is a graphical illustration of the water molecule description and possible

realizations. These diagrams are used to illustrate some of the language concepts. In

Figure 1 the nodes in the graph on the left are types of molecules rather than individual

molecules. In the terminology of object oriented programming the diagram is a class

diagram rather than an object diagram (Kuske 2009). The right side of Figure 1 shows

three possible realizations of the left side description. The diagrams on the right side are

object diagrams. The nodes are individuals. The top diagram on the right is the desired

realization.

In the Algos representation of the left side diagram the symbols H2O, Oxygen,and

Hydrogen are types and the symbols hydrogen1, hydrogen2, oxygen, bond1, and bond2

are maps. The use of maps in the axioms for water enable a simple way of ensuring that

the oxygen atom of a water molecule is bonded to a hydrogen atom of the same water

molecule. The formula

x ∈Water ⇒ x.oxygen.bond1 = x.hydrogen1. (2)

says that the oxygen bond of a molecule x is bonded to the hydrogen atom of the same

water molecule. The membership predicate ∈ is justified as the types are subtypes of a

universal type, Thing. In this formula composition is written from left to right with a

dot notation rather than the more usual applicative notation. Thus oxygen.bond1 is the

composition of bond1 with oxygen.

A relation such as hasPart can be defined to be a subtype of the product type

(Thing, Thing). Formula (2) is a Horn clause Algos formula where X is a type variable.

As the variable is a subtype of Thing one can call it a class variable. The expression

x : Thing is used for an individual and x ∈ Oxygen says that x is an oxygen atom. Sim-

ilarly the expression < x, y >: hasPart states that < x, y > is an instance of hasPart.

These concepts are made precise in Section 3.

For example the map hydrogen1 has domain H2O and range Hydrogen. The map

assigns for any water molecule w : H2O an individual w.hydrogen1 which is a hydrogen

atom. In Algos functional relations and maps are in one-one correspondence. For a map



Category Theory Foundation For Engineering Modelling 11

such as hydrogen1 the notation |hydrogen1| is used for the functional relation defined

by hydrogen1. When representing a non-functional relation with a multiplicity k then k

maps are introduced.

One can add individual constants w, h1, h2, o to the axiom set with the equations

such as w.hydrogen = h1 which relate these constants to the values of the part maps

evaluated for w. With these equations the top graph on the right is a realization of the

class diagram on the left in that the four nodes are individuals of the specified classes.

The arrows on the right represent ordered pairs. For example, the pair < w, h1 > is

a member of the functional relation |hydrogen1| which is called the graph of the map

hydrogen1. Similarly the other arrows represent ordered pairs which are members of the

appropriate functional relations. In the second diagram only one hydrogen atom is used.

In the third one an extra carbon atom is attached to a hydrogen atom. Additional axioms

beyond those introduced are needed to conclude that all realizations have the expected

configuration for a water molecule. The complete axiom set for water and the 2-amino

acid axiom set in section 2 are special cases of axiom systems for which decidability of

consistency is decidable (Section 4). Also all of the valid realizations are structurally

isomorphic.

The example of axiomatizing a vehicle test model makes use of the full Algos language

constructions. The structural descriptions used for molecules are used here for compo-

nent decompositions. However, for the vehicle model the values of maps used to describe

a component may vary in time as the vehicle is tested. A class of axiom sets, called

Composite Structure Models is singled out as this class encompasses many engineering

models. By using an axiom that the terminal object has a time structure one is able to

represent both state machines and physical which are employed in engineering models

which represent not only a product but its operation within its operating environment.

Simulations of the engineering models which are critical for engineering analysis become

valid interpretations of the Algos axiom sets. For the class of engineering models consid-

ered the semantics can be identified with a version of a Labelled Transition System such

as found in (Knight et al. 2012). Considerably more work needs to be done in this area.

1.2.2. Practical Consequences The application modelling use cases for science and en-

gineering generally include a directed graph as part of the description. These graphs

are included in the signature of the resulting Algos application axiom set. The graph

in Figure 1 has a hierarchical decomposition and the axioms express constraints on how

components are connected. Application domains generally have domain specific graphical

modeling tools to represent structure descriptions. Each domain uses implicit assump-

tions which may not be represented within the modeling tool. However, in some domains

such as manufactured products, engineering modeling tools provide checking of syntac-

tic correctness of a model. Directly representing graphical structures as axioms has the

advantage of providing a user friendly interface for development and communication of

descriptions. Graphical authoring tools can be interfaced with automated reasoning tools

to provide semantic as well as syntactic analysis of the axioms. Fortunately the syntax of

Algos and SysML are very similar with considerable overlap. The result is that SysML

with its graphics based syntax can be used to develop complex Algos axiom sets which
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would be almost impossible without a graphics syntax. The language constructions and

modelling principles are general and have been applied to a variety of structural descrip-

tion applications (Graves and Bijan 2011; Graves 2012). The extension of these concepts

for behavior provides not only a foundation for reasoning but a foundation in which

simulation becomes applied model theory, in the logician’s sense of model theory.

1.2.3. Theoretical Consequences A slight specialization of the elementary topos axioms

enable the multi-sorted Horn clause presentation to be easily converted into a reasoning

and computation system. The computational techniques extend the rewriting techniques

used for typed lambda calculus and Cartesian closed categories. The specialization of

Algos axiom sets first to Description Axiom Sets and then engineering Composite Struc-

ture Model Axiom Sets enable correspondences between the external Horn clause axioms

and the internal formulas which do not hold in general. In the case of Description Axiom

Sets the external logic can be reformulated to use the sorts for individuals, classes and

binary relations. This can be used to characterize the (restricted) theories generated by

the Description Axiom sets. In the case of Composite Model Axiom Sets the external

logic can be restricted in a different way to what amounts to state variables for the the-

ory. This leads to a topos model theory for this class of modules which can be identified

with a form of path semantics within the state space. This restriction leads to the use of

Labelled Transition Structures and bisimulation relations on the state space.

1.3. Structure of the document

Section 2 presents the 2-amino acid example before the presentation of the Algos formal-

ism. The rationale is to illustrate that the language constructions used are very intuitive,

and can be used without a full understanding of their axiomatics. This section develops

an Algos axiom set for the class of 2-amino acids starting from the diagram in Figure 2

and the accompanying text. The axiom set can be used to determine whether a specific

configuration graph of atoms and bonding relationships is an 2-amino acid and whether a

molecule has specific substructure of components and connections such as a carbon ring.

In the axiom set nodes are types which are defined to be classes and edges are maps.

Figure 3 uses the syntax of the modelling language SysML (SysML 2010). SysML does

not have all of the constructions used in Algos to express the amino acid axioms, but

these constructions could be added to SysML.

Section 3 describes the Algos formalism. The Algos languages uses two sorts map and

type with a collection of map and type constructions. These constructions use first order

Horn clauses to express for the language constructions. § These axioms are called the

Algos axioms. They are derived from topos theory (Lambek and Scott 1980). Axioms

for an application description are also Horn clauses in the Algos language. The applica-

tion axioms together with the Algos axioms generate an Algos theory. The Algos term

§ The axioms all have the form p1 ∧ . . . ∧ pn ⇒ pn+1 where the pi are literals which contain variables

for maps and types.
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construction axioms include the axioms for a category. These axioms are a simple gen-

eralization axioms for a directed graph (Lambek and Scott 1980) where types are nodes

and maps are edges. Fragments of SysML have been embedded into Algos (Graves and

Bijan 2011). As the Algos axioms imply that for any functional relation there is a cor-

responding map which has the functional relation as its graph. The logical soundness of

Algos follows as any Algos axiom set may be faithfully embedded within a topos, called

the syntactic topos of the axiom set.

Section 4 singles out a class of axioms sets which are sufficient for the 2-amino acid

and water descriptions, but do not use the full expressiveness of Algos. The class of Algos

axiom sets are embedded within a theory which contains a distinguished type constant,

Thing. No special assumptions are made about Thing. However, class symbols introduced

in the signature of an axiom set are embedded as subtypes of Thing. Application axioms

are restricted to Horn clauses which use individual, map, class, and relation variables.

The theory generated by a structure description axiom set is the resolution closure of

the application axioms together and the Algos axioms. The Algos Description Logic has

the Algos axiomatic semantics. The description theories enable both the representation

of class and object diagrams (Kuske 2009) in the same language. The model theory for

these axiom sets is a generalization of Description Logic model theory in that the classes

are mapped by an interpretation to subtypes of a domain ∆. Comparisons of Algos to

other approaches including Description Logic (Baader et al. 2007) extensions (Motik et

al. 2008; Magka et al. 2012 ) are given.

Decidability results for restricted classes of axiom sets which include the amino acid

axiom set. In the use case examples the maps in the signature of the axiom set divide

into two classes, part maps and connection maps. The restrictions on Algos axiom sets

which ensure decidability of consistency are based on an acyclic condition for part maps.

The connection axioms define map equations each of which can be represented by a

unary predicate. These conditions enables the restricted axiom sets to be represented as

monadic Ackermann formulae which is known to be a decidable class (Ackermann 1954).

Section 5 outlines the Algos approach for engineering modelling system behaviour. Be-

havioural modelling in Algos follows topos theory in making use of axioms which imply

the terminal type has a space-time structure. language constructions in SysML provide

component modelling constructions provide a good basis for modelling composite be-

haviour. The Algos approach follows engineering modelling practice closely. Engineering

modelling language with their graphical syntax can be used for axiom development in

the Algos context. The topos framework enables the integration of dynamic systems with

structural decomposition.

Section 6 gives background on the engineering of topos axioms to produce Algos ax-

ioms. Algos is a computational logic formalism in the sense that the Algos axioms and

the application axiom sets are all Horn clauses which are readily implemented within a

theorem proving computational system. Properties of directed graphs such as the graph

having a root can be expressed in first order Algos axioms where their expression in a

single sorted Logic Programming framework would be higher order.
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2. Amino Acids

This section constructs an axiom set that represents the structural aspects of a class of

amino acids. The axiom set is simply a more precise version of a model such as an engineer

might construct. Even though the amino acid example is simple it illustrates the utility

of the foundational topos language constructions for everyday modelling. These language

constructions are everyday modelling concepts. An informal discussion of their semantics

is given when the langauge constructions are introduced. The discussion of their use is

Fig. 2. Amino Acid

intended to be readable without knowledge of the specifics of the Algos formalism. Each

of these language constructions will be footnoted when they are introduced to reference

their formal semantics in Section 3.

The axioms are represented using in part the graphical systax of SysML. It is not pre-

sumed that the reader is familiar with SysML. However, additional language construc-

tions beyond SysML are needed to constrain the interpretations of the axioms so that

they describe only the intended structure. The topos constructions have direct physical

interpretations. Their use provides evidence for using an Extended Standard Formalism

and illustrates how axiomatic descriptions can build on informal graphical description

conventions, convert the informal descriptions to the modelling language SysML, and

add axioms to constrain the realizations to those with the intended structure. A formal

presentation of the language constructions and their semantics is in Section 3. Proofs

of the properties of the interpretations of this axiom set are given in Section 4. Their
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axioms provide a semantics for the corresponding SysML language constructions. The

same language constructions work for manufactured products.

While the example was chosen for its simplicity, amino acids illustrate many of the

issues confronting giving axiomatic descriptions for a class of structures. An axiomatic

description is developed for the subclass of 2-amino acids. The structure of a molecule is

its component decomposition and the connections between components. The description

will not cover attributes of molecules such as atomic weight. The axioms do not cover

the measurable attributes of the molecules and to not represent the dynamic aspects of

these molecules. However, this additional information can be represented in SysML and

axiomatized within Algos.

The description of the 2-amino acid class contains a place holder (variable). In molec-

ular biology these place holders are called substitutients. As a result the 2-amino acid

molecules satisfying this axiom set may have multiple structures as the place holder may

be filled with molecules provided they satisfy the place holder conditions. In the Algos

formalism the place holder is represented as a variable. The description admits variant re-

alizations by replacing the substitutient with a molecule description with no place holers.

Such applications are common in manufactured products where, for example, a vehicle

model may have many variants which have different equipment such as different engine

choices. Then the place holder(variable) is replaced a concrete molecule description and

becomes a template. All of its realizations are structurally the same.

The amino acid class description starts with Figure 1 and a textual description taken

from Wikipedia. The next step is to construct an engineering model (Figure 2) of the

description using the syntax of SysML. Figure 2 contains two diagrams, the one on the

left corresponds to the textual description; the one on the right corresponds to Figure 1.

An informal description of the semantics of this model is given. After this discussion it

becomes clear that additional axioms beyond what is expressed in the SysML model are

needed to capture the intent of the model description.

2.1. The engineering model

The Wikipedia text describes the hierarchical decomposition for the 2-amino acid molecules.

Figure 1 describes bonding relations which occur between atoms of an amino acid molecule.

This informal description is represented by an engineering model in Figure 3 which con-

tains two diagrams. The diagram on the left labelled BDD. BDD stands for Block Defi-

nition Diagram which is the SysML name for this kind of diagram. The BDD describes

the hierarchical decomposition. The diagram on the right, labelled the IBD for Internal

Block Diagram, describes the bonding relations between atoms and is similar to Figure

2.

The amino acid axiom set is intended to describe the class of 2-amino acids. An in-

dividual amino acid is to have the graphical structure of Figure 1. The intent of Figure

3 with its two diagrams is to describe the class of amino acid molecules rather than

an individual molecule. To achieve this intent the model has additional axioms beyond

what are expressed graphically in Figure 3. The axioms are added to represent implicit

assumptions in this domain. To describe the class of molecules the SysML model uses
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Fig. 3. Amino Acid SysML Model

directed graphs of nodes and arrows. Nodes represent the types of the molecule and its

components and arrows represent, in general, relations between the nodes. For example

component relationships and bonding relations. In this case the arrows are functional re-

lations. The BDD and IBD diagrams use different notational conventions as they capture

different aspects of the description.

The physical interpretation in the BDD diagram requires, for a type X, the ability to

recognize if an object a has the type X. We write this as a : X. For an arrow f : X → Y ,

the interpretation requires the ability to recognize that the application a.f for a : X has

type a.f : Y . In this sense the arrow assigns individuals of type X to an individual x.f

of type Y . For example, the interpretation of the 2-amino acid description requires the

ability to recognize that an atom is a carbon atom, that any 2-amino acid molecule w

has a carbon atom w.p1 as a component. This model implicitly assumes that one has a

recognition procedure for an atom. The model will provide a procedure to recognize a

2-amino acid molecule in terms of its components and their bonding relationships. ¶

¶ In the Algos terminology the arrows are maps and the nodes are types. In Algos an individual t : X

is a map whose domain type is a special type One and so t : One → X. This representation enables
individuals to be represented as maps. More generally it is useful to require that for any map h with
range type X the composition h.f has range type Y . Path composition of the arrows in a directed

graph satisfies the associativity conditions of the axioms for a category (Section 3.2.1). The type Null

is called the initial type. Null is a subtype of any type.
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2.2. Classes and Individuals

The language in which the axioms are expressed has a type symbol, Thing and a type

symbol, Null. All of the classes are subtypes of Thing. A class Null is an “empty” type

that is a subtype of any type. Individuals, classes, and subtypes are defined in Section

3. In the amino acid application we can assume that the class Molecule is Thing. A

membership predicate ∈ is used to state that an individual is a member of a specific

class. The predicate and its relation to type containment satisfies properties familiar

from set theory. The classes, i.e., subtypes of Thing have the usual boolean operations

and subclass ordering between classes. For example the equation

C uH = Null. (3)

expresses that the classes of carbon and hydrogen atoms are disjoint which means that

the classes do not have members in common.

An individual is a map t : One → Thing. One is a special type called the terminal

type. The notation a : Thing is an abbreviation for a : One → Thing. By representing

individuals as maps, a composition a.f of a map f : A → B with an individual a is

defined and a.f is an individual. The semantics for a map f : A→ B where A and B are

classes is expressed in terms of a composition operation as:

x ∈ A⇒ x.f ∈ B (4)

where x.f is the amine group for the molecule x. ‖

2.2.1. The BDD: Component Structure The 2-amino acids have both an amine group

NH2 and a carboxylic acid group COOH. The general formula is: NH2CHRCOOH.

In this formula the N , H, C, O are abbreviations for nitrogen, hydrogen, carbon, and

oxygen atoms. The carbon atom next to the carboxyl group is called the α−carbon atom.

R is a place holder for an organic substituent known as a ”side-chain”. For 2-amino acids

a substituent is an atom or group of atoms with a hydrogen atom component which can

be bonded to the α-carbon atom. If R is substituted by H the result is glycine.

The graph of nodes and arrows labelled BDD in Figure 2 describe the pattern of

component decomposition for amino acid molecules. The AminoAcid node and the group

nodes in Figure 2 are reifications of these types. The amino acid description contains these

nodes together with atom nodes and the edges representing the part decomposition and

the binding relationships. The nodes in the BDD diagram include AminoAcid, nodes for

subcomponents, and atoms.

The arrows in this diagram, such as the arrow p2 : AminoAcid → NH2, and the

arrow q1 : NH2 → N are called part arrows. The BDD describes a part decomposition

pattern which applies to individual amino acid molecules. Each arrow has a domain and

‖ In Algos Section 3.2.4 the subtype relation v for a type A and a type X is defined, as is the membership

relation ∈ for a map and a type. A subtype A of X is a type construction. The subtype construction
has the form A = {x : X|p(x) = true} where p : X → Ω. Ω is the truth value type. The axioms enable

the definition of algebra of subtypes which includes u, t, ¬. As well for subtypes A and B of a type

X, one has that if f : X → Y and if a ∈ A then a.f ∈ B.
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a range node. The path composition of these arrows is written as p2.q1. The path p2.q1

has domain and range

p2.q1 : AminoAcid→ N (5)

A usual graph theoretic “dot” notation is used with left to right ordering to compose

maps, rather than the more usual right to left order with parenthesis for composition

within mathematics. The absence of parenthesis reflects an associativity assumption for

composition.

The component structure of each amino acid instance is described as having the two

groups NH2 and COOH together with the α-carbon atom, a hydrogen atom, and the side

chain R. There are five top level components and each of the two groups has components.

For each of the five components a map is introduced. Each of the five maps has domain

the class AminoAcid. The range classes of these maps are respective classes of the five

top level components. The notation for these 5 maps is:

p1 : AminoAcid→ C (6)

p2 : AminoAcid→ NH2 (7)

p3 : AminoAcid→ COOH (8)

p4 : AminoAcid→ H (9)

p5 : AminoAcid→ R (10)

The subcomponents of NH2 and COOH are also specified in the Block Definition

Diagram (BDD) of Figure 2. For NH2 as a standalone entity its components are:

q1 : NH2 → N (11)

q2 : NH2 → H (12)

q3 : NH2 → H. (13)

The NH2 components of AminoAcid are the compositions:

p2.q1 : AminoAcid→ N (14)

p2.q2 : AminoAcid→ H (15)

p2.q3 : AminoAcid→ H. (16)

The subcomponents for COOH are specified similarly. They are displayed on the BDD

of Figure 2.

While a map such as p1 : AminoAcit → C assigns a carbon atom to an amino acid

molecule m, not all carbon atoms are a component of an amino acid. Further a molecule

may have multiple carbon atom components. These considerations lead to introducing

the construction for the image Im(f) of a map f : X → Y . The image of a map enables

describing the bonding relations which are defined in the IBD of the amino acid model.

2.2.2. The IBD:Bonding Structure The bonding relationships are described in the dia-

gram labelled IBD in Figure 2. The axioms for the connections ensure that a component

of one molecule is bonded to a specific component of that same molecule. This will be

achieved by map composition equations. Note that the rectangles in the IBD are labeled
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with expressions such as p4 : H and p1 : C. informally p4 : H is the type of hydrogen

atoms that serve as the p4 component of an amino acid molecule. Thus for any molecule

a : AminoAcid the composition a.p4 is the hydrogen atom of a. The interpretation of

p4 : H is as the image of the map p4. We use both the graphical syntax p4 : H and the

syntax Im(p4) for the image of the map.

The IBD has ten connections between the atoms. They are represented as maps whose

domains and ranges are the image classes of the part maps. Connection equations are

used to ensure that the components of a molecule are connected by bond maps. The IBD

defines these equations. For example, in the COOH group the carbon atom has a double

bond with the oxygen atom. The two bonding equations are:

p3.r1.c6 = p3.r5 (17)

p3.r5.c7 = p3.r1. (18)

The BDD and IBD diagrams are an incomplete description of the amino acid component

decomposition. Additional axioms are needed to reflect implicit assumptions of Figure 1.

2.2.3. Components are distinct We expect that all of the components of an amino acid

molecule are distinct. We can say that the classes representing atoms are pairwise disjoint,

but this doesn’t suffice as multiple part paths may have the same range. Axioms for

disjointness of atom classes are given in terms of composing individuals with maps. The

distinctness of the values of two maps such as q2 : NH2 → N and q3 : NH2 → N can

be expresses by

x ∈ NH2 ⇒ x.q2 6= x.q3. (19)

In expression (19) the symbol x is an individual variable. The orthogonality condition

can be written as:

q2 ⊥ q3 (20)

and is equivalent to Im(q2) ⊥ Im(q3).

2.2.4. No sharing of atoms between molecules We haven’t yet ruled out that a carbon

atom in an amino acid can not belong to some other molecule. To ensure that a component

does not belong to any other molecule we assume for each part property and any two

molecules m1 and m2 that

m1.p = m2.p⇒ m1 = m2. (21)

A map with this property is called a monic. †† Each map f : A→ B has an image Im(f).

The image of f is a subtype type of B. This property can be expressed as:

b ∈ Im(f)⇒ ∃x.x.f = b. (22)

The characterization with the existential quantifier is not needed as the maps are monic,

which allows a more algebraic characterization. For a monic f there is an inverse map

†† The Algos monic property provides the isomorphism of the monic with its image.
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f−1 whose domain is Im(f) and whose range is A. The map f−1 has the property that

f.f−1 = idA. (23)

In the amino acid example Im(p1) are the carbon atoms which are a component of a

2-amino acid molecule. Presumably Im(p1) is small in comparison with C. All of the

maps used in this example are assumed to be reversible in this way. That is they have

an inverse from their image back to their domain. The inverse part maps imply no two

realizations intersect. In the IBD diagram the notation f : B is used in place of Im(f).

However, for the linear syntax we will continue to use Im(f) for the image.

Further each of these connection maps is assumed to be monic. For example a direct

transcription of the typing of c1 in the IBD of figure 4 is

c1 : (p1 : C)→ (p4 : H). (24)

Using the image notation this becomes

c1 : Im(p1)→ Im(p4) (25)

with inverse

c1−1 : Im(p4.c1)→ Im(p1). (26)

Note the degree of a component such as the α−carbon is the number of connections the

atom participates in. The α−carbon atom of a molecule in this axiom set is the value of

p1.m where m is an amino acid molecule. A 2-amino acid only contains one cycle. The

composition

p3.r1.b1.b−1 (27)

is a cyclic in the sense that its domain and range are the same. Checking that a map is

cyclic is trivial. Inverse maps may be used in the cycle.

2.3. Axioms with variables

Up to this point variables haven’t been needed to express axioms. The axioms to exclude

extra connections and the treatment of substitutients use variables. The variables are

typed by “classification” predicates. These predicates are Individual, Class, Property,

Node, Part, PartPath, and Connection. When a user constructs an axiom set, constant

symbols like AminoAcid and variables like R are declared as part of the axiom set using

classification predicates. These declarations add axioms to the axiom set as described in

Section 3, which are used for reasoning. The type symbols Thing and Null are always

included, as is the image construction.

A variable x with type PartPath written as x :: PartPath. For example,

x :: Individual,x ∈ AminoAcid,
p,q :: PartPath,⇒ x.p 6= x.q (28)

can be used to state that all part paths from a node have distinct values. As an example

the property that a class doesn’t have any non-trivial subclasses defined as a unary
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predicate with:

Atom(C) ≡ A v C⇒ A = Null (29)

where A and C are class variables. The predicate Atom can be used to characterize

atoms in a mathematical sense.

2.3.1. Exclusions In the axiom set for amino acids the atoms,N , H, C, O are all explicitly

declared as classes that have type Node, for example N :: Node. To exclude an amino

acid molecule from having other components or being a part of any other structure we

put

p :: Part⇒ domain(p) :: Node,

range(p) :: Node. (30)

To exclude a carbon atom in an amino acid molecule from being connected to any other

atom we add the clause

f :: Conn⇒ Range(f) 6= Carbon (31)

A class AminoAcid has the property that no map has AminoAcid as its range. A class

with this property is called a start class; it is defined as

Start(A) ≡ p :: Part,⇒ Dom(p) 6= A. (32)

The axiom set contains the axiom that AminoAcid is a start class:

Start(AminoAcid). (33)

2.3.2. Substitutients Both molecular structure descriptions and automobile design spec-

ifications are used to describe variants. A variant description is one in which there are

“substituents” which can be replaced by descriptions which have specific structure. The

amino acid description describes the class of 2-amino acids which are obtained by re-

placing R by a “side-chain” which has a hydrogen atom and by connecting the hydrogen

atom to the α− carbon atom. If R is replaced by N the result describes the lysine class.

The side chain has to have a hydrogen atom available for bonding connections. From the

BDD the part map for R is

p5 : AminoAcid→ R. (34)

In the IBD there is a connection map

b : p1.C → R. (35)

A part relation hasPart is introduced to represent the conditions which enable a hydrogen

molecule which is a component of R and satisfies conditions which make it bondable to

the α-carbon atom. The condition that R is a side chain can be expressed by:

SideChain(R) ≡
R v ∃hasPart(R, H) (36)
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The inclusion statement is equivalent to

x ∈ R⇒ ∃y. < x, y >∈ hasPart, y ∈ H. (37)

However, this expression can be replaced with the class inclusion statement for purposes

of computation.

2.4. Relations, Multiplicities, object diagrams

The graphical notation we have used permits arrows to have integer multiplicities. If no

multiplicity is present it is assumed to be one. In the amino acid example all multiplicities

are assumed to be one. The multiplicity 1 of an arrow f : A→ B means that if a : Thing

then a.f has a single value. The arrow notation f : X → Y [k] stands for a multivalued

map f : X → Pow(Y ) where Pow(Y ) is called the power type. For any a : W the value

a.f has type Pow(Y ). The type Pow(Y ) has a cardinality map card : Pow(Y ) → N .

The value of the cardinality card(a.f) is k, if the multiplicity is k. If an arrow f : X → Y

has a multiplicity of k then the multivalued map f : X → Pow(Y ) can be replaced by k

maps f1, . . . , fk.

The amino acid model is, in the terminology of object-oriented programming, a class

model, as the nodes represent types of obejcts rather than individual objects. In object-

oriented programming languages class diagrams and object diagrams are both directed

graphs. An object diagram may be obtained from a class diagram by replacing each class

X in the diagram with an instance a : Thing where a ∈ X. Each map p : X → Y in

a class diagram is replaced by an ordered pair < a, a.p >. An individual amino acid

molecule is a graph whose nodes are individual members of the appropriate class and the

edges connect the individuals as in the diagram. For an individual a with a ∈ AminoAcid
the part path composition terms such as pi.a are members of the designated class and

the pairs such as < a, pi.a > are the edges of the graph. ‡‡

2.5. The Amino Acid Description

The amino acid graph in Figure 2 declares map and class symbols together with the

typing axioms for classes and maps. The amino acid axiom set further contains the

disjointness axioms for classes and the orthogonality axioms for the part maps together

with the exclusion and substitutuent axioms. The axiom set for the amino acid class

can be represented in a linear syntax as well as a graphical syntax. As a result we can

say, for example, that any amino acid molecule is not a hydrocarbon in the sense that

it only contains carbon atoms and contains a four-membered ring. The axioms exclude

unintended additional components. The axiom set is a schema in that the rectangle

‡‡ The product and tuple constructions are used to represent binary relations (roles). A binary relation

P is a subtype of a product type (X,Y ) which means that it representable as a subtype {< x, y >:

(X,Y )|r(x, y) = true} for some r : (X,Y ) = Ω. Products are discussed in section (3.2.2). In Section
3.2.5 the correspondence a binary relation r a multi-valued map r∗ : X → Pow(Y ) is established. This

correspondence enables functional relation P v (X,Y ) to be replaced by map fPX → Y (Section

3.2.7).
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labelled R in Figure 1 can be substituted for to obtain specific configurations such as

glycine. The amino acid axioms represent R as a class variable. In Section 4 these axioms

will be used to verify that any realization of a 2-amino acid axiom set without variables

has a canonical structure.

3. Algos Formalism

This section outlines the Algos formalism (Graves and Blaine 1985; Graves and Blaine

1986). Algos is an Extended Standard Formalism derived from the axioms for an elemen-

tary topos. This formalism has been implicitly used for the 2-amino acid axiomatization

in Section 2. Section 2 is intended to illustrate the naturalness of the language construc-

tions in applications. Section 3.1 presents the formal language. Section 3.2 presents the

axioms for the term constructors, consequences of the axioms, and the definition of the

theory generated by an axiom set. Section 3.3 provides the embedding of an Algos axiom

set within a topos, called the syntactic topos generated by the axiom set. This embedding

establishes the mathematical soundness of Algos.

The choice of language constructions and axioms for Algos was motivated by the idea

of developing a logic-based formalism to be used interactively with automated theorem

proving and proof checking by scientists and engineers. The system would be used for

everyday construction of axiom sets to be used as models in the engineering sense. A

model as axiom set can be either a description of a system of interest or a specification for

a system to be built. Many engineering problems translate into logic questions regarding

the engineering model. This has been elaborated in (Graves and Bijan 2011; Graves

2012). Intended applicationS include design specification for manufactured products and

biomedical engineering.

The following criteria were used in the construction of the formalism.

1 The formalism generates a topos.

2 The language constructions and axioms are directly verifiable in applications.

3 The formalism can be implemented effectively as a computational system with auto-

mated reasoning.

4 The formalism is practically usable by engineers and scientists to build and analyse

axiom sets for complex applications.

The first condition is for mathematical soundness. The Algos language constructions

include the topos construction of product (X,Y ), subtype {x : X|p(x) = true} and

power Pow(X) types with corresponding map constructions. Algos also includes the

sum X + Y and the exponential Y X types, as well. the complete description includes

n-ary sum and product types, and axioms for the natural number type, N . However,

these constructions are not discussed in as much detail, as they can be defined from the

ones given. These constructions are not used in the biomedical example, but are used in

the Composite Structure Models (Graves 2012). The Algos term constructions contain a

truth value type Ω. The maps with range type Ω are called internal formulae. The first

order formulae in which the axioms for the terms are expressed is called the external

logic. The resulting Algos constructor axioms imply that an Algos axiom set generates
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a topos, but are stronger as the generated topos has canonical subobjects (see Section

3.3) (Lambek and Scott 1980), page 138.

The second condition is physical soundness. The physical soundness of Algos rests on

the ability to interpret the language and axioms in applications. The scope of applications

is the macro physical world as opposed to the world of quantum mechanics. Remarkably

sufficient conditions for a topos occur directly in applications. Section 2 gave an informal

example of application axioms which use a set of language constructions that are sufficient

to generate a topos. From this viewpoint toposes abound in applications. As the language

constructions are presented, the rationale for their choice is discussed. The axioms are

presented in an “incremental” order. Each axiom enables an increasing expressiveness for

applications. Further, each axiom enables additional correspondence between the external

logic in which the axioms are presented and the internal logic.

The third condition is mechanization of reasoning, i.e., can the axioms be used com-

putationally for automated reasoning. The language axioms have the form of a Horn

Clauses with a single consequent in the form of an equation. When the axioms were

first developed the ability to give equational axioms for the Cartesian Closed categories

(CCC) was known and the fact that the CCC terms have a unique canonical form. A form

on an equalizer axiom (Axiom 3.2.4) similar to the one expressed in (Lambek and Scott

1980) page 22 is used. The power type axiom similar to that in (Lambek and Scott 1980)

page 163 is used. However, it did not appear to be known at the time how a subobject

classification axiom could be expressed equationally, as is done in Axiom 3.16. Beyond

presenting the axioms in a form familiar from mechanization of logic, and beyond noting

that the system has been successfully implemented (Graves and Blaine 1985; Graves and

Blaine 1986) this topic is not discussed here.

The fourth condition is practical usability. The actual adoption of a formalism depends

on whether there are software tools available in which engineers and scientists can de-

velop axiom sets for applications of interest. The graphical syntax of SysML corresponds

closely to the linear syntax of Algos. The detailed design of large complex manufac-

tured products are routinely produced in SysML augmented with models in other special

purpose modelling languages. The SysML syntax does not include all of the Algos con-

structions, but they could be added. Algos and its implementation predated SysML by

about 30 years. Complex SysML models have been developed which have been informally

translated into Algos (Graves 2012). As a result existing tools can be adapted to use for

axiom development in Algos. Since the original publications regarding Algos the axioms

have been modified somewhat based on engineering experience.

One difference between the SysML syntax in Section 2 and the linear syntax of Algos,

as presented in this section, are that map composition in this section is written in re-

verse order from arrow composition in SysML. When maps occur as arrows in diagrams

composition will be written in left to right order without parenthesis as is done for path

composition in directed graphs. Otherwise composition will be written with parenthesis.

In the amino acid example all of the compositions were written as path compositions.

However, the axioms will be given in the more usual mathematical notation as they will

look more familiar. Applications which use applicative operations with arguments, such

as a calculator which takes inputs and produces outputs, typically use the traditional
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mathematical syntax. Comments on differences in notation and formal presentations of

topos theory and the relation of Algos to Type theory are given in footnotes. These issues

of graphical syntax are not the focus of this discussion.

Other issues which are also not discussed are the logical incompleteness of the Algos

axioms. More importantly, applications generally involve operating with multiple theo-

ries, combining theories, and refining them. This is characteristic of typical engineering

modelling processes. This can be referred to as physical incompleteness. This topic is not

addressed.

3.1. Language

As an Extended Standard Formalism, Algos uses a language of terms and formulae. The

inference rules are a subset of first order proof constructions. The inference rules will be

stated explicitly as they were implemented directly within an automated reasoning system

in that form. The language uses several notational conventions to simplify the syntax of

formula. These syntactic conventions are sometimes different from mathematics, but will

be familiar to users of programming and modelling languages. They will be introduced

and commented on below.

3.1.1. Signature An Algos signature consists of the two sorts Map and Type, with a

collection of constant map and type symbols, a collection of function symbols, used as

constructors for the map and type terms, and predicate symbols. The notation will corre-

spond to informal mathematics notation. Rather than listing the signature symbols here

they will be introduced as they are used. The type symbols include One the terminal type,

Null the empty type, Ω the truth value type, and N . The map and type constructions are

first order function symbols which include map constructions to construct ordered pairs

of maps and Cartesian Product types are function symbols in the signature. The func-

tion symbols include Domain and Range. We use the notation Domain :: Map→ Type

and Range :: Map → Type to indicate the sort of arguments and values of the domain

and range function symbols. Having function symbols in the signature does not imply

that they are defined for all values of their arguments. An Algos signature the symbols

informally described with possibly additional symbols. When a map constant symbol is

included in a signature its domain and range types must be specified.

It is worth noting that when engineering models are developed and computer programs

are written they use declarations to introduce symbols with typing information. The

symbols introduced by declarations together with the symbols used for the language

constructions are the signature of the model as axiom set.

3.1.2. Terms The language of term constructions is the language of maps and types (ob-

jects) in a topos. Terms may contain variables with sorts Map and Type. Generally lower

case letters f, g, h, t, s are used for map variables, and upper case letters A,B,C,X, Y, Z

are used for type variables. Occasionally the notation f :: Map may be used to indicate

that f is a map variable, and X :: Type to indicate that X is a type variable. Terms

are constructed from map and type symbols using the term constructions. For example
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< a, b > is the notation for tuple and (A,B) is the notation for Cartesian product. How-

ever, the axioms for the term constructions, such as <,> have antecedent conditions for

the term constructions to be well formed. Since the constant map symbols are typed and

the map constructors provide typing conditions for being well-formed the well formed

map terms have a unique typing. In informal presentation the types are not always given

explicitly. However, they can be inferred from the context.

3.1.3. Formulae The formulae are Horn clauses constructed from literals (atoms and

negation of atoms) using the predicate symbols include ∈, v, :, and =, together with

auxiliary predicates introduced here and application specific predicates. Free variables in

a formula are implicitly universally quantified. The notation

P1, . . . , Pn⇒ Q (38)

is used for a Horn clause where Pi and Q are literals. §§ The terms include variables typed

with the sorts Map and Type. The map terms are related to the type terms through the

Domain and Range functions. The notation

f : X → Y (40)

is a three argument predicate which is an abbreviation for the two binary predicates

Domain(f) = X,Range(f) = Y. (41)

The atomic formula f : X is an abbreviation for Range(f) = X. The typing of map

symbols in the signature is specified. A map term f is well-formed if there are types X

and Y for which f : X → Y is provable. An equation t1 = t2 for two terms t1 and t2 is

well-formed provided the terms have the same typing. The equality predicate = has the

usual properties for terms with the same type.

The map term constructors are first order function symbols whose arguments are types

and whose values are maps. For example, there is a constructor which assigns an identity

map to each type. The symbol id is a function symbol whose argument is a type. The

notation idX is used for the identify map of a type X. The identity function symbol

has typing id :: Type → Map. Map and type variables may be further subtyped using

relations defined by predicates. For example, if f is a map variable and Range(f) = X

for a type term X the notion f :: X will be used as an abbreviation. Any symbols in a

formula which are not constant symbols are variables.

Additional predicates, such as the binary type predicate for isomorphism, are intro-

duced as Horn clauses for which they are the consequent. These predicates will be called

definitions, but they are not all equivalences. The antecedent formula contains variables,

which, when closed terms are supplied, enables the conclusion of the predicate to be

derived.

§§ While we write the formulae as Horn clauses they can also be viewed as entailment relations and be

written using the notation
P1, . . . , Pn `S Q (39)

where S is the set of free variables in the literals. By representing inference using entailment Algos is
a type theory.
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3.1.4. Deduction system While the inference rules are a subset of first order proof con-

struction rules, they can also be viewed directly as a deduction system. A deduction

system, as defined in (Lambek and Scott 1980) page 47, consists of formulae and deduc-

tions constructed from inference rules. In this case the formulae are Horn clauses, the

deductions are the axioms and deductions constructed from inference rules. The inference

rules are presented in a numerator-denominator form where both numerator and denom-

inator are Horn clauses. These rules are stated explicitly below. The notation P [f/t] is

used for substituting the term t for the variable f in the literal P . Substitution of a map

term for a map variable is well-formed only if they have the same typing. The notation

Γ will be used for a sequence P1, . . . , Pn of literals.

1 Thinning

Γ⇒ P

Q Γ⇒ P
(42)

2 Cut
P1 . . . Pn⇒ P, P1 . . . Pn, P ⇒ Q

P1 . . . Pn⇒ Q
(43)

3 Substitution
Γ⇒ P

Γ[f/t]⇒ P [f/t]
(44)

4 Equality

f = f

f = g ⇒ g = f

f = g, g = h⇒ f = h (45)

A map variable in a formula may be replaced by a map term provided any type assump-

tions of the map variable are satisfied by the map term. These inference rules correspond

to structural deduction rules used by type theories. The Algos language construction

axioms below can also be viewed as inference rules. Together these rules enable Algos

to be viewed as a type theory under the usage of the term in (Lambek and Scott 1980).

Map constructions have axioms which give antecedent conditions for the term to be

well-formed.

3.2. Axiom Sets and Theories

The axioms for the term constructions (Algos axioms) provide the semantics for the term

constructions. The Algos axioms are derived from the first order axioms for a topos by

adding as term constructors first order function symbols to replace existential quantifiers.

The Algos term construction axioms have the form that an antecedent is a conjunction

of literals formed from the atomic formulae and that the consequent is an equation.

For application axiom sets we keep the restriction that the formula are Horn clauses.

An Algos axiom set is a collection of Horn clauses in the language generated by an

Algos signature. An Algos signature may contain additional map and type constants,

and atomic predicates. The Algos theory generated by an axiom set is the closure of
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the axioms with the axioms for the term constructions using the inference rules. The

formulae in the theory of an axiom set are Horn clauses.

3.3. Category Axioms

The first choice to be made when developing an Extended Standard Formalism is whether

to use a type system, and if so what kind. The Algos formalism uses a type system with

two kinds of terms, map and types. Map terms have two types, a domain and a range

type rather than a single range type as is done in many type theories. The choice of maps

with both a domain and a range type rather than terms with a single “range” type is

based on the fact that most engineering applications use a graph-theoretic interpretation

of maps and composition as path composition. Often engineering modelling languages

treat maps as functional relations. The relations in these languages have domain and

range types. This suggests that the axioms should be written with the path notation

for composition. However, in the interest of mathematical familiarity the axioms will be

given in the usual left-to-right ordering.

The first order axioms for a category using the two sorts Map and Type are the basic

map construction for Algos. The three place predicate f : X → Y is an abbreviation for

the conjunction of the two binary predicates Domain(f) = X and Range(f) = Y . Thus

f : X → Y ≡ Domain(f) = X,Range(f) = Y. (46)

Axiom 3.1 (Category).

f : A→ B ⇒
Domain(f) = A,Range(f) = B (47)

f : A→ B, g : B → C

⇒ g(f) : A→ C (48)

f(g)(h) = f(g(h)) (49)

f(idA) = idB(f) = f. (50)

For the composition of a map f : X → Y with a map g : Z → X to be interpreted

requires only that the term f(g) is well defined and for which Range(f(g)) = Y . For

each type X the identify map constructor id. provides a map idX for each type X with

idX : X → X.

The category axioms are a simple generalization of the axioms for a directed graph

where the maps are path compositions of arrows and the types are the nodes. The

justification for associativity comes from viewing map composition as path composition

in directed graphs. Keep in mind that in the amino acid the compositions are written

in reverse order using the ’dot’ notation which implies the associativity of composition.

The same argument applies to the Composite Structure Models such as a vehicle and its

test environment.

An application such as a design for a vehicle specifies that any vehicle of a type

V ehicle has an engine of type Engine. The descriptive property of having an engine can

be represented directly as a map hasEngine : V ehicle→ Engine. When attempting to
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verify in an application that an object satisfies its specification, one of the tasks would be

to determine if the object has an assigned engine of the appropriate type. When complex

manufactured products are delivered to a customer it is very common for this task to be

performed before the product is accepted. When constructing an axiom set for a molecule

an interpretation of a map in a molecule axiom set such as oxygen : Water → Oxygen

simply says the each water molecule has a well defined oxygen component. There is no

requirement as to how this oxygen component is assigned to the water molecule.

The concept of two types being isomorphic is introduced with the following rule.

Definition 3.1 (Isomorphism).

f : A→ B, g : B → A, f(g) = idB , g(f) = idA ⇒ A ' B (51)

In Algos two types are said to be isomorphic only when the two maps are provided.

The category theory version of a map being one-one is called monic. Monics occur

frequently in applications such as manufactured products and biomedicine. For example,

in the amino acid axioms of Section 2 the part and connection maps of amino acid are

declared to be monic. More generally in engineering models that have a unique parts

decomposition the part maps are monics.

Definition 3.2 (monic). For f : X → Y

Monic(f) ≡ f(h) = f(g)⇒ h = g (52)

Note that the composition of monics is a monic.

3.4. Products and tuples

For types X and Y the construction (X,Y ) is a type called the product type of X and

Y . The choice of the product and tuple constructions represent the ability to reify two

distinct maps f : Z → X and f : Z → Y as a map < f, g > called the ordered pair or

tuple of the two maps. The tuple construction is well-formed provided that their domains

of the maps f and g are the same. The type of the tuple is < f, g >: Z → (X,Y ). For

each product type (X,Y ) has two projection maps maps pr1X,Y : (X,Y ) → X and

pr2X,Y : (X,Y ) → Y . The projection maps are constructors which have the product

type as an argument. Notation will be introduced to allow users to name the projection

maps. As we will see the projection maps are variables and the renaming conventions

will be familiar from logic and computer science.

The terminal type One is a zero-ary product type. If f : Z → X and g : Z → Y , the

notation < f, g > is used for an ordered pair and has type < f, g >: Z → (X,Y ). For

each type X the map ! has type ! : X → One. ! is a map constructor with a type as

argument and is precisely written as !X . However, the subscript will generally be omitted.

Product types and tuples are used to represent relations which are subtypes of a product

type; instances of relations are tuples. Maps have graphs which are relations.

The product and tuple axioms state that two tuples are equal if their components are

equal, that a map whose range type is a product is equal to a tuple of maps, and for

each type the terminal map ! is unique.
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Axiom 3.2 (Tuple).

t1, r1 :: X, t2, r2 : Y,< t1, t2 >=< r1, r2 >⇒ t1 = r1, t2 = r2 (53)

f : Z → (X,Y )⇒
f =< pr1X,Y (f), pr2X,Y (f) > . (54)

< f, g > (h) =< f(h), g(h) > (55)

f : X → One⇒ f =! (56)

The pairing two maps f : Z → Y and g : Z → X has the property that < f(h), g(h) >

has a well defined type provided h has range type Z. The need for the domains of the two

maps to be the same is to ensure that the composition of the tuple yields a well-formed

map tuple map < f(h), g(h) >.

A consequence of the tuple axioms is that the identity of an ordered pair is the ordered

pair of the projection maps.

id(X,Y ) =< pr1X,Y , pr2X,Y > . (57)

Another consequence of the tuples and products is that a map t : One → X can be

identified as a map with no arguments. This is the concept of an individual of type X.

The notatin t :: X is used for an individual of type X. The product type construction can

be iterated to form n-ary products. The operation of constructing products and tuples is

associative in that the resulting products are isomorphic and so the parenthesis will be

omitted. A product of the form (One,X) is isomorphic to X. The isomorphism follows

from the fact that the identity of (One,X) is <!, pr2X >. The map <!, idX > (pr2) =<

!, pr2 > and pr2X(<!, idX >) = idX .

Algos uses a notational convention familiar from modelling and programming language

to introduce names for projection maps. New names can be introduced for projection

maps with the notation

(x : X, y : Y, z : Z). (58)

This notation introduces a product type (X,Y, Z) where the projection maps have been

renamed to be x, y, z. For example,

y : (X,Y, Z)→ Y. (59)

is the projection of (X,Y, Z) onto Y . Algos contains a natural number type, N and

arithmetic functions such as +. The usual infix notation

f + g = +(f, g) (60)

is used for the composition. A consequence of the notational conventions for projection

maps is that they have the properties associated with variables. For x : (x : X, y : Y ) a

product type with projections x and y the notation

(x := f) =< f, y > (61)

defines a substitution operation. For example, where x and y are the projection maps
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declared above

x+ y(x := f) = +(< x, y >)(< f, y >) =

+(< x, y >)(< f, y >) = +(< x < f, y >, y < f, y >) =

+(f, y) = f + y. (62)

This example shows that projections have the properties of variables and gives an example

to illustrate that the Algos axioms can be used for symbolic computation. Since Algos has

a natural number type N it has an iteration construction defined for a map f : X → X.

Do(f, n) = for x ∈ [1. . . . .n] do f (63)

iterates the map f n times. The construction is derived from the Lawvere axioms for the

natural numbers type. The natural number axioms can be used to prove properties of

maps by induction as a form of symbolic computation.

3.4.1. Equality Topos theory and Algos have a truth value type Ω with the maps true :

One → Ω and false : One → Ω. A map f with type f : X → Ω is called an internal

formula. The choice of using an equality map eq : (X,X)→ Ω enables a correspondence

between testing whether eq(f, g) = true and verifying the external equality f = g. The

equality map constructor yields a map eqX(X,X) → Ω for each type X. The equality

axiom provides a “reflection” between the internal logic of terms with type Ω and formulas

in the external logic. The external logic is the Horn clause logic in which the Algos axioms

are presented. For a topos the external logic used a full first order logic. The internal

logic for Algos consists of the maps whose range type is Ω.

Axiom 3.3 (Equality).

true 6= false (64)

t1, t2 :: X, eq(t1, t1) = true ≡ t1 = t2 (65)

Note that while eq : (z1 : Z, z2 : Z)→ Ω we can tuple maps with domain Z and different

ranges. For f : X → Z and g : Y → Z the map

< f(x), g(y) >: (x : X, y : Y )→ (Z,Z) (66)

and so

eq(< f(x), g(y) >) : (x : X, y : Y )→ Ω (67)

is well formed.

The signature of an axiom set will always be the two truth values true and false but

there can be additional maps with type e : One→ Ω. An application axiom set may add

other truth values or axioms which imply additional truth values. The logical operations:

negation, meet, and join may be defined for truth values and have expected properties.

Definition 3.3 (propositional connectives). For p, q : X → Ω

¬p = eq(p, false) (68)

p ∧ q = eq(< p, q >,< true, true >) (69)
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p ∨ q = ¬(p ∧ q) (70)

p⇒ q = eq(p ∧ q, p) (71)

From the axioms introduced so far the truth values have the structure of a Heyting

lattice. One example property is:

Lemma 3.1. For x : Z → X, p, q : X → Ω

(p ∧ q)(x) = true⇒ p(x) = true, q(x) = true (72)

Proof.

(p ∧ q)(x) = p(x) ∧ q(x) = eq(< p(x), q(x) >,< true, true >) = true (73)

< p(x), q(x) >=< true, true > (74)

p(x) = true, q(x) = true. (75)

The converse of the implication is also true, i.e.,

p(x) = true, q(x) = true⇒ (p ∧ q)(x) = true (76)

The logical operations defined for each type enable the expression of pre and post con-

ditions for maps. For p : X → Ω, f : X → Y, q : Y → Ω the formula

p(x) = true⇒ q(f(x)) = true (77)

represents a pre-post condition for the map f where x is an arbitrary map with range

type X.

The relationship between the external equality and the internal equality map enable

a correspondence between truth-valued maps, sometimes called internal formulae and

(external) formulae in the language of an Algos signature. This correspondence will be

used to characterize axiom sets and relate derived statements to model theoretic truth

provided there are no other truth valued maps. Note that an axiom set can add map

constants whose range is Ω. For example, adding a map maybe : One→ Ω results in four

truth value maps as there will be its negation maybenot = ¬(maybe).

3.5. Equalizers and subtypes

Two constructions, equalizers and subtypes, which are equivalent in the presence of

equality occur frequently in applications. The equalizer type construction comes from

the need to define subtypes of a type X where the values of two maps defined on X

agree. The equalizer is a type construction parametrized by two maps. For f, g : X → Y

the expression X{f, g} is a type, called the equalizer of f and g. The type X{f, g} has

an inclusion map inclf,g with inclf,g : X{f, g} :→ X. The characteristic property of the

equalizer is that any map h : Z → X for which f(h) = g(h) factors into the composition of

the inclusion map inclf,g with a map fach,f,g : Z → X{f, g}. The equalizer construction

enables subtypes of types to be defined in terms of “commutative” diagrams between

compositions of maps.
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In an axiom set for the molecule water mentioned in the introduction, the typeWater is

a subtype of an equalizer type Water{oxygen.bond1, hydrogen}. The property specified

by the equalizer says that the composition oxygen.bond1.h = hydrogen.h for any h :

Z →Water. The axiom is:

Axiom 3.4 (Equalizers). For two maps f, g : (x : X)→ Y

inclf,g : X{f, g} → X,

monic(inclf,g),

h : Z → X, f(h) = g(h)⇒
fach,f,gZ → X,h = inclf,g(fach,f,g) (78)

The notation

X{f, g} = {x : X|eq(f(x), g(x)) = true} (79)

is also used for the equalizer. In the subtype the symbol x is an identity map of type

X. Identity maps and more generally projection maps are internal variables. Projection

maps are variables in that they can be substituted for and usual properties hold.

Subtypes are a special case of the equalizer construction. This construction is also called

abstraction and comprehension. The subtype construction is weaker than its set theoretic

counterpart. Limitation to defining subtypes in terms of internal formulae enables the

avoidance of the usual set theoretic paradoxes. In set theory a subtype can be defined

from an external formula. However, one can use internal formulae to define external

formulae (the reflection principle). These external formulae can be used to simplify the

notation for defining subtype.

When the two maps defining the equalizer are an internal formula p : X → Ω and

trueX : X → Ω the notation

X{p} = {x : X|p(x) = true} (80)

is a subtype. For this case the notation for subtypes is simplified to:

inclp : {x : X|p(x) = true)} → X,

fach,p : X → {x : X|p(x) = true)} (81)

The axioms become:

monic(inclp),

p(inclp) = true (82)

p(h) = true⇒ h = fach,p(inclp) (83)

Conversely, subtypes and the equality map can be used to define the equalizer. If f, g :

X → Y then

{x : X|eq(f(x), g(x) = true} = X{f, g}. (84)

The Algos/topos axioms imply that the subtypes of X have the properties of a Heyting

lattice. The proofs of these properties make use of the subtype axiom.
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Definition 3.4. For two subtypes A and B of a type X defined by internal formulae

respectively p : X → Ω and q : X → Ω the binary type predicate A v B is defined as

A v B ≡ q(inclp) = true. (85)

From the subtype property this implies that inclp factors through inclq to yield

inclp = inclq(facinclp,q). (86)

For subtypes A and B of X the following properties hold for the subtype predicate:

Null v A (87)

A v X (88)

A v B,B v A⇒ A = B (89)

A v B,B v C ⇒ A v C (90)

If A = {x : X|p(x) = true} and B = {x : X|q(x) = true} the Subtype algebra

operations are defined

A uB = {x : X|p(x) ∧ q(x) = true} (91)

A tB = {x : X|p(x) ∨ q(x) = true} (92)

¬A = {x : X|¬p(x) = true}. (93)

For example one can show that u is the greatest lower bound.

Lemma 3.2. For A = {x : X|p(x) = true} and B = {x : X|q(x) = true}

A uB v A,A uB v B (94)

M v A,M v B ⇒M v A uB (95)

Proof. To show that A uB v A note that

p(inclp,q) = true (96)

(p ∧ q)(x) = true⇒ p(x) = true (97)

p ∧ q(inclp∧q) = true⇒ p(inclp∧q) = true (98)

To show AuB is the greatest lower bound of A and B assume M = {x : X|r(x) = true}
and

M v A,M v B. (99)

Then

p(inclr) = true, q(inclr) = true⇒ (p ∧ q)(inclr) = true. (100)

One of the Algos predicate symbols is ∈ which has a map and a type argument.

Definition 3.5. For any type X and any map t : Y → X a membership relation is

defined as

t ∈ {x : X|p(t) = true}. (101)
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The logical connectives can also be represented by maps. For example if A v B where A

and B are subtypes of X defined by p, q : X → Ω then

t ∈ A⇒ t ∈ B (102)

then

A v B ⇒ (q ⇒ p)(t) = true. (103)

These results will be improved on significantly by making use of the power type con-

struction.

3.6. Power Type

The power type Pow(X) construction for a type X defines a correspondence between

binary relations, i.e., subtypes of a product type and individuals in the power type and

maps from One to Pow(X). The internal logic quantifiers enable the Description Logic

class constructions ∃P.B and ∀P.B to be defined where P is a subtype of a product type

and B is subtype of a type X. The power type construction is equipped with a constant

maps εY : (Y, Pow(Y ))→ Ω which is an internal form of a membership predicate.

As usual, ε is an abbreviation for the constructor εX whose argument is a type. The

power type construction also has an operator ∗ which provides a correspondence between

a map r : (x : X, y : Y )→ Ω, a non-deterministic map r∗ : X → Pow(Y ). The use of the

notation of {x : X|p(x) = true} for a subtype of X differs from the notation of (Lambek

and Scott 1980) where that notation is used for a member of the powertype. In both

systems there is a one-one correspondence between subtypes of a type and the members

of the power type of the type. The use of the subtype construction is more in keeping

with set theory usage.

The power type axiom corresponds a binary formula r(x : X, y : Y )→ Ω or equivalently

a binary relation subtype {< x, y >: (X,Y )|r(x, y) = true} with a map r∗ : X → Pow(Y )

which is called a non-deterministic map.

Axiom 3.5 (Power Type).

ε : (y : Y, z : Pow(Y ))→ Ω (104)

ε(y, r∗(x)) = true ≡ r(x, y) = true (105)

Note that

h(x, y) = true ≡ y ∈ {y|ε(y, h∗(x)) = true} (106)

The universal quantifier for a map r : (x : X, y : Y )→ Ω is defined as:

∀y.r = eq(true∗, r∗) (107)

and is typed as

∀y.r : X → Ω. (108)

The existential quantifier is defined as

∃y.r = ¬eq(false∗, r∗). (109)
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The quantifiers ∃!y.r and ∃y[k].r can be defined as well. The internal logic is a quantifi-

cation logic. The language uses the Algos types and projection maps for variables. Any

internal formula is the characteristic map whose domain type is the product of the range

types of the variables occurring in map term defining the characteristic map.

Using the quantification maps the existential and universal type constructions can be

defined where R = {< x, y >: (X,Y )|r(x, y) = true}.

∀P.B =

{x : X|∀y. < x, y >∈ P ⇒ y ∈ B} (110)

∃P.B =

{x : X|∃y. < x, y >∈ P ∧ y ∈ B}. (111)

where R is an subtype

R = {< x, y >: (x : X, y : Y )|r(x, y) = true} (112)

The domain and range of R are defined by

Domain(P ) = {x : X|∃y.r(x, y) = true} (113)

Range(R) = {y : Y |∃x.r(x, y) = true} (114)

For a subtype R the relation predicate R :: Relation(A,B) is defined as

R :: Relation(A,B) ≡ Domain(R) = A,Range(R) = B. (115)

Note that each map f : X → Y has an image defined by

Im(f(x : X)) = {y : Y |∃x.eq(y, f(x)) = true} (116)

With the image map orthogonality can be defined for f : X → Y, g : Z → Y as

f ⊥ g ≡ Im(f) u Im(g) = Null. (117)

The preceding definitions of subtype operations in terms of characteristic maps can be

summarized in terms of a theorem.

Theorem 3.1. The subtypes of a type X are closed under the DL operations of Null,

X, u, t, ¬, ∃P.A, and ∀P.A.

The use of the power type enables a correspondence between subtypes and relations

and individuals of the power types. For example if A = {x : X|p(x) = true} and

A v X (118)

the map

p : (One,X)→ X (119)

corresponds to the individual

p
′

= p∗ : One→ Pow(X). (120)

The correspondence of a subtype A of X with an individual A
′

uses the fact that (One,X)
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is isomorphic to X. The predicate v corresponds to a map

v: (Pow(X), Pow(X))→ Ω (121)

defined in terms of the membership predicate. In Algos notation {x : X|p(x) = true} is

used for subtypes whereas in (Lambek and Scott 1980) this notation is used for the cor-

responding element of Pow(X). The Algos notation corresponds closely to the informal

set theory usage the subtype construction.

Note that for a type X with subtypes A and B and P v (A,B) the formula

P v (A,B) (122)

is equivalent to the Description Logic formula

A v ∃P.B (123)

3.7. Monic Classification

The monic classification axiom enables the image of a monic m : Y → X to be char-

acterized as a subtype of the range of the monic and provides an inverse map m−1 :

Im(m) → Y so that the domain of the monic is isomorphic to its image. In engineer-

ing models representing component structure the maps specifying the components of a

type are often monics. In the water model the map from the water type to the oxygen

type which assigns an oxygen atom to each water molecule is a monic. This construction

enables distinguishing between those atoms which are a component of a water molecule

and those which are not a component of a water molecule and ensures that the oxygen

atom of a water molecule is not a part of some other water molecule as well. Graph

theoretically the monic property translates into bi-directional arrows.

A major consequence of the monic axiom with the prior axioms is that a functional re-

lation F :: Relation(A,B) can be replaced by a map f : A→ B. The map determined by

the functional relation is Russell’s description operator. The replacement of a functional

relation can be generalized to allow for the replacement of a relation with multiplicity k

by k maps.

For m : Y → Z,monic(m) let

charm(z : Z) = ∃!y.eq(z,m(y)). (124)

note that this is well-formed as

eq(z,m(y)) : (z : Z, y : Y )→ Ω. (125)

Further

charm(m)(y2 : Y ) = ∃!y.eq(m(y2),m(y)). (126)

However, monic(m) implies ∃!y.eq(m(y2),m(y)) = true and

charm(m) = true. (127)

By the subtype axiom charm(m) = true implies

facm,charm : Y → {x : X|charm(x) = true} (128)



Henson Graves 38

The subtypes of a type X and their inclusion maps are canonical in the sense that for

any monic m : A→ X the map facm,charm : A→ {x : X|charm(x) = true}.
The Monic axiom says that any monic m : Y → X has a characteristic map charm :

X → Ω and has an inverse map m−1 : {x : X|charm(x) = true} → Y which is an

isomorphism. The subtype axiom applied to the characteristic map charm provides both

the subtype and a map facm,charm : Y → {x : X|charm(x) = true}.

Axiom 3.6 (Monics). For m : Y → X, monic(m), p : X → Ω, the type of m−1 is

m−1 : {x : X|charm(x) = true} → Y (129)

The maps satisfy the following equations:

p = charinclp (130)

m−1(facm,charm) = idY (131)

facm,charm(m−1) = id{x:X|charm(x)=true} (132)

3.7.1. Functional relations and maps Description Logic and modelling languages in the

UML family including SysML make use of binary relations (called roles in DL and as-

sociations in UML) within models. The amino acid axiom set only uses maps. In type

and topos theory (Lambek and Scott 1980), and in Algos a functional property defines a

unique map with the same domain and range types as the functional property. As a re-

sult relations with finite multiplicity can always be replaced by maps. To obtain the map

one uses the functional relation to define an existentially quantified characteristic map

where the existentially quantified variable corresponds to the map value for an element

in its domain. In the Algos version of the proof the monic classification axiom enables the

explicit definition for the description map. Bertrand Russell used an axiom to provide a

description operator within his type theory, hence the name description map.

A map which represents the construction of forming a singleton set is defined as:

Definition 3.6. The map sing : Y → Pow(Y ) is defined as

sing = eq∗(x : Y )→ Pow(Y ) (133)

where eq : (x : Y, y : Y )→ Ω.

The singleton map is a monic and is used in the definition of functional relations and the

proof that a functional relation can be replaced by a map.

Lemma 3.3. sing is monic

Proof. Assume f : Z → Y, g : Z → Y, sing(g) = sing(f). Then

f ∈ sing(f)⇒ f ∈ sing(g)⇒ f = g. (134)

Thus sing is monic.

Recall a binary map r : (x : X, y : Y )→ Ω determines a binary relation

R = {< x, y >: (X,Y )|r(x, y) = true}. (135)
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We use the notation R :: Relation(X,Y ) for a relation.

Definition 3.7. A binary formula r : (x : X, y : Y ) → Ω and its relation R are called

Functional if

R = {< x, y >: (x : X, y : Y )|∃!y.eq(∗(x), sing(y)) = true}. (136)

equivalently

∃!y.eq(r∗(x), sing(y)) = trueX . (137)

Lemma 3.4. Functional(r) implies

charsing(r∗)(x : X) = ∃!y.eq(r∗(x, sing(y))) (138)

For any map f : X → Y , the type

|f | = {< x, y >: (X,Y )|eq(y, f(x)) = true} (139)

is called the graph of f . The relation |f | is functional.

Lemma 3.5. Functional(|f |).

Theorem 3.2 (Description Operator). For a functional relation R :: Relation(X,Y )

the map τr is defined by

τr = sing−1(facr∗,sing) : X → Y (140)

and satisfies

r(x, τr(x)) = true. (141)

Proof. The map sing is monic and charsing(P ∗) = true. Thus the Algos subobject

classification axiom provide the factoring map facP∗,sing which satisfies r∗(facr∗,sing) =

true. For r(x : X, y : Y )→ Ω, Functional(r) implies

q(r∗(x)) = ∃!y.eq(r∗(x), sing(y)) = true (142)

By the subclass axiom

r∗ = facr∗,q(inclq) (143)

where

facr∗,q : X → {z : Pow(Y )|∃!y.eq(r∗(x), sing(y)) = true} (144)

From the monic classification

sing−1 : {z : Pow(Y )|∃!y.eq(r∗(x), sing(y)) = true} → Y. (145)

Let

τr = sing−1(facr∗,sing) (146)

and

r(x, τP (x)) = true. (147)
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The correspondence between functional relations and maps is the justification for repre-

senting an association with multiplicity k with k maps.

3.8. Exponential Types and application maps

The exponential type construction provides a type Y X for two types X and Y and

provides a correspondence between a map f : (x : X,w : W ) → Y and a map λx.f :

W → Y X . If f : (x : X,w : W )→ Y then λx.f is a map with type

λx.f : W → Y X (148)

In Algos the “lambda variable” x is a projection map with type

x : (X,W )→ X. (149)

The map constant [ ] written in infix notation, is called apply . The map has type

−[−] : (Y X , X)→ Y (150)

If

f : W → Y X , t : W → X (151)

then

f [t] : W → Y. (152)

This construction enables the representation of maps which can have arguments. This

construction was not used in the amino acid example, but is used in more complex exam-

ples. Applicative maps, i.e., maps with explicit arguments occur frequently in engineer-

ing modelling. Lambda terms are comparable to SysML operations. The corresponding

SysML notation for a map with arguments is f(x : X) : Y in place of f : Y X .

Axiom 3.7. For f : (x : X,w : W )→ Y , t : W → X,

λx.f [t] = f(t, w) = f(x := t) (153)

and

λx.f [x] = f. (154)

It follows that the map λy.y for (y : Y ) is the identity map on Y Y . As noted in the

discussion of products projection maps are variables in the sense that usual substitution

rules hold.

3.9. The Syntactic Topos

The logical soundness for an Algos axiom set is a consequence of the fact that an Al-

gos axiom generates a topos. A topos is defined as a Cartesian closed category (ccc)

with a subobject classifier and a natural numbers type. As noted in (Lambek and Scott

1980) a topos may be characterized as a Cartesian category (products) with the power

type construction and a natural numbers object together with axioms for the language
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constructions. The term language of Algos is closed under the topos map and type con-

structions. The Algos axioms and the topos axioms are similar. However, the Algos axiom

for subtypes is more restrictive than the corresponding topos axiom. An Algos axiom set

A generates a topos, T(A), called the syntactic topos in which any Algos formula deriv-

able from A is true in T(A). The syntactic topos enjoys the property not satisfied by an

arbitrary topos that subtypes are canonical subobjects.

Definition 3.8. For an Algos axiom set A, let T(A) be the term language of A with

the equivalence relation defined below.

The types of T(A) are the same as the types generated by the Algos language. The maps

of T(A) are the equivalence classes of Algos maps defined by the equality predicate. The

equality predicate defines an equivalence relation on the map terms in that for maps

f, g : X → Y with the same typing the equality predicate is reflexive, symmetric, and

transitive, and satisfies substitution rules.

The traditional statement of subobject classification is:

Definition 3.9 (Topos subobject classification).

∀p : A→ Ω, inclp : Kerp → A (155)

(156)

∀m : B → A,monic(m),∃!.charm : B → Ω (157)

p = charinclp (158)

Kercharm ' B. (159)

Note that inclh is a first order function whose argument is a maps p to truth valued

maps and whose value is an inclusion map. Kerh is a function whose argument is a map

and whose value is a type. In Algos notation

Kerh = {x : A|h(x) = true}. (160)

Theorem 3.3. T(A) is a topos and a model of A.

Proof. T(A) is a cartesian category, with equality, and power types. What remains to

be shown is that T(A) satisfies the topos subobject classification axiom. Assume The

Algos subobject axiom. Since inclp is monic and p(inclp) = true

p = charinclp (161)

Since m is monic For a monic m : Y → X, the map m−1(facm,charm) is an isomorphism.

Further, A has canonical subobjects in the sense that an explicit isomorphism is given

between Kercharm and the domain of m.

An interpretation of an axiom set maps the term language of the signature ΣA of the

axiom set into the maps and types of the topos preserving the term constructions. A

model is an interpretation which satisfies the axiom set. Any formula derivable from the
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axiom set is true in any interpretation of the axiom set which satisfied the axioms. The

syntactic topos T(A) is an initial model of A.

3.10. Notes

The theory of 2-amino acids and water generate simple topos theories. Both theories

have few axioms beyond the signature and its typing relations. Both theories contain a

constant Thing. However, the axioms make use of the properties of subtypes of Thing

including the orthogonality relations. Products are used in the construction of models

of the axioms. The image construction is used in connection with the “commutative

diagram” equations. Section 4 abstracts the properties of these axiom sets to verify the

decidability of consistency. In Section 4 properties of structural description models are

abstracted to achieve decidability of consistency results.

Section 5 introduces a more representative class of engineering models. The Algos/topos

language constructions needed to provide axioms for these examples are discussed. A sim-

ple engineering model with behaviour described by both a state machine and physics laws

is used to illustrate the axiomatization approach. The example provides evidence that

the Algos framework can place these more general engineering models in an axiomatic

framework.

4. Structure Descriptions

This Section singles out a restricted class of Algos axioms sets, called Description Axiom

Sets, which are sufficient for the 2-amino acid, water descriptions, and other structural

examples. They are called Description Axiom Sets as their language is a very general

Description language in the sense used in Description Logic (Baader et al. 2007). The

restriction on Algos axiom sets is obtained by introducing a type constant Thing to

the signature of the axiom set and using Algos term constructions restricted to subtype

constructions for Thing, the product (Thing, Thing) and Pow(Thing). Individuals are

maps from One to Thing. The restricted language can be viewed as a language whose

terms are individuals, classes (concepts), relations (roles). Description formulae are Horn

clause formulae in predicates which include the Algos predicates of ∈, v, =, and vari-

ous defined predicates in term constructions using variables for individuals, classes, and

relations and Horn clauses.

This approach to Description Logic has advantages over the traditional presentation of

DLs as terms in the language generated by a grammar where the semantics is obtained

solely in terms of the DL-model theory. The Algos axiomatic semantics restricted to

Description Axiom Sets provides these axioms sets with an axiomatic semantics. The

axiomatic semantics is consistent with the DL-model theoretic semantics, and of course

the Topos semantics. The expressiveness of Descripiton Axiom sets, including the use of

variables which is absent from DLs, is used in the characterization of the models of the

structure examples. The Algos theory generated by a Description Axiom Set is again a

topos and includes, for example, the internal logic. However, the external Horn clause

Description Formulae correspond to a fragment of the internal logic. This correspondence
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can be used to characterize the Description formulae implied by a Description Axiom

set (Subsection 4.1). This approach offers techniques not available in DL, but useful for

describing axiom sets to constrain the possible models. For example, a Description Axiom

Set corresponds to a Logic Program in the sense of a Horn clause in a single sorted first

order logic. This correspondence can be used to obtain decidability results with further

restrictions on the axiom sets.

Alternatively one can present a Description Language as the language generated from

a signature with the three sorts,individual, class, and relation. This Description Lan-

guage has variables which traditional Description Logics do not have. Such a Description

Language is directly embeddable into an Algos theory. The embedding establishes con-

sistency of the language. The fact that functional relations correspond to maps allows

the language to be extended with maps whose domain and range are classes. With the

embedding the Description Language acquires an axiomatic semantics. This will be left

as an exercise.

In this section we again write composition in left-to-right “path” ordering with dots.

We start by restricting Algos axiom sets to those generated from an Algos signature which

has a type constant Thing and where the terms, including variables, in the Horn clause

formulae are restricted to individuals,i.e. maps from One to Thing, Classes, i.e. subtypes

of Thing, relations, i.e. subtypes of a product of two classes, and maps whose domain

and range are classes. From Section 3 classes and relations are closed under the usual

Description Logic class and relation type constructions. Hence we have a Description

Logic with variables.

Subsection 4.2 further restricts Description Axiom Sets to axiom sets called Structure

Diagrams. A Structure Diagram is an abstraction of the amino acid example and other

examples which have component decompositions and connections between components.

In the examples the maps in the signature of the axiom set divide into two classes, part

maps and connection maps. The signature of the axiom set form a graph of class nodes

and map edges for which the part maps provide the tree like structure. As the graph is

part of the signature the conditions for a Structure Diagram can be checked syntactically.

The definition uses three finite types Part, Conn, and Node, for part and connection

maps, and type symbols. The type PartPath is used for the composition of part maps.

The Structure Diagram axioms imply that part paths are finite. Decidability results are

given for Structure Diagrams which include the amino acid axiom set. The restrictions

on Algos axiom sets which ensure decidability of consistency are based on an acyclic

condition for part maps. The connection axioms define map equations each of which can

be represented by a unary predicate. These conditions enables the restricted axiom sets

to be represented as monadic Ackermann formulae which is known to be a decidable class

(Ackermann 1954).

Subsection 4.3 discusses the relationship between Algos Description Axiom sets and

DL generalizations which have been used to represent structures.

4.1. Description Axiom Sets

Definition 4.1. A Description signature is an Algos signature with a constant type
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Thing where the terms satisfy the classification predicates below.

t :: Invividual ≡ t : One→ Thing (162)

C :: Class ≡ C v Thing (163)

P :: Relation(A,B) ≡ A,B v Thing, P v (A,B). (164)

f :: Map(A,B) ≡ A,B v Thing, f : A→ B. (165)

The symbols in the signature are refered to as class, relation, map, and individual sym-

bols. The Description language of a signature consists of Algos terms constructed from

the individual, map, class, and relation symbols in the signature, with standard DL class

and role constructions. From Section 2 the type terms generated from a collection of class

symbols is closed under the Description Logic class constructions, including not only the

logical operations, but the existential and universal class constructions.

Description Axiom Sets are characterized in terms of their corresponding internal truth

valued maps. Recall, for example, that a subtype A of Thing corresponds to a map

charA : Thing → Ω. This correspondence enables the characterization of the theory

generated by a Description Axiom Set in terms of the internal logic. By using the power

type construction even the logical operators in a Description Axiom Set correspond to

internal truth valued maps. This characterization in terms of the internal logic enables

a correspondence between the Horn Clause Description Axioms in the individual, class,

and relation variables and a set of first order single sorted Horn Clauses. These formulae

can be though of as the Logic Program Determined by the Description Axiom Set. Any

description formula is equivalent to an internal formula defined on the product type

of classes and the power type of Thing. This characterization enables the truth of a

Description Formulae to be equivalent to the truth of an internal formulae.

With the Description Axiom Set restrictions the axiom sets can be viewed as belong-

ing to a language generated from a signature with three sorts, individuals, classes, and

relations, with constant symbols for Thing. As the classes are subtypes of a type con-

stant Thing the membership predicate t ∈ A is defined for individuals and classes. The

Description axiom sets are constructed from atomic formulae defined using predicates for

membership, inclusion, equality, and well as auxiliary predicates for relation properties

such as being functional. The Algos model theoretic semantics simplifies to the DL model

theoretic semantics in that all of the language constructions are interpreted with respect

to a domain ∆ which interprets Thing. The resulting Description Logic is more general

than are traditional Description Languages.

Definition 4.2. A Description Formula is a Horn clause in individual, class, relation, and

map variables and with predicates for ∈,=,v, and function, and function symbols for

Domain and Range. The Horn clauses may contain predicates in addition to the Algos

primitive predicates. A Description Axiom Set is a collection of Description formulae.

The theory generated by a Description axiom set is the Algos theory generated by the

Description formulae and the Algos axioms.

The Horn clause variables are written in boldface:

t :: Individual (166)
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C :: Class (167)

P :: Relation(A,B) (168)

f :: Map(A,B) (169)

The Algos theory of a Description Axiom Set contains the characteristic maps and in-

clusion maps for classes and relations as the symbols are Algos subtypes and the terms

they generate are subtypes as well. As an Algos Axiom Set the predicates such as a

relation being functional and a map being monic not only apply, but are expressible as

Description formulae. A relation P is functional if

< x, y1 >∈ P,< x, y2 >∈ P ⇒ y1 = y2. (170)

A map f :: Map(A,B) is monic if

x1 :: Thing, x2 :: Thing, x1.f = x2.f ⇒ x1 = x2. (171)

Any functional relation in an Algos Axiom Set determines a description operator which

is a map with the same domain and range as the relation. More generally relations with

finite multiplicity k can be replaced by k description operators. As a result we can extend

Description Axioms sets which have functional relations with maps.

The first result is that a Description formula is equivalent to the equality of an internal

formula with true. The application predicates can be eliminated to produce Horn clauses

that use only Algos predicates. As a result a formula ψ is derivable for the axioms if its

characteristic map ψch is equal to true in the theory generated by the axioms.

Lemma 4.1. Any description predicate is equivalent to the truth of an internal formula

whose domain is the Cartesian product of the types which correspond to the classification

variables.

Proof. The individual, class, and relation variables whose atomic formulae use the

Algos predicate symbols =, ∈, v are equivalent to the truth of a characteristic map

which uses the internal maps, eq,ε, and v. The classification variables correspond to

projection maps. The correspondence is defined by:

t1 = t2 ≡
eq(t1 : Thing, t2 : Thing) = true (172)

x ∈ A ≡
ε : (x : Thing,A : Pow(Thing))

= true (173)

A v B ≡
v: (A : Pow(Thing),

B : Pow(Thing))

= true (174)

To represent variables for maps one uses the exponential type BA and variables whose
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range is an exponential type. To simplify the presentation exponentials are not intro-

duced. However, maps can be replaced by their graphs which are relations. A map

f : A → B is replaced by its graph |f | :: Relation(A,B). In the amino acid example

a relation hasPart :: Relation(R, H) was introduced. This is replaced by

R v ∃hasPart.H (175)

corresponds to the characteristic map

R v ∃hasPart.H : (R : Pow(Thing))→ Ω. (176)

To prove the following theory one notes that the external logical operators for conjunc-

tion, implication, and negation corresponds to internal logical operators.

Theorem 4.1. A Horn clause formula ψ(x1, . . . , xn) where each xi is typed by a clas-

sification predicate defines a characteristic map ψch : (x1 : X1, . . . , xn : Xn) → Ω for

which

ψ(x1, . . . , xn) ≡
ψch : (x1 : X1, . . . , xn : Xn) = true (177)

using the correspondence between external formulae and truth-valued maps.

Proof. An external ψ(x1, . . . , xn) decomposes into an implication that is a conjunction

of literals whose consequent is a single literal. While not all of the variables in ψ occur in

the component formulae, for simplicity we write the component formulae as containing

all of the variables. Thus, for any two atoms ψ1(x1, . . . , xn) and ψ1(x1, . . . , xn) the

conjunction

ψ1(x1, . . . , xn) u ψ2(x1, . . . , xn) =

(ψ1 u ψ2)(x1, . . . , xn) (178)

and so

ψ = (ψ1 u ψ2)(x1, . . . , xn) (179)

corresponds to

ψch(ψch1 u ψch2) : (x1 : X1, . . . , xn : Xn)→ Ω (180)

The other cases are similar.

Any Description formula for a Description signature is equivalent to the equality of an

internal formula with true in the Algos theory of the axiom set.

Theorem 4.2. If a Description formula is derivable from a Description Axiom Set then

its internal counterpart is equal true.

4.1.1. Model Theory for Description Axiom Sets Since a Description Axiom Set is an Al-

gos axiom set topos model theory is defined for Description Axiom Sets. The restrictions
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on Description Axiom Sets imply that the model theory can be restricted to interpreta-

tions with a domain ∆ which interprets Thing. The language constructions are confined

to the type Thing, the product (Thing, Thing) and the power type Pow(Thing).

As a result equality preserving interpretations preserve derivability. An interpretation

is a domain ∆ and mapping of the class and relation symbols of the signature to subsets

and sub-relations of ∆. A structure is an axiom set, and an interpretation of the axiom

set in a domain ∆. The domain of a structure may be, but doesn’t have to be a set. In

general Algos model theory is defined with respect to a category of toposes. The Algos

constructor functions and predicates map to class and relation operations. A structure

models an axiom set if all of the formulae in the axiom set are satisfied in the structure

and the mapping preserves logical equality. As the formulae in the theory of an axioms

set are equivalent to equations they are true in a structure which models the axiom set.

Theorem 4.3. If a structure models a Description axiom set then any description for-

mula in the theory of the axiom set is true in the structure.

4.1.2. Logic Program for a Description Axiom Set Description Logics are recognized as

being equivalent to fragments of a single sorted first order logic, where classes correspond

to unary predictes and relation correspond to binary predicates. For Algos Description

Axiom Sets an explicit correspondence is defined as follows. We use the same notation

for the unary or binary predicate defined by a subtype. For x, y :: Thing, A,B :: Class,

and P :: Relation(A,B) the membership predicate ∈ is defined as:

A(x) ≡ x ∈ A (181)

P (x, y) ≡< x, y >∈ P (182)

Lemma 4.2. The correspondence preserves the logical operations:

A(x) ∧A(y) ≡ x ∈ A uB (183)

A(x) ∨A(y) ≡ x ∈ A tB (184)

∀y.P (x, y)⇒ B(y) ≡ x ∈ ∀P.B (185)

∃y.P (x, y) ∧B(y) ≡ x ∈ ∃P.B (186)

¬A(x) ≡ ¬A (187)

The correspondence can be extended to maps by introducing Skolem functions for the

maps. This correspondence will be used in the next section where Description Axiom

Sets are further restricted to model the properties of structural descriptions such as the

2-amino acid class.

4.2. Structure Diagrams

The axioms below for a Structure Diagram abstract the part and connection properties

of the 2-amino acid and other examples.

Definition 4.3. A Description Axiom Set is a Structure Diagram whose signature con-

tains a set of class symbols called nodes, a class symbol Start, the map symbols contains
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two finite disjoint subsets Part and Conn. Each class which is the domain or range of a

part map symbol is a node. A part path is a finite composition p = p1 . . . pn where pi are

part maps. A part path p = p1 . . . pn is anti-cyclic if Domain(pi) 6= Range(pj) for any

i, j. The notation p :: Part, p :: PartPath, r :: Conn and A :: Node are used to indicate

that a map is in one of these sets. The axioms are:

A :: Node⇒ A v Thing (188)

p :: Part⇒Monic(p) (189)

p :: Part⇒ Range(p) 6= Start (190)

p :: Part,Range(p) 6= S ⇒ S = Start (191)

p :: PartPath⇒ Anti− cyclic(p) (192)

p, q :: PartPath, p 6= q,⇒ p ⊥ q (193)

Each part and connection map is monic. Each path connection r is of the form r :

Im(p)→ Im(q) where p and q are part paths.

r.p = q. (194)

The first two axioms say that Start satisfies the start property that it has no part maps

with it as range and the second axiom says that Start is the only node with that property.

These conditions can be verified for an axiom set as one can show that only a finite

number of maps have to be checked. This pattern is sufficient to establish decidability

of consistency and if the axiom set is consistent to construct a minimal model and show

that all minimal models are structurally isomorphic. The Herbrand construction can be

used to construct models.

For a Structure Diagram one can construct the corresponding BDD and IBD graphs.

Start is a root for the BDD. In the BDD if the nodes are replaced by the image types of

the part maps then the BDD is a tree. The BDD consists of the nodes in the signature

with the part arrows as edges. The full Structure Diagram is a directed graph is not a

tree as the atomic nodes may occur as ranges of multiple part arrows. The IBD consists

of the images of the part paths together with the part paths and connection maps.

Lemma 4.3. The amino acid axiom set is a Structure Diagram.

Proof. The amino acid axiom set has a Description signature. AminoAcid is a start

symbol. All of the arrows are monics. The anti-cyclic condition is satisfied. The part

arrow orthogonality condition is taken as an axiom, and all of the connection arrows

have the prescribed form.

Lemma 4.4. For a Structure Diagram each class node is reachable by a unique part

path and the number of part paths is finite.

Proof. From the anticyclic condition all of the domain and range nodes occurring in

the arrows of a part path are distinct. Hence any part path has finite length.The length of

a part path is bounded by the number of nodes of the graph. For the unique reachability

of each node by a part path, note that if p and q are part paths with p = pn, . . . , p1 and
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q = qm, . . . , q1 and they terminate at the same node then Im(p) = Im(q). Thus, it is not

the case that p ⊥ q. This implies p = q provided Im(p) has members.

When axiom sets are restricted to be Structure Diagrams they can be mapped into

the class of monadic Ackermann formulae. Each formulae is not only a Horn clause but

has a single universally quantified variable. For each map f : A → B in the signature

a first order Skolem function is introduced. The same notation is used for the map and

the Skolem function. Thus for each monic f the Skolem function f−1 is introduced. The

correspondence also satisfies:

Lemma 4.5. Characterization of Structure Diagrams in terms of monadic Horn Clauses.

P :: Relation(A,B), < x, y > inP ⇒ x ∈ A, y ∈ B (195)

f :: Map(A,B) 7→ A(x)⇒ B(x.f) (196)

f.p = q 7→ Eqf,p,q(x) (197)

A ⊥ B 7→ A(x) ∧B(x) = false (198)

p ⊥ q 7→ x.p 6= x.q (199)

Proof. The proof follows from the definition of the predicates and the fact that there

are only a finite number of part paths and a finite number of connection equations. In

each of these cases a binary predicate is replaced by a finite number of unary predicates.

Theorem 4.4. For a Structure Diagram its Logic Program is equivalent to monadic

Ackermann formulae. Thus, the consistency of a Structure Diagram is decidable.

Proof. The decidability follows from the equivalence with monadic Ackermann formu-

lae.

For a Structure Diagram one can construct its term model.

Definition 4.4. For a structure diagram G the directed graph G[s] is defined by ad-

joining an individual s with s : Start. The nodes are the type {pi} where p0 = s, and

the pi are the part paths. The edges are the ordered pairs < f.pi, pj > for each arrow f

whose domain is the range of {pi} and whose range is the domain of pj .

A realization of a Structure Diagram is one or more structures which satisfy the axioms.

A realization can be constructed which satisfies the axioms by adjoining an individual s

with am ∈ Start. By composing a map f : A→ B with individual a : A one obtains an

individual a.f in B.

Theorem 4.5. For a Structure Diagram G then G[s] is a minimal model.

Proof. For each node A in G there is a unique part path pA with pA : Start→ A. The

correspondence defined by:

Start 7→ s (200)

A 7→ pA (201)
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p : A→ B 7→< s.pA, s.pA.p > (202)

r : D → E 7→< s.pD.r, s.pE > (203)

is a structure which models G. If (I,∆) is a structure which models G then for a ∈ StartI
the correspondence defined by mapping s to a defines an inclusion of G[s] into GI [a].

The 2-amino acid axiom set is a Structure Description with Start = AminoAcid. A

realization of the 2-amino acid axiom set is obtained by adding an individual a which

is a member of the class AminoAcid representing the class of amino acids and iterating

the map compositions one obtains the graph whose nodes are

N = {am, p1.am, p2.am, p2.am,
q2.p2.am, q3.p2.am,

p3.am, r1.p3.am,

r2.p3.am, r3.p3.am, r4.p3.am,

p4.am, p5.am} (204)

and whose edges are the part edges in the BDD and the connections between the part

components in the IBD is a realization of the amino acid axiom set. The nodes are

distinct. The connection terms do not add any new nodes.

Theorem 4.6. In a structure (I,∆) which models a Structure Diagram an element of

StartI generates a directed graph which is isomorphic as a graph to the canonical graph

of the term model.

Proof. Using the notation that pA is the unique part path from Start to a node A for

any two distinct elements a1, a2 in Start one has a1.pA 6= a2.pA. This implies the two

realizations are disjoint.

4.2.1. Generalizations of Structure Diagrams The 2-amino acid axiom set is a schema as

it contains the side chain condition. For any ground terms that unify with the condition

R v ∃hasPart(R, H) (205)

one simply substitutes the ground terms and replace hasPart with a part map. The

result will satisfy the Structure Description property. A 2-amino acid description is a

set of ground terms which unify with the axiom set. The hasPart relation is replaced

with a map. While the axioms involve class and part map variables the only language

constructions are map compositions which are finite.

An axiom set may contain a Structure Diagram and have additional axioms for which

consistency is still decidable. For example, the axioms may contain “propagation axioms”

which can be used for fault detection and disease diagnosis.

4.3. Relationship with other DL formalisms

Both the first order logic (Krdzavac et al.2008) and the Description Logic formalisms

(Baader et al. 2007) have been candidate formalisms for describing classes of structures
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such as molecules. In Description Logic one uses classes H2O, Oxygen and Hydrogen

for types of molecules, and binary relations such as hasPart to identify the kind of

relation. In first order logic one uses unary predicates as Oxygen(x) to identify the kind

of components and binary predicates hasPart(x, y) to identify the kind of relation. For

example the class H2O has the property that

Range(hasPart) uH2O = Null (206)

which says that the intersection of hasPart with H2O is empty which is expressible in

DL. Equivalently in first order logic one can say that

H2O(x)⇒ hasPart(y, x) = false (207)

Both of these formalism have difficulty expressing conditions which imply any water

molecule only has three component atoms, that the oxygen atom of a water molecule is

bonded to the hydrogen atom which is the component of that water molecule, and that

the atoms are not connected to any other molecules. Extensions of DL such as DGDL

(Motik et al. 2008) and DGLP (Magka et al. 2012 ) have been introduced to address these

issues. However, many properties of interest in constraining realizations are higher order

with respect to these formalism and can not be directly expressed in these formalisms.

For example, formula such as

Root(X) ≡ Range(hasPart) uX = Null (208)

is higher order in Description Logic based formalisms as X is a class variable.

As noted in (Magka et al. 2012 ) DLs cannot be used to axiomatize a molecular struc-

ture such as cyclobutane which always has a ring of carbon atoms. At least one tree

shaped structure will be consistent with the axioms. This limitation of DLs to represent

cycles has been remedied (partially) by the extension of DLs with Description Graphs

and rules (DGDL) (Motik et al. 2008). A Description Graph represents structures by

means of a directed labelled graph. Figure 1 represents a description graph. The De-

scription Graph part of a DGDL ontology is separated from the DL axiom set which

complicates understanding and reasoning. DGDL axiom sets can not preclude additional

components such as an oxygen atom in the case of cyclobutane. As a result, reasoning

cannot give a positive answer to the question of whether cyclobutane is a hydrocarbon.

A logic programming formalism (Magka et al. 2012 ) called Description Graph Logic

Programs (DGLPs) has been suggested as an approach to remedy deficiencies of DGDL.

However, graph theoretic properties when expressed in a single sorted Logic Program such

as DGLP are higher order which makes constraining axioms to produce realizations with

specific graphical properties difficult. DGLP does not contain an explicit representation of

the graph structures used in the descriptions and does not permit classification of graph

theoretic structures. DGLP places the burden of modelling on identifying the functions

which represent the graph structure and on producing the collection of graph orderings.

Algos by using a multi-sorted Logic Programming framework one gets the benefit of

the Description Language constructions, as well as, having an additional expressiveness of

variables and term constructions. Thus, avoiding problems inherent in using Description

Logic and its extensions for structural modelling (Dumontier 2007; Hastings et al. 2010 ;
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Graves and Horrocks 2008). If one prefers to only use the concept and role constructions

from DL without maps and other Algos constructions, then a grammar may be defined

for a DL with the additions found in the Algos Description language with the Algos

predicates such as x ∈ A and < x, y >∈ P and have a DL with extended language

constructions, variables, and an axiomatic semantics, as well as the standard model

theoretic semantics.

5. Composite Structures

This section outlines the Algos axiomatic approach to models which specify component

structure and behaviour. Behaviour is change with respect to space, time, or change

with respect the states of a state machine. The Algos approach enables the integration

of behaviour with structural decomposition. An aircraft system, for example, consists of

components for the air frame, propulsion, navigation, and hundreds of thousands of other

subsystems and parts. Many of these components have sensors and effectors. The sensors

perceive change and the effectors respond to perceived change. The behaviour of an

aircraft system is a composite of the behaviour of individual components, the interactions

with its operating environment, and the physical laws which effect the results of actions

performed by system components. Engineering models which have this kind of structure

are sometimes called composite structure models. The Algos axiom sets which represent

them are called Composite Structure Models.

The first subsection describes the Algos language constructions used in representing

composite structures. The second subsection gives background on the engineering mod-

elling perspective. The third subsection presents an exampleof a vehicle in a test environ-

ment. The example is first presented graphically and is then embedded in an Algos axiom

set presented in linear syntax. The fourth subsection discusses inference and simulation

in the context of Composite Structure Models, followed by notes on this topic.

Design analysis often consists of determining whether a system can achieve an outcome

under specified preconditions. For example, one may want to determine if an aircraft

system consisting of the aircraft and its crew can recognize and identify an object under

preconditions that include distance to the object, atmosphere, flight motion, and many

other variables. Whether the aircraft system can achieve a successful outcome depends on

system’s subsystem behaviour, as it is influenced by the environment. Analysis generally

involves simulation to rule out non-feasibility and suggest what might be feasible. For

Composite Structure Models a simulation is, as we shall see, a valid interpretation of the

axiom set. Determination of whether the system being modelled can meet an objective

generally involves inference. In many cases this inference depends primarily on whether,

for example the aircraft can maintain a sufficiently steady state for a long enough period

of time to make an identification, or whether its sensors can recognize an obstacle in the

flight path in time for the aircraft to avoid it. In many of these situations the behaviour

of the subsystems is well known. The reasoning primarily concerns composition of actions

effected by subsystem operations with time duration.

The challenges from the axiomatic perspective are: how can change be represented, how

are actions that cause change initiated, and how are associative or causal relationships
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involving change propagated. The Algos axioms for an engineering model with behaviour

use a terminal object, One, to specify the state structure. Maps change with respect to

the state structure. For example if the change is with respect to time then One has the

structure of a time type, such as N for natural number time or R for real number time. If

change is with respect to state machine states, then One has the structure of a product

of finite type, which represents the machine states, with N . The Algos axiom sets for a

model with behaviour use first order state variables in Horn clauses. The use of these

state variables is analogous to the use of variables for classes and relations for structure

descriptions. The specific form of state variables enables general map variables in Algos

formulae to be first order theories with signatures restricted to the types of the state

variables.

SysML and other modelling languages have good syntax for behaviour constructions

such as state machines. The graphic syntax offers a practical way to develop large scale

complex models with hierarchies of components. Some of the components may have be-

haviour constructions such as a state machine. While the informal semantics of these

languages are well developed they do not in general have a formal semantics. For some

classes of engineering models the model development tools can compile a model to ex-

ecutable code which can be integrated with physics and other code to produce high

precision simulations. There is interest in providing a formal semantics for engineering

modelling languages as evidenced by a request for a proposal for a formal executable

semantics from the Object Management Group (OMG) Standards organization.

Algos language constructions for behaviour modelling are similar to SysML. SysML

can be used for axiom development in the Algos context. The informal notions of model

executability can be made precise in terms of interpretations of the axiom sets. The

Algos approach makes the connection between execution semantics and the model theory

for the axioms. A valid interpretation of an axiom set with state change behaviour is

the interpretation of a theory which contains state space variables. The interpretation

specifies functions of these variables which provide assignments for all possible values of

the variables. The model theory is an execution semantics.

The examples of composite structure in this section, which include a vehicle operating

in an environment, use the full power of the Algos language. Behavioural modelling in

Algos use axioms which imply that the terminal type has a state space structure. The

concepts of part components used for the molecular models are extended to include other

kinds of components typically found in composite structure models. The components of

an instance of a type X, in addition to parts, include attributes which are maps from X

to a data type, operations which have arguments, and state machines’ which effect state

change. Both the state and operation constructions use the exponential type construction

and lambda-abstraction, as well as case statements which are defined in terms of the sum

type construction. The sum type construction is defined within Algos. The representation

given ensures that a model has a unique part decomposition and that attributes and

operations can be uniquely associated with a part component of the model. To achieve

this uniqueness extensive use of monic maps is made. The result of embedding composite

structure models within a logic-based framework is the integration of logical inference

with engineering modelling analysis including simulation.
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5.1. Algos Representation of behaviour

This subsection outlines constructions definable in Algos which will be used to represent

composite structure models. Composition will be written in left-to-right order. For ex-

ample, a map f : X → Y and a : Z → X then the composition a.f is the composition

of f with a. For an individual a :: X the component value a.f will be an individual of

type Y . Algos following topos theory provides an algebraic way to represent behaviour

which implies that the terminal type One has non-trivial substructure. Axioms which

describe the behaviour of a model are, as all application axiom sets, Horn clauses. These

axiom sets contain first order variables for states. These map variables are restricted to

projection maps whose range type is the state space type. The valid interpretations of

the axiom set describe all possible valid paths indexed by time in the state space of the

variables.

5.1.1. Subobjects of One The basis for representing behaviour is extending an axiom set

so that the terminal type, One contains subobjects other than Null which is a subtype

of any type and One which is a subobject of itself. The structure of One is used to

define map change. Subobjects of One are closed under intuitionistic operations as is the

case for any type. A subobject U v One has an inclusion map inclU : U → One. Any

individual a :: X, i.e., a : One → X can be composed with the inclusion map to obtain

a map U.a : U → X which localizes or restricts a to U . For an individual f :: X to be

restricted the notation

f |U = inclU .f (209)

is used for the composition of f with the inclusion map.

There are several ways add subobjects to One. One way is to add internal truth valued

maps of the form u : One→ Ω. For each truth valued map u the subtype

U = {x : One|x.u = true} (210)

and the inclusion map inclU : U → One are included in the Algos Theory. Another way

is to add a type axiom such as One = {on, off}. In this case the Algos theory has the

singleton types, {on} and {off} as subtypes of One together with their inclusion maps.

For an individual a :: X and t :: {on, off} we use the notation

a@t = a|{t} = incl{t}.a (211)

The type {on, off} is the sum type which is written as sum(inclon : {on}, incloff{off}).
The maps inclusion inclon and incloff are called tags. The map construction correspond-

ing to the sum type is the case statement. For f : {on} → X and g : {off} → X the

case statement case(inclon : f, incloff : g) has type

case(inclon : f, incloff : g)sum(inclon : f, incloff : g) : {on, off} → X. (212)

As an Algos theory contains the natural number type N satisfying the Lawvere axioms

it contains the map

0 : One→ N (213)
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and the k-fold successor maps

k : One→ N (214)

For the situation where One = {on, off}

k = case(inclon : k, incloff : k) (215)

there are other individuals ofN . The case statement construction can be used to construct

other maps. For example the map

f = case(inclon : k, incloff : 0) (216)

which is the successor map k on {on} and 0 on {off}. Note that for s :: {on, off} the

map f@s defines a sequence of on-off states. If this map is included within an Algos

axiom set we use the notation s for the first order variable and f@ for the first order

function. The use of finite types enables us to define state machines as maps. These state

machines can be combined with space-time change.

5.1.2. Linear discrete time A special case of non-trivial One is linear discrete time. For

linear discrete time we assume

One = N (217)

For each i ∈ N , {i} is a singleton type with inclusion map inci : {i} → One and

characteristic map chari : One→ Ω. More generally we have characteristic maps defined

for intervals, e.g., char[i,...,j] : {i, . . . , j} → Ω. For an individual f : One→ X we use the

notation f@i for incli.f . Recall we use the notation k+ 1 for the successor function. Let

count@0 = 0 (218)

count@(k + 1) = count@k + 1 (219)

Thus count is the successor function suc : One → N . We can define a counter which

counts to some k ∈ N as a map k − count : One→ N by

n < k ⇒ k − count@n = n (220)

n > k ⇒ k − count@n = 0 (221)

We assume that corresponding to each positive integer k there is a map k : One→ One

which is constant, i.e., for any i and j

k@i = k@j. (222)

For the natural number time the i :: N can be corresponded with a first order variable

which we write as i. The maps count and k − count correspond to first order functions

of i.

More generally, a map f@(i) corresponds to a sequence of individuals with the range

type of f . A valid interpretation of an Algos axiom set which contains state variables is

a tuple of individuals in a topos which contains a domain for the state variable types

and whose Ω is {true, false}. For simplicity we can assume that the model is within set

theory. The first order interpretation for a model with behaviour need only represent the
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maps which are not constant as first order functions. By leaving the time variable free

we can talk about the effects of external actions which determine the execution paths.

5.1.3. Action In axiom sets which embed models with behaviour, maps which change

with respect to time are represented as sequences in the state space. Of these maps some

represent the effects of actions external to the model and other represent the response

of the model to change. The operation consists of evaluating map change with respect

to time and taking action to further modify attribute values for state variables. Action

within a model is triggered by a change in a map value. The model response is to change

other map values.

A simple case of a model which changes as a response to its external environment is a

switch, which when turned on increments, and when turned off resets the counter to 0.

Let

M = (x : N, switch : {on, off}) (223)

if switch@k = on then x@k + 1 := count@k + 1 (224)

if switch@k = off then x@k + 1 := 0 (225)

Note that M represents a system with a projection x whose value type is N and a

projection switch whose value type is {on, off}. The two formulae which define the

behaviour of the system are Horn clauses in the single integer variable k. It increments

when the system is “on” and returns to 0 when the system is “off”. Note that the

equations above are Horn clauses and so are Algos axioms. The valid interpretations are

described by the sequence of settings for switch.

When model to be axiomatized is not necessarily a product type the construction

above can be modified to represent the states as projection maps. For example, if a type

M is to have two “attributes” x : N and switch : {on, off} the product

(s : M,x : N, switch : {on, off}) (226)

represents the two attributes as projection maps. The symbols s, x, and switch are

all projection maps on the product. The product contains M as a factor. The tuple

< s, s.x, s.switch > has type

< s, s.x, s.switch >: M → (s : M,x : N, switch : {on, off}). (227)

5.1.4. State machines Perhaps the most simple state machine is one which turns on when

it is off and turns off when it is on. This machine can be defined by

switch(x : {on, off})→ {on, off} (228)

x.switch = case(inclon : x := off, incloff : x := on) (229)

The run map of this machine is the map

switch∗ = do switch forever (230)

Only the initial state of the machine matters.

The Algos axiom sets considered here make the restriction on the engineering models
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and their axiom sets that the mutable maps are projection maps onto data types such

as N and {on, off} in the model M above. The internal actions generalize the switch

behaviour to that of state machines. To represent the complexity of composite structure

models the approach of using first order variables for time has to be integrated with struc-

tural part decomposition, as well as the fact that the functions representing behaviour

interact in random ways. Natural number time can be generalized to real number time.

5.2. An Engineering Modelling Perspective

This subsection outlines modelling language constructions semantics which are used by

engineers to design and analyse complex systems such as automobilies and aircraft.

SysML implements these language constructions. These modelling constructions have

proven sufficiently precise for engineering analysis with their informal semantics; they

also lend themselves to the kind of axiomatic and model theoretic semantics possible in

Algos. This subsection outlines these constructions and gives a well-defined axiomatic

semantics.

Analysis and design of a system such as an automobile with its operating behaviour

requires modelling the operating environment of the system of interest. Often the systems

of interest are described as reactive systems in the sense that they react to changes in

their environment. Common engineering modelling practice for the design or analysis

of reactive systems is to model the system of interest in the context of a model of its

operating environment. The composite of the two models is used to analyse and reason

about the system behaviour. These systems have sensors which respond to perceived

change and effectors which respond to perceived change. Change originating outside the

system results from the effect of physical laws and from actions taken by external agents

in the environment.

For an engineering model of a reactive system the model axiom set will contain variables

whose values change during operation. These variables are called state variables. A valid

interpretation of the model maps the state variables to a product of the types of the

variables. The behaviour variance of the system is represented by paths in the state

space as it evolves in time. The physical laws transform the state space responding to

actions of the system. Since the variables in general range over a space-time region the

interpretations contain functions defined for the space-time.

As modelling is becoming state of the practice in engineering design and analysis, the

model becomes the authoritative information source, not only for the design, but for

analysis and verification of the system’s capabilities. As a result it is becoming evident

that the physical laws which effect behaviour have to become part of the combined system

and environment model. The inclusion of physical laws is also necessary for the simu-

lations to have validity. While multiple behavioural constructions are used in computer

science and modelling languages only two kinds of behavior are considered here, state

machines which represent the behavior of human or machine actors and physical laws

which transform the state space.
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5.2.1. Unique Decompositions From both the viewpoint of reasoning about composite

structures and constructing valid interpretations the embedding of a model into a logic-

based framework has as requirements that any instance of a composite structure has a

unique component decomposition. The kinds of components encountered in composite

structure models include, but are more general than the part maps of the molecular exam-

ples. The components of an instance of a type X, in addition to parts, include attributes,

operations which have arguments, and “state machines” which effect state change. The

individual components that represent data values and operations are uniquely associated

with an individual component which owns the operation or data storage. Each of the

different kind of components are used for a specific kind of model expressiveness. As

a consequence each kind of component is embedded in a form specific to the kind of

component.

5.2.2. Attributes One of the simplifications made is to restrict the mutable maps to

projection maps which correspond to state variables in the axioms. A system component

a of type X retains its identify and its change is measured by the change of maps whose

domain is X and whose range type is a projection map onto a data type. Such a map

is called an attribute of a. The attribute is then well-formed for each individual of the

type. This restriction enables attributes to be represented as projection maps in Algos

and corresponded to state variables in the Horn clause axioms for the model. A model

explicitly declares which attributes are mutable. Thus it is the modeler’s responsibility to

identify mutable attributes. For example a model of an aircraft for flight test might make

the complete outer surface to be mutable. Mutable maps are maps whose values change

with respect to time. Interaction between systems takes place through the mediation of

causal relationships between what we call mutable attributes. These are attributes of

an individual which are subject to change either from internal or external causes. The

mutability is represented by the change of an object with respect to time or space-time.

5.2.3. State machines This form of behaviour construction used in Composite Structure

Models is described by state machines. This construction is sufficient to illustrate how

behaviour works within the Algos formalism. While in general hierarchical and concurrent

state machines are needed to represent Composite Structure Models only non-hierarchical

machines are considered here. A state machine is a potentially reusable individual as is an

operation. This requires that a state machine has to be identified with the part component

to which it belongs. The state machines in the examples are restricted to access (read

and write) attributes of the type which the state machine is a component.

5.2.4. Physical Laws An engineering modelling technique, well supported by language

constructions in SysML, uses equations to model causal or associative change between

attributes that result from the physical laws used by the model. The causal relationships

are expressed by equations whose variables are bound to attributes in systems or their

components. These equations are encapsulated for reuse purposes with variables which

are bound to the attributes for a specific application. Approximations of physical laws are

often used for analysis including inference. It is becoming increasingly clear to modelling
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Fig. 4. Vehicle Test Setup

practitioners that these assumptions need to be part of the model as the analysis is

contingent on these assumptions. The approach of using equations to represent associative

relationships is used in the vehicle example. While the issues of finding equations and

their solvability are at the centre of much engineering analysis these complexities will

not be dealt with here.

5.3. A Vehicle Test System

A Composite Structure Model is illustrated with a model of a vehicle in an operating

environment. For this example a number of simplifying assumptions are made to illustrate

the semantics of the language constructions. After presenting the V ehicleTest model in a

graphical syntax based on SysML we give the corresponding linear syntax. The concepts

such as parts structure introduced for the molecular example will be used here. This

example makes also use of the sum and exponential type constructions. A simple kind of

state machines, represented in Algos, are used to specify behaviour. The state machines

will imply that the terminal type has a time structure. Additional notation is introduced

which is defined within Algos.

The V ehicleTest model illustrated in Figure 4 contains an autonomous vehicle op-

erating in a physical environment. The vehicle has sensors, propulsion. The physical

environment has attributes for terrain, obstacles, and biosphere conditions. For simplic-
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ity we assume that these attributes are immutable. The effects of the vehicle behaviour

are mediated by physical laws governing motion and sensor precision. A vehicle executes

a predetermined plan to traverse waypoints in its environment. If the sensors detect any

anomalies such as obstacles which prevent it from reaching one of its waypoints its plan

provides alternative actions. The behaviour of this vehicle is described by a single state

machine. The state machine changes its internal state and controls its propulsion in re-

sponse to changes in the sensor attributes. The operation of the vehicle can be described

as transitioning between the following states:

1 off
2 startup - turns on sensors and propulsion and initializes the state
3 traverse - computes next waypoint and gives commands to go there
4 hibernate - shuts down waiting for external command

Both its sensors and effectors are mediated by physical laws. The electro-optical laws

degrade sensor precision. The laws of motion for propulsion are mediate the effects of the

biosphere. Physical laws can be used to represent the effects of time delay for a sensor

to detect an object in the environment and relay the result for further processing to set

the heading.

Many engineering examples are an elaboration or refinement of this general pattern.

This template has been used for a number of aircraft design and analysis studies (Graves

and Bijan 2011), as well as, for underwater vehicles, and for design analysis for a robotic

vacuum cleaner.

5.4. Graphical Syntax

The graphical in Figure 4 syntax follows SysML closely. In general, for large models,

multiple diagrams are used. A particular diagram may hide some of the structure in the

interest of intelligibility. However, this model only uses the single diagram. The diagram

in Figure 4 contains the signature of the Algos axiom set. The description and discussion

below is similar to that which would be used to explain the diagram to an engineer. An

informal description of the role and meaning of the components is included. The diagram

is a more efficient way to represent the model for human consumption than is the linear

syntax that will be given for this model.

5.4.1. Component Hierarchy The diagram contains a top level rectangle labelled V ehicle−
Test. The rectangle has three components, labelled veh : V ehicle and op : OpEnv and

a rectangle with rounded corners, labelled phl : PhysicalLaws. These blocks have inte-

rior structure. Interior rectangles of veh : V ehicle are connected to interior rectangles of

phl : PhysicalLaws as are interior rectangles of op : OpEnv. The veh : V ehicle rectan-

gle has two non-empty compartments, components and behavior. The components com-

partment has two rectangles one labeled s : SensorSystem and p : PropulsionSystem.

Each of these components has attributes. The block labelled V ehicle has interior subdivi-

sions which show component structure. The block has compartments labelled Attributes,

Components and behavior. The attribute compartment of sen : SensorSystem has two

attributes, ter : Terrain and loc : Location.
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5.4.2. Vehicle State Machine The vehicle behavior compartment contains the symbol

vehiclecontrol which is the name of the state machine which controls the behaviour of

the vehicle. The compartment also a graphical representation of the state machine from

which we can determine the states and the actions which cause state transition. In the

graphical syntax the vehicle type has a compartment called behavior which contains

the expression vehiclecontrol : V ehicleState as well as a diagram in the lower part.

Within the behavior compartment of V ehicle the name vehiclecontrol references the

state chart in the bottom part of Figure 4. Informally vehiclecontrol reads the location

sensor attribute, calculates the heading for the next waypoint and updates attribute

hcmd, or takes an alternative action if the sensors indicate any issues. The current state

is updated. The behaviour operation can read and write mutable attributes in the context

of an instance of V ehicle. The vehicle control operation does not have access to any other

attributes. It controls behaviour only on the basis of what its sensors can see. What they

see is mediated by their characteristics and the laws of physics.

5.4.3. Operating Environment The rectangle op : OpEnv only contains attributes which

are ter : Terrain, obs : Obstacle, and bio : Biosphere. For this example we may assume

that the attributes op, ter,and bio are immutable. However, in generalizations of this

example that need not be the case. For example when the vehicle is a ship, then the

environment may model a changing sea state. Further, in more complex models the

motion of the vehicle may effect the biosphere. Modelling this aspect requires the physical

laws to model the effects of motion on the biosphere.

5.4.4. Physical Laws The rectangle with rounded corners corresponds to a SysML con-

straint block. A constraint block encapsulates a set of equations in a finite number of

variables. The small rectangles in PhysicalLaws are connected by lines connecting to

attributes in the context of the diagram. The block with rounded corners PhysicalLaws

contains four small rectangles which we call variables. They are labelled e1, e2, e3, e4, e5, e6.

These rectangles are connected by lines to the attributes of respectively ter, loc, and

hcmd which are all attributes of components of V ehicle. Interior to PhysicalLaws are

functional equations of the form f1(e1) = e3 and f2(e2) = e4. The lines represent bind-

ing operations so that when the bindings are made. including the small rectangles in

veh : V ehicle and op : OpEnv connect to small rectangles within phl : PhysicalLaws.

The diagram in Figure 4 contains the signature of the Algos theory to be generated

by the model. This signature contains the type and map symbols in the diagram. The

map symbols include the attribute symbols. The model may contain initial values for

attributes. Some of the attributes may be immutable. The model also contains the equa-

tions which relate the attributes of the different types. The vehicle testing set up is

represented by a type, V ehicleTest as it may have multiple instances. When testing a

device or analysing the behaviour of a system either by physical test or by simulation one

generally constructs multiple instantiations of the type corresponding to the application

domain. Most system analysis and verification is concerned with probabilistic behaviour

as calculated from the collection of realized instances of the experiment.
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5.5. Linear Syntax

The graphical syntax is notable for its use of hierarchical containment structure. The lin-

ear syntax contains equivalent information omitting placement and scale, albeit in a less

visual form as a graphical version can be generated from the linear syntax. The linear syn-

tax does contain additional assumptions needed for constructing the axiom set from the

graphical syntax. These assumptions could be made part of the graphical representation.

In the graphical syntax the rectangles have compartments such as parts,attributes, and

operations. These compartments contain declarations for the particular types of compo-

nents. The intent of the declarations is that any instance of a type such as v : vehicle

has the components declared in the compartments. Some of these compartments have

mutable state. For example, a vehicle might have a temperature gauge which changes in

response to the engine operating conditions. Each of the kinds of compartments will use

specific conventions to provide an association between the value of the component and

the instance of which it is a component.

The linear syntax for a composite structure axiom set which embeds the graphical

syntax follows it closely. However, the typing of the maps that occur in the axiom set

reflect an axiom set requirement that the axioms provide a unique decomposition for

the part maps and enable attributes, operations, and state machines to be uniquely

associated with the component part to which they belong. An equivalent linear syntax

for V ehicleTest starts by introducing notation to correspond to the compartments. While

the conventions for each compartment as defined below are different they all define maps

which are monic. This means that the part components, as well as the other components

defined by the compartments are distinct for each instance of the type V ehicleTest.

5.5.1. Parts Part maps, as occur in the molecular example, occur in the vehicle test

example. Note that V ehicleTest has a components compartment with three compo-

nents, veh : V ehicle, op : OpEnv, and phl : PhysicalLaws. V ehicle, OpEnv, and

PhysicalLaws are types. op : OpEnv, and phl : PhysicalLaws are the image types. The

interior compartments of the three image types are assumed to be interior types of the

three types, V ehicle, OpEnv, and PhysicalLaws. The compartments declare operations

for the three types which are inherited by the three image types. The assumption for

part maps, as well as the other component maps, is that they are monic. This means

that, for example, the parts of vehicle are distinct. Without an explicit assumption, such

as was made in the molecular example, a vehicle may share parts with another vehicle.

The three rectangles in V ehicleTest translate into the three axioms

veh : Part(V ehicleTest, V ehicle) (231)

op : Part(V ehicleTest,OpEnv) (232)

phl : Part(V ehicleTest, PhysicalLaws) (233)

The expression veh : Part(V ehicleTest, V ehicle) is equivalent to

veh : V ehicleTest→ V ehicle, veh :: Part (234)
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Thus the symbol veh is a map with the designated range and domain. As with the

molecular example veh : V ehicle is identified with the image Im(veh). The use of Part

means that the maps designated as parts are assumed to satisfy the part property axioms.

Note that a vehicle test vt has a vehicle part and the vehicle part has a propulsion system.

The part path component maps provide a unique decomposition tree for any individual

vt1 :: V ehicleTest. The part paths for V ehicleTest are

veh, veh.sens, veh.sens, veh.sens, veh.pro, phl, op (235)

For any instance vt1 :: V ehicleTest the composition provides a tree of instances

vt1, vt1.veh, vt1.veh.sens, vt1.veh.pro, vt1.phl, vt1.op (236)

The other components such as attributes will be uniquely identified by the part to which

they belong. The other kinds of components are represented slightly differently.

5.5.2. Attributes Attributes are a kind of component. For a sensor system individual

s1 : SensorSystem the map s1.loc is an individual with s1 :: SensorSystem. s1.loc

represents the location of the sensor individual s1. The value type of loc is a variable of

type Location. Location is assumed to be a 3D vector in some coordinate system. The

value of s1.loc which is a 3D vector which may change during the course of operating the

system that contains s1. Within a model of V ehicleTest in which the values of s1.loc

change we need to be able to track that the 3D vectors are associated with the individual

vt1.veh.sen.loc.

The linear syntax for the attributes of SensorSystem uses the notation

loc : Attriubte(SensorSystem,Location) (237)

ter : Attribute(SensorSystem, Terrain) (238)

The axiomatic description for attributes satisfies the following properties.

— An attribute of an individual is a possibly mutable value of its domain type

— the attribute and attribute value for an individual can be uniquely identified

— operations involving substitution can be composed with attributes.

The substitution properties are achieved when the attribute maps are projection maps.

If SensorSystem = (x1 : Location, x2 : Terrain) we could define the two attributes as

the two projection maps. However, SensorSystem is not necessarily the product. The

uniqueness and substitution objectives can be achieved for SensorSystem using the

product

(s : SensorSystem, loc : Location, ter : Terrain) (239)

The symbols s, loc, and ter are projection maps on the product. The product contains

SensorSystem as a factor. The attribute syntax is equivalent to the following map

< s.s.loc, s.ter >: (s : SensorSystem, s.loc : Location, s.ter : Terrain)→ (240)

(SensorSystem, loc : Location, ter : Terrain) (241)

Note that this single tuple for the two attributes of SensorSystem incorporates all of the

maps of the attribute compartment.
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The map schema (loc := k) is defined for any product which contains loc as a projec-

tion. Thus for an individual s1 :: SensorSystem

< s1, s1.loc, s1.ter > (loc := k) =< s1, k, s.ter > . (242)

Thus for any individual s1 of SensorSystem the triple < s1, s1.loc, s1.ter > uniquely

associated two individual values s1.loc, and s1.ter with the individual s1. As the part

path compositions provide a unique component decomposition of any individual vt1 of

V ehicleTest these part components with their attribute value tuples provides a unique

representation for the attributes that vary. This decomposition is extended to include

the state machines states. The state machine states are also projection maps.

5.6. Operations

A type X may have a compartment called operations. An operation t.f is a component

of X which for an instance of t :: X may have applicative arguments. An operation

component represents a capability which belongs to the instance. Since application terms

are not necessarily unique to the type X, the elements and the operations compartment

in linear syntax is

f1 : Operations(X,Y 1Z1)

..fn : Operations(X,Y nZn). (243)

The f1, . . . , fn are represented as a tuple of maps

< pr1, pr2.f1, . . . prn.fn >: X → (pr1 : X,Y Z , . . . Y Z). (244)

Thus, for an individual a :: X where there is only one operation f the

a. < id, pr1.f >=< a, a.f : Y Z > . (245)

The operations are used by the state machines which bind them to attribute arguments

and may bind the value to an attribute.

5.7. State Machines

This section describes the syntax of the map vehiclecontrol which represents the state

machine. The behaviour of the state machine is described in Section 5.8. Syntactically,

the state machine consists of actions which have attributes and a current state as argu-

ments. The state machine describes for these arguments an update for attributes and a

transition to a new state. The states of the machine are the type V ehiclestate which has

4 individuals: off, startup, traverse,

hibernate which is represented:

V ehiclestate = {off, startup, traverse, hibernate} (246)

In Algos the domain of vehiclecontrol are both the product of V ehicle together with

the types V ehicleState, for is the current state, and the attributes of the subsystems
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SensorSystem and Propulsion. Thus the type of vehiclecontrol is

vehiclecontrol : (v : V ehicle, v.sens.loc : Location, vehs : V ehicleState)

→ (v : V ehicle, hcmd : HeadingCmd, veh : V ehicleState) (247)

Thus for an individual vt1 :: V ehicleTest

vt1.veh.vehiclecontrol. < vt1.veh, vt1.sens.loc, vt1.veh.vehs >

=< vt1.veh.pro.hcmd, vt1.veh.vehs > (248)

when executed effects the state transition.

Syntactically, the commands are represented as modifying attribute values, i.e., as

substituting values for mutable attributes. The change in these attribute values is caused

by external action when a vehicle is placed in an operating environment. The behavior

depends on the sensor values. The digram in the lower part of the figure is a state chart

that describes the engine run operation. It is referenced in the behavior compartment of

V ehicle. The vehicle control will have a number of condition-action statements with a

state transition. For example

vehiclecontrol(loc, ter, vehs) = (hcmd := do nothing, vehs := off) (249)

The engine run operation described by the state chart can also be defined using a case

statement. Conditional statements can be defined in terms of the sum type construction

which is definable within Algos.

runengine = case(

f(loc, ter) = normal do < heading := g(heading), normal >

nearobstacle(loc, ter) = true do < heading := h(heading), normal >

seriousproblem(loc, ter) = true do < heading := stop, hibernate >

) (250)

Several constraints are imposed on the behaviour of this reactive system. All interaction of

the engine and its testing environment is through attributes of the vehicle. The attributes

of the vehicle are mediated by equations which are part of PhysicalLaw. The run or

control operation for the engine, hcmd transitions vehicle states when ever the value

attributes change. The way that behavior is effected is described in the subsection State

change with respect to time. The state machines that effect a system’s behaviour may

use operations that belong to the systems which the state machine belongs to.

5.8. State Space of Vehicle Test

A Composite Structure Model such as the vehicle test has a unique parts decomposition

and all of the mutable attributes are associated with a part. The mutable attributes of

a composite structure model and the state machine variables define the state space of a

Composite Structure Model in the sense that these components are the only ones that

vary. When constructing valid interpretations (logician’s models, engineer’s simulations)

the evolution of these states characterizes the dynamic behaviour of the model. This is
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under the assumption that the model is consistent. The dynamic model is a vector valued

function of time. This subsection introduces notation to simplify representing the state

space.

The composition as dot notation gives a unique decomposition for all of the part compo-

nents of a vehicle. For an instance vt1 : V ehicleTest only the attributes and machine state

change with respect to space-time. A model of the dynamics of V ehicleTest only needs to

represent how these attributes change. The three attribute maps, veh.sen.ter, veh.sen.loc,

and veh.prop.hcmd, and the state map vstate describe the mutable states with respect

to time. The state space of vehicle test is the product of the types that occur as the

variable types of the mutable attributes and the state machine types. To understand the

structure of the state space, the type

(pr1 : V ehicle, pr2 : (pr21 : SensorSystem, pr22 : Location, pr23 : Terrain)) (251)

describes the component type needed for the vehicle sensor and its two attributes. Note

that loc is defined as pr22 and ter is defined as pr23 after renaming the projections.

Thus,

< pr1, < pr21, pr22, pr23 >>=< pr1, < pr21, loc, ter >> (252)

and

< veh, veh.sen > . < pr1, < pr21, pr22, pr23 >>=

< veh,< veh.sen, veh.sen.loc, veh.sen.ter >> (253)

For an individual vt1 :: V ehicleTest

< vt1.veh, vt1.veh.sen > . < pr1, pr21, loc, ter >=

< vt1.veh,< vt1.veh.sen, loc, ter >> (254)

This tuple contains the two variables loc and ter. These variables can be assigned values.

For example, let k1 :: Location and k2 :: Terrain. The composition

< vt1.veh,< vt1.veh.sen, loc, ter >> .(loc := k1).(ter := k2) =

< vt1.veh,< vt1.veh.sen, k1, k2 >> (255)

The tuple map

< veh,< veh.sen, loc, ter >,< veh.pro, hcmd >,< veh, pr3 >> (256)

has type

(loc : Location, ter : Terrain, hcmd : V Command, V State)→
(V ehicle, (SensorSystem,Location, Terrain),

(Propulsion, PCommand), pr3 : V ehicleState) (257)

The type is the mutable part of the state space of V ehicleTest. The tuple allows us

to identify each attribute and machine state variable with respect to the component to

which it belongs.
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An initial state for the V ehicleTest is an individual vt1 :: V ehicleTest and constants

k1, k2, k3 for the three attributes, and an initial state machine state, say off . This state

< vt1.veh,< vt1.veh.sen, k1, k2 >,< vt1.veh.pro, k3 >,< veh, off >> (258)

identifies the attributes uniquely and their values. Now we examine how the state space

evolves.

5.9. State Change with respect to Space-Time

An attribute f : X → A is mutable if a.f@i is non constant as i varies with respect to

time for an individual a :: X. A typical example of a mutable attribute is vehicle sensor

attribute ter.

ter : SensorSystem→ Terrain (259)

Then for an individual vt1 : V ehicleTest and a time i

vt1.veh.sen.ter@i : Terrain (260)

We introduce a syntax of initialize an attribute.

ter : Engine→ Ter[@t0 = 0] (261)

For example the location of a V ehicle is defined within V ehicleTest context.

veh.sen.loc : V ehicle→ Location (262)

The state of an attribute loc of a vehicle v at time t is described by

v.veh.sen.loc@t (263)

An instantaneous state of a model instance is described by a vector in the state space

of V ehicleTest. A simulation for V ehicleTest consist of recording the values of each of

these “states” for each time instance, starting with t0.

The specific language constructions and axioms used in an applications, as with any Al-

gos application axiom set, reflect ontological assumptions about the application domain

and carry the responsibility to provide a means to verify interpretations. The reactive sys-

tems with state machines have served effectively to model and simulate complex physical

systems. We make the simplifying assumption that only maps designated as attributes

change.

5.10. Semantics

The assumptions used for the vehicle test system enable its dynamic behaviour to be

described by the evolution of the attribute vectors in its state space through time. This

characterization can be generalized to arbitrary Composite Structure Models. For sim-

plicity we assume that a Composite Structure Model has only a single state machine and

may have physics laws. Then the Composite Structure Model has a state type

S = (X1, . . . , Xn, SM,N) (264)
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where the Xi is an enumeration of the attributes defined by the unique part decomposi-

tion, MS is the machine state type, and N is discrete time. Note that +1 is a function

on N . The projection maps can be viewed as first order functions. The only axioms we

have encountered so far in the Vehicle Test Model are those associated with state change.

The axioms for state machine are expressed as Horn clauses in n+ 2 variables which we

write as x1, . . . ,xn,ms, i.

P1(x1, . . . ,xn,ms, i), . . . , Pk(x1, . . . ,xn,ms, i)⇒ Q(x1, . . . ,xn,ms, i + 1) (265)

where Pi are the predicates which tests if the preconditions for the state machine is

satisfied and Q is the predicate which tests that the action of the machine has changed

the state. The physics laws, which have not been stated for the vehicle test model, are

also assumed to have the same form where the P and Q are atoms in the language of the

signature of the Algos axiom set embedding the model. These assumptions provide rules

which govern the evolution of the state space and provide the definition of an execution

semantics for an instance of a Composite Structure Model.

Applications of Composite Structure Models are often concerned with whether a spe-

cific design configuration can, under given preconditions, satisfy postconditions. The

precondition-postcondition statements can generally be represented the same Horn clause

form in the language of the application model. Often the preconditions are provable from

the axioms of the theory. If not they are added to the axiom set provided they do

not make the axiom set inconsistent. Then one looks to see if adding the consequent

Q(x1, . . . ,xn,ms, i) makes the axiom set inconsistent. If not then one can conclude that

the assertion follows from the axioms in the theory. Examples of this are described in

(Graves and Bijan 2011). Simple examples of inference for the vehicle test model is that

for any execution sequence it halts or completes its waypoint traversal. One can define

modal operators with respect to whether an execution reaches a particular state space

configuration. With some extensions to the state machine it is possible to prove that

certain state configurations are eventually obtained.

5.10.1. Models and Simulation Engineering analysis for dynamic systems make extensive

use of simulation to determine reasonable preconditions under which the system operation

can obtain the desired outcome, and to rule out unworkable design solutions. Simulation

in the Algos context is a valid interpretation of the axiom set representing the system and

an operating environment. Practically, simulation is often used to decide what machine

states and state transitions are needed, as well as whether additional sensors are needed.

The connection between simulation and topos-based model theory is made informally

here. For a Composite Structure Model axiom set all of the part maps are compositions

which originate from a start type. In the case of the vehicle system model the start

type is V ehicleTest. The valid interpretations of a composite model are function spaces

with a base space consisting the product of the state space including the machine states

and time. For a composite model execution (simulation) is defined for an instance. The

execution of an instance is a path of state tuple (vector) whose components ordered by
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time. For vehicle test model these state vectors have the form

s =< vt1.veh,< vt1.veh.sen, loc, ter >,

< vt1.veh.pro, hcmd >,< vt1.veh, pr3 >, t > (266)

where vt1 :: V ehicleTest and t is time. For the vehicle test model actions are performed

by the vehicle machine vehiclecontrol and the physics laws. A vehicle test instance

vt1 : V ehicleTest is executed from an initial state by successively updates to the mutable

attributes and the next machine state.

The vehicle machine can be viewed as an agent whose actions are its state updates

and the setting of the heading commands. Using a labelled transition notation this can

be written as:

s machine → s′ (267)

As an example of an execution of an instance of vehicle test consider the case where the

initial machine state if off at t0. The machine turns on at t0 + 1 and sets hcmd for the

first waypoint. At the next time instance the terrain sensor ter detects an obstacle. If we

start at t0 with the initial state

< vt1.veh,< vt1.veh.vt1.k1, loc, k2 >,< vt1.veh.pro, k3 >,< veh, off >> (268)

Then

< vt1.veh,< vt1.veh., vt1.veh.sen, k2 >,< vt1.veh.pro, k3 >,

< vt1.veh, off >> .vehiclecontrol (269)

checks the values of loc,ter and sets hcmd and updates the state to yield

< vt1.veh,< vt1.veh., vt1.veh.sen, k2 >,< vt1.veh.pro, k3 >,

< vt1.veh, off >> .vehiclecontrol (270)

Note that an event is a state which triggers a state machine action, i.e.,

s.mstate@t+ 1 6= s.mstate@t (271)

where mstate is the projection map onto the machine state type.

We assume that the environment actions are performed by the laws of physics. These

laws can be represented by state transition equations. These laws can also be viewed as

an agent which transforms the state space. These laws can also be written as:

s laws → s′ (272)

For simulations the equations bound to the specific state variables are solved and their

values are assigned within the next state vector. In general the semantics for a composite

structure model can be represented using Labelled Transition Systems (Knight et al.

2012).

As usual the states are too fine grained for analysis and reasoning and so one is in-

terested in equivalence classes of states such as are defined by bisimulation relations.

Execution for axiom sets exhibit variance not found in static models. Coping with vari-
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Fig. 5. Terrain Following and Obstacle Avoidance

ance has led to using equivalence relations such as bisimulation to enable study of models

to be restricted to manageable classes. These issues go beyond the scope of this paper.

For V ehicleTest the execution the only thing that effects its behaviour is whether

there is an object in its path. Of course the model is so simplistic that one can not

tell much about its behaviour without further refinement and elaboration. For example,

the machine has no way of knowing if it has hit an obstacle other than whether it sees

the obstacle in its terrain image. A technique common for behavior analysis is to add

attributes to the top level, i.e., to V ehicleTest that serve as ground truth regarding

the distinction between what the vehicle’s sensor location value and the true location

with respect to the model execution. This is used, for example, to compare the heading

command with the vehicle movement as calculated from the equations in the model for

motion. These equations may be physical laws or laws constructed from empirical test.

Generally executable models such as V ehicleTest are equipped not only with additional

global sensors, but displays to view progress, as well as mechanisms to record the results

of an execution.
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5.11. Notes

The argument advanced here is the that by embedding models as axiom sets automated

inference can be used to solve engineering problems. For example the kind of analysis

common in engineering modelling is to determine if an aircraft under specified flight con-

ditions can detect and identify an object on the ground. These examples employ both

electro-optical laws and aerodynamic laws for the motion of the aircraft in specific atmo-

spheric conditions. A variant example is to determine that an aircraft can be modified to

have an object detection and avoidance subsystem. The object detection and avoidance

system detects obstacles in the terrain of an aircraft in sufficient time for the aircraft to

avoid them. While full examples are too complex to work out here in detail, this section

illustrates how the engineering models can be embedded as axiom sets in Algos for which

automated reasoning can be used as part of the analysis.

Figure 5 is a still from a video of a simulation of an aircraft analysis model (Graves

et al. 2009). The picture is a virtual aircraft flying low in mountainous terrain. The red

cones are a radar looking for obstacles in front of the aircraft and the small cone is a radar

altimeter. The overlays in green are what the pilot sees on the cockpit display. The terrain

is a representation of the earth for a certain part of the world. This model was constructed

to help answer whether a certain design modification to the aircraft enables the aircraft

to recognize an obstacle, e.g., cell tower or mountain peak not maps in sufficient time to

avoid it. The model contains a representation of how the aircraft motion in turbulence

at specific altitudes and atmospheric conditions. Based on simulation data we were able

to define precise pre and post conditions for the terrain following and obstacle avoidance

example and give an informal proof that this capability followed from the design.

The composite structure models of this section cover a broad spectrum of engineering

models. These models are used both to describe existing systems and as specifications

for new ones. These models regularly employ science models. If one removed the vehicle

from the vehicle test model one is left with scientific models. The vehicle component

could be replaced with a component to test the scientific theory. One difference between

the scientific models and the engineering models is that for scientific models one is likely

looking for a model in which all of the interpretations are the same. Such a theory is

sometimes called categorical. For engineering models one more frequently encounters the

situation where it is recognized that there may be multiple valid interpretations of the

model. This possibility only emphasizes the usefulness of employing the precise concept of

valid interpretation from logic. As one actually uses the model (theory) to make analytic

conclusions the justification of reasoning plays an increasingly important role.

The intent of this section is to validate that putting an axiomatic foundation under

practical broad scope modelling languages is feasible and has potential benefits. For some

situations some of the constraints used here might be relaxed or changed. However, with

these constraints very large complex engineering models have been constructed. At lease

informally, design conclusions have been made on the basis of these models. Discussion

of the constraint types and their equations is not addressed here.

The specific language construction found or needed in engineering modelling languages

have been treated here in a cursory and incomplete way due to lack of space. One ex-
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ample of a language construction which can be added to the current discussion is a type

for ports. Composite structure models often make use of components called ports. In

detailed models connections between components is by connecting a port component of

one subsystem to a port component of another system. The type of a port (i.e., its at-

tributes) are used to describe what flows through the port, whether the flow is discrete,

continuous, unidirectional, or bidirectional, and possibly other constraints. Port types

are readily accommodated within this framework.

5.11.1. Type Definitions Another topic not discussed is that of type definitions and type

equations. Here the only type definitions and type equations permitted are type defi-

nitions which introduce a symbol for an Algos type construction. Other type equations

are not allowed. However, a model such as vehicle test can be characterized by the type

definition of its “start” type, in this case V ehicleTest using the DL existential type con-

structions. For example, to represent that the type V ehicleTest the type definition note

that subtype relations such as

V ehicleTest v ∃veh.V ehicle u ∃op.OpEnvironment (273)

can be expanded and converted into an equality. Thus, for example for an individual

vt1 :: V ehicleTest one obtains the existence of a vehicle

vt1.veh :: V ehicle. (274)

5.11.2. Generalization and Specialization The efficiency of engineering model develop-

ment depends on having a large body of reusable models which can be composed to

provide a leveraged starting point. We have suggested that the vehicle test model is a

case of a general paradigm that is applicable to many applications. Also physics models

tailored for engineering purposes are candidates, as are axiom sets for units and measures.

The mechanisms for combining axiom sets generally involve axioms sets that contain map

and type variables. Models with variables can be instantiated with closed terms. On the

other hand, a model such as vehicle test leave units and measures unspecified which effec-

tively means that these theories contain variables which are bound to produce concrete

theories.

6. Conclusions

By viewing engineering models as embedded within axiom sets this work is an appli-

cation of the axiomatic method. An engineering model, whether it is for manufactured

products or biomedicine, is intended to capture the relevant structures which realize the

description provided by the engineering model. Embedding an engineering model as an

axiom set within a logic-based formalism provides a way to precisely study the struc-

tures which model the axioms, in the logician’s sense of model. When engineering models

are translated into axiom sets, the engineer’s simulation becomes the logician’s model.

While the names of the concepts in engineering and logic are different the concepts are

the same. What an engineer calls a model a logician calls an axiom set; what a logi-

cian calls a model an engineer calls a simulation. This equivalence of concepts leads to
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application of well-established methods of logic to engineering. These methods include

the precise relationship between derivability and model theoretic truth. The connection

between provability and truth underlies the correct application of automated reasoning

to engineering problems. Engineering modelling languages which have built on accumu-

lated experience of constructing and using models provide fundamental insight into how

to model both structure and behavior. The Algos representation of structure and behav-

ior builds on these language constructions. Fortunately, they are representable within a

topos-based framework. Engineering modeling is also a source of interesting problems

which have apparently not been considered by logicians. One of many examples is how

to build engineering model axiom sets which characterize all of the allowable variants for

some manufactured product.

Engineering modelling and its axiomatics are for everyday use in design and analysis.

Analysis including reasoning is done within the context of a specific theory. An axiom set

is developed for the application at hand. The application theory generated by the axiom

set may include broader scientific theories and may be refined or changed as the process

plays out. The conclusions reached are derived within the theory. This is a different state

of affairs from that described by Jaakko Hintakka (Hintikka 2011). Hintakka asserts

that when axiom sets are used for applications in science, reasoning is most often about

the theory generated by the axioms rather than within the theory of the axiom set. This

assertion does not hold for engineering axiomatics. It is true that one makes use of proofs

of mathematical soundness, characterizations of conditions which imply decidability of

satisfaction, and other meta-theoretical results. The primary use of a theory generated

by an Algos axiom set is precisely to reason within the theory.

In applications the first question is whether the axioms capture the intended systems.

Criteria which have been suggested for evaluating the effectiveness of a model for an ap-

plication are: (1) correctness, no model constraint is wrong, i.e., it does not accord with

the ground truth of the domain of application, (2) precision, non-intended models are

excluded, and (3) accuracy, negative examples are excluded. In engineering applications

the term ground truth corresponds to the relationship between descriptive models and

the real world. As modelling is prevalent in engineering there are established practices for

validating simulations of a product interacting with its operating environment. Simula-

tion is used extensively as part of aircraft verification for flight performance. The process

of verifying that a product satisfies its requirements often depends on verification that

an engineering model simulation of the product behaves correctly operating in a model

of the operating environment. If one has a validated simulation model in which some

statement is false, then the statement does not follow from the theory of the model and

so is not true in the theory.

Many engineering problems when viewed within the context of axiom sets translate

into questions of consistency of the axiom set. In design development adding a component

to a product design may violate constraints of the component being added or the design.

The design, as represented as an axiom set, become inconsistent. For example, when

adding an electrically powered device to a design, the presence of the device may overload

the ability of the system to provide power. On the other hand, the specifications for

a device to be added to a product may be inconsistent with the device’s use in the
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product. Many common manufactured product recalls can be attributed to this kind of

inconsistency. While the inference involved in engineering problems is often simple, the

size and complexity of the problems is beyond what can be done effectively manually.

Hence the need for automated analysis and an understanding of its limits.

Much engineering practice is concerned with analysis of the behaviour of a system

within its operating environment. This analysis may be performed to make design de-

cisions during the design process. The analysis is often simply to determine product

capability. Can a sensor mounted on a moving air vehicle recognize and identify some

stationary or moving object under specified conditions. The Algos approach is introduced

in Section 4. Under the simplifying assumptions made behaviour is restricted to modify-

ing maps which are attributes are projections onto a type X. In the language of computer

science a.f is a variable. The notation f : V ar(Y ) is sometimes used. Behaviour analysis

is often in the form of determining if

P (s)⇒ Q(f(s)) (275)

follows from the theory generated by the axiom set. Here s is a tuple variable, P (s)

are preconditions and Q(f(s)) is a post condition applied to the result of an action.

The map f has as its domain type the state space. The action of f is defined for time

instances by equations which connect the attributes and by actions performed by state

machines whose domain includes the attributes of X. This translates into whether the

theory derives the implication.

6.1. Is a Single Formalism Needed?

From the engineering viewpoint is an inclusive formalism needed? Each application gen-

erates its own theory. In engineering practice multiple languages are generally used. For

example, 3D CAD models are used for the geometry of a product and specific mate-

rial models are also used. A theory may include, or use, multiple additional theories of

varying degrees on generality. When multiple engineering models are used with out full

semantic integration there is a spectre of false conclusions being reached from seman-

tically incompatible theories. In the general case this calls for logic preserving functors

between individual application categories. However, with an integrating formalism such

translations are feasible.

6.2. Formalism Choices

Practically finding a suitable logical formalism and embedding engineering models as

axiom sets has proven difficult, as the term constructions needed are richer than what is

possible in a Standard Formalism. The arguments regarding the inability of a standard

formalism (first order with a single sort) have been born out by experience. The 2-

amino acids are a case in point. Formalisms which provide mathematical soundness, set

theory expressiveness, and which have been integrated with computationally tractable

reasoning, limit the choices. The choices appear to be a language based on set theory,

type theory, or topos theory. In the sense that Algos is an algebraic form of set theory, it
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generates a topos, and its logic is a type theory; it combines the virtues all three of these

candidates. Algos includes constructions that allow a structure to have an operation as

a component and to represent state and state change. These constructions are definable

within Algos/topos logic.

Lawvere’s hypothesis that abstract categories can be used to represent mathematics

and physics extends to engineering models. The engineering model examples investigated

here can be embedded as an axiom set which generates a topos. Experience with building

engineering models in a number of application domains has convinced the author that a

category theory based formalism works for engineering modelling as well as mathematics

and physics. Categories are a natural model theory for engineering models when embed-

ded as axioms in a “categorical” logic. A category provides a directly interpretation for

map and type constructions in axiom sets for biomedical modelling and manufactured

products. The validation of this hypothesis has practical consequences for engineering.

6.3. Engineering Topos theory

As defined in (Lambek and Scott 1980) a topos is a Cartesian closed category which

has subobject classification. In topos theory, as opposed to set theory the language con-

structions are very algebraic which simplifies reasoning. The first order axioms for topos

theory developed by Lawvere (Lawvere 1964) use the existential quantifiers. The Algos

axioms have been engineered from the first order axioms for a topos to be in the form of

Horn clause in a multi-sorted logic. This enables using Algos as a computational logic.

The engineering consisted of converting the first order axioms with existential quantifiers

to be Horn clauses by use of Skolem functions. The set of Algos axioms generates a topos,

called the free topos. The theory generated by an Algos axiom set is also a topos which

is a quotient of the free topos, called the syntactic topos. Any Algos theory satisfies

the axioms for a Cartesian category with power types and subobject classification which

is an alternative characterization of a topos. This formalism was implemented in 1980s

(Graves and Blaine 1985; Graves and Blaine 1986).

Algos, building on topos theory, provides a well worked out type system in which

properties of directed graphs are first order. The use of topos type theory enables the

definition of classes and relations which have an axiomatic semantics. Reasoning which

in Description Logics has to be model theoretic can be given in the topos context. Algos

and topos theory have considerable expressiveness beyond what has been used for the

amino acid example. The full set of topos constructions are used in the representation

of composite structures which have embedded operations and state. Additional axioms

from topos theory (Graves and Bijan 2011) can represent structures which change with

respect to time or other kinds of events.

6.4. Engineering of modelling languages

Producing an implementable formalism that engineers and scientists can, and will use,

is itself an engineering problem with multiple dimensions. This work builds on insights

embodied in engineering modelling languages regarding how to represent structure and
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behaviour. These languages have been developed to be used over a twenty year period.

They reflect the experience of their use. Graphical properties play a major role in de-

scribing structures. This argues for a computational logic in which graphical descriptions

and graphical constraints can be expressed as axioms. Algos has this property. Axiom

sets can be graphically developed in a SysML authoring tool. The result can be exported

in a linear form suitable for automated analysis and question answering. Figure 2 with

its two diagrams is a SysML model. SysML blocks, associations, and part properties di-

rectly map to Algos constructions. Even for such a simple example as amino acids, linear

syntax places a significant burden on a human user understanding as opposed to the

graphical syntax. The amino acid case suggests useful extensions to modelling languages

such as SysML. For example the DL class constructions and variables such as the side

chain variable would be useful.Long after the implementation the author realized that

SysML could be embedded within Algos. This result provided the basis for a practically

usable interface (Graves and Bijan 2011).

6.5. Background

Algos development begin with an attempt to represent and reason about applications

within a first order logic inference engine and proof checker using Set Theory axioms.

This proved a very cumbersome task. Set theory axioms were designed to be talked about

rather than be used. Typically a minimum number of language constructions are used.

This effort led to the idea using axioms which were non-necessarily minimal, but which

were physically interpretable and which could be used effectively by an inference engine.

Elementary topos theory provided axioms for many term constructions used in applica-

tions, and at least some of the axioms could be used as computation rules. One axiom,

the subobject classification axiom did not have a clear computational implementation.

Algos came about in the attempt to engineer the topos axioms. The subobject classi-

fication axiom was replaced by a stronger axiom which is satisfied by Set Theory (see

Section 3.3).

The development of Algos and its implementation was done in the late 1970s and early

1980s while the author was a faculty member at San Jose State University. The motivation

was to find a logical formalism with expressiveness comparable to set theory and in which

reasoning was computationally tractable. The criteria governing the development of Algos

was laid out in Section 3. The formalism is intended to be used by engineers and scientists

for everyday work. Algos has set theory constructions while staying within a first order

formalism. The constructions needed for a variety of applications representable within

set theory are also representable within topos theory. The embedding of an Algos axiom

set within a topos establishes the mathematical soundness of Algos. At the time that

the formalism was developed and implemented only a linear syntax was available. In

the author’s subsequent experience practical usability for complex applications requires

a graphical syntax. Only in the last ten years has good graphical syntax been developed

for engineering modelling languages. Fortunately this syntax with extensions can be used

for Algos.

Algos has been used to develop axiom sets for structural descriptions which include
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biomedicine and manufactured products. The axiom sets provably constrain the models

so that all minimal models are isomorphic. The descriptive language and representation

techniques used in the amino acid and the vehicle test examples are equally applicable

in other application domains. The discussion of parts and connections can be generalized

to have multiple kinds of parts and connections. As evidenced by amino acids the repre-

sentation of structural descriptions as axiom sets needs a much more expressive language

than DL or a single sorted Logic Programming framework. The advantage of the topos

logic framework is that the axioms for map and type constructions are worked out in an

algebraic form suitable for use by a computation system.
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