INCOSE International Workshop — IW2014 Presentation for Affordability Working Group Monday January 27,2014

SysML Building Blocks for Cost Modeling: Towards Model-Based Affordability Analysis

Part of SERC RT46 Phase 2 [Contract # H98230-08-D-0171] "-ilities" Tradespace and Affordability Program (ITAP)

Russell Peak – Georgia Tech Jo Ann Lane – USC

SYSTEMS ENGINEERING Research Center

- SERC ITAP/RT46 project context & summary
 - Leveraged bodies of work (BW_i)
 - BW2: Patterns for model interoperability (MIM)
 - BW1: Trade study capabilities (FACT)
 - BW3: Cost modeling capabilities (COSYSMO ...)
 - BW4: Implementation enablers (MBSE/SysML ...)
 - Results from Stage 1 work (Oct-Dec 2013)
 Building blocks and case study implementation
 - Summary & observations
 - Proposed future work
 - Selected bibliography

SysML Building Blocks for Cost Modeling Initial Work in RT46 Phase 2 (Oct-Dec 2013)

- Implemented reusable SysML building blocks
 - Based on SoS/COSYSMO SE cost (effort) modeling work by Lane, Valerdi, Boehm, et al.
- Successfully applied building blocks to healthcare SoS case study from [Lane 2009]
- Provides key step towards affordability trade studies involving diverse "-ilities" (see MIM slides)

			U
CONSTRUCTIVE SYSTEMS (NUMERING COST MODEL			
	· Micardo Va	elerdi, University of	Southern California
SIZE PARAMETERS FOR SYSTEM OF I	ITEREST		
	Easy	Nominal	Difficult
# of System Requirements			
# of System Interfaces			
# of Algorithms	<u>.</u>		
# of Operational Scenanos			
Architecture Understanding	Ň	1.00	
Architecture Understanding	N	1.00	
Level of Service Requirements	н	1.52	
Migration Complexity	N	1.00	
Technology Hisk	N	1.00	
Documentation	N	1.00	-
# and diversity of installations/platforms	N	1.00	
w of recursive levels in the design	H	1.00	
Stakeholder team conesion	N	1.00	
Personnevream capability		1.00	-
Personner experience/continuity	N	1.00	-
Intodess capability		1.00	
A full in the second second second		1 15	
Multisite coordination		1.00	

Aspect	Formula	Calculated Effort
SoSE effort (Equation 5)	$ \begin{array}{l} eq:end_eq_end_eq_end_end_end_end_end_end_end_end_end_end$	40.41
Pharmacy System effort (Equation 4)	Effort = 38.55*[(1.0+CS ₁₀₅₀₀)* ((SoS _{C1atio} /CS _{Tinglot2})* (CS _{Tinglot2}) ¹⁰⁶ * EM _{C3-CRx1032}) + (CS ₂₀₀₅₀ /CS _{Tinglot2})* (CS _{Tinglot2}) ¹⁰⁶ * EM _{C1000501} /152 = 38.55*[(1.15)* ((50/70)*(70) ¹⁰⁶ * 1.06 + (20/70)* (70) ¹⁰⁶ * 0.72] / 152	22.02
Laboratory System effort (Equation 4)	$\begin{array}{l} Effort = 38.55^{+} \left[(1.0 + CS_{26500})^{+} \times \left((SSG_{Catade} CS_{Traglock})^{+} (CS_{Traglock})^{+06} \times EM_{CS-CRetOck} \right) + \\ (CS_{anclacl} CS_{Traglock})^{-100} \times EM_{CSanclacl} \right) ^{1/20} \\ = 38.055^{+} \left[(1.15)^{+} \left((SO^{+}) S(0)^{+} (SO^{+})^{+06} + 1.06 + 0 \right) / 152 \end{array}$	19.55
Imaging System effort (Equation 4)	$\begin{array}{l} Effort = 38.55^{*}[(1.0+CS_{toting})^{*} ((SoS_{Cstatist}CS_{Traplot2})^{*} (CS_{Traplot2})^{106*} EM_{CS-CRatio32}) + \\ (CS_{traptot2})^{CS}(CS_{Traptot2})^{*} (CS_{Traptot2})^{106*} EM_{Cscattot2})^{106*} EM_{Cscattot2})^{106*} \\ = 38.55^{*}[(1.15)^{*} ((5050)^{*}(50)^{106*} 1.06 + 0] / 152 \end{array}$	19.55
New infrastructure component effort (Equation 1)	Effort = 38.55*EM*(size) ^{1.69} /152 = 38.55 * 1.0 * (100) ^{1.66} / 152	33.43
	Total Effort:	134.96

- ITAP/RT46 project context & summary
- Leveraged bodies of work (BW_i)
- ➡ BW2: Patterns for model interoperability (MIM)
 - BW1: Trade study capabilities (FACT)
 - BW3: Cost modeling capabilities (COSYSMO ...)
 - BW4: Implementation enablers (MBSE/SysML ...)
- Results from Stage 1 work (Oct-Dec 2013)
 Building blocks and case study implementation
- Summary & observations
- Proposed future work
- Selected bibliography

MIM Panorama for Naval/Marine Vessels

Ship Design, Analysis, and Operation (pro-forma)

MIM = Modeling Interoperability Method [Peak et al. 2010]

MIM Panorama for Naval/Marine Vessels — FACT/ITAP RT46

Ship Design, Analysis, and Operation (pro-forma — for SERC RT46 Phase 2 report Dec 2013)

Trade Studies with Diverse "-ilities" [DNA Signature View] Multi-Domain, Multi-Behavior, Multi-Fidelity, ... (pro-forma)

- ITAP/RT46 project context & summary
- Leveraged bodies of work (BW_i)
 - BW2: Patterns for model interoperability (MIM)
- → BW1: Trade study capabilities (FACT)
 - BW3: Cost modeling capabilities (COSYSMO ...)
 - BW4: Implementation enablers (MBSE/SysML ...)
- Results from Stage 1 work (Oct-Dec 2013)
 Building blocks and case study implementation
- Summary & observations
- Proposed future work
- Selected bibliography

FACT Highlights Contact: Tommer Ender et al. @ GTRI

ITAP Future Work (integrating cost modeling w/ FACT)

SysML-Based Environment for Advanced Trade Studies

- ITAP/RT46 project context & summary
- Leveraged bodies of work (BW_i)
 - BW2: Patterns for model interoperability (MIM)
 - BW1: Trade study capabilities (FACT)
- ➡ BW3: Cost modeling capabilities (COSYSMO …)
 - BW4: Implementation enablers (MBSE/SysML ...)
- Results from Stage 1 work (Oct-Dec 2013)
 Building blocks and case study implementation
- Summary & observations
- Proposed future work
- Selected bibliography

Cost/Effort Modeling Background

COCOMO Models to Support Systems and Software Engineering Effort Estimation

11

Cost/Effort Modeling: Further Applications

- Current RT46 work (for **SE effort modeling**):
 - COSYSMO (for single system-of-interest = SOI) Valerdi et al.
 - COSYSMO+ (for systems-of-systems = SOS) Lane et al.
- Potential future extensions (for full system cost/effort modeling):
 - Size Isn't Everything! Andy Nolan and Satpaul Sall (Rolls Royce), COCOMO Forum, 2010.
 - Proxy Estimation Costing for Systems (PECS), Reggie Cole (Lockheed), COCOMO Forum, 2012.
- Related work
 - Modeling "Should Cost" and "Will Cost" Using Model-Based Systems Engineering, Ricardo Valerdi, Dan Galorath, Quoc Do, COCOMO Forum, 2012. [Shows SysML/Rhapsody interface with SEER-H]

- ITAP/RT46 project context & summary
- Leveraged bodies of work (BW_i)
 - BW2: Patterns for model interoperability (MIM)
 - BW1: Trade study capabilities (FACT)
 - BW3: Cost modeling capabilities (COSYSMO ...)
- → BW4: Implementation enablers (MBSE/SysML …)
- Results from Stage 1 work (Oct-Dec 2013)
 Building blocks and case study implementation
- Summary & observations
- Proposed future work
- Selected bibliography

The 4 Pillars of SysML

Automotive Anti-Lock Braking System Example - www.omgsysml.org

3. Requirements

4. Parametrics

Copyright © Georgia Tech and InterCAX. All Rights Reserved.

14

Developing Systems

Without SysML: Ad-Hoc, Disconnected, Inconsistent, Implicit

Copyright © Georgia Tech and InterCAX. All Rights Reserved.

Developing Systems With SysML: Unified, Connected, Consistent, Explicit

- ITAP/RT46 project context & summary
- Leveraged bodies of work (BW_i)
 - BW2: Patterns for model interoperability (MIM)
 - BW1: Trade study capabilities (FACT)
 - BW3: Cost modeling capabilities (COSYSMO ...)
 - BW4: Implementation enablers (MBSE/SysML ...)
- Results from Stage 1 work (Oct-Dec 2013)
 - Building blocks and case study implementation
 - Summary & observations
 - Proposed future work
 - Selected bibliography

Healthcare SoS Case Study [Lane 2009]

Aspect	Formula	Calculated Effort
SoSE effort (Equation 5)	Effort = 38.55*[((SoS _{CR} / SoS _{Treg})*(SoS _{Treg}) ^{1.06} * EM _{505-CR}) + ((SoS _{MR} / SoS _{Treg})* (SoS _{Treg}) ^{1.06} * EM _{505-MR} *OSF)] /152 = 28.55 ⁸ [((So) (So) * (So)) ^{1.08} * 2.50) + (20(52)*(So)) ^{1.06} * 0.47 * 10 ⁹ ()] /152	40.41
Pharmacy System effort (Equation 4)	$ \begin{array}{l} = -36.35 & \left[(1.0 + CS_{20} + 2.50) + (2.052) + (2.052) + (2.052) + (1.0 + 0.1) + 132 \right] \\ Effort = 38.55^{*} \left[(1.0 + CS_{50sup})^{*} \left(\left[SOS_{5ralloc}/CS_{Treg5oSE} \right]^{*} \left(CS_{Treg5oSE} \right]^{1.06} * EM_{CS-CRW5OSE} \right) + \\ (CS_{50s05}/CS_{Trag5oSE})^{*} \left(CS_{Treg5oSE} \right)^{1.06} * EM_{CS-0RW5OS} \right] / 152 \\ = 38.55^{*} \left[(1.15)^{*} \left((50/70)^{*} (70)^{1.06} + 1.06 + (20/70)^{*} (70)^{1.06} + 0.72 \right] \right) / 152 \end{array} $	22.02
Laboratory System effort (Equation 4)	$ \begin{array}{l} Effort = 38.55^{*}[(1.0 + CS_{505up}) * ((SoS_{5sllox}/CS_{Treq5o5E})^{*} (CS_{Treq5o5E})^{1.06} * EM_{CS-CRw5O5E}) + \\ (CS_{non505}/CS_{Treq5o5E}) * (CS_{Treq5o5E})^{1.06} * EM_{C5non505} / 152 \\ = 38.55 * [(1.15) * ((50/50)^{*}(50)^{1.06} * 1.06 + 0] / 152 \\ \end{array} $	19.55
Imaging System effort (Equation 4)	$ \begin{array}{l} Effort = 38.55^{*}[(1.0+CS_{SoStup})^{*}((SoS_{Csalloc}/CS_{TreqSoSE})^{*}(CS_{TreqSoSE})^{1.06} \times EM_{CS-CRwSOSE}) + \\ (CS_{non505}/CS_{TreqSoSE})^{*}(CS_{TreqSoSE})^{1.06} \times EM_{CSnamSOS}]/152 \\ = 38.55^{*}[(1.15)^{*}((50/50)^{*}(50)^{1.06} \times 1.06 + 0] / 152 \end{array} $	19.55
New infrastructure component effort (Equation 1)	Effort = 38.55*EM*(size) ^{1.06} /152 = 38.55 * 1.0 * (100) ^{1.06} / 152	33.43
	Total Effort:	134.96

/alerdi, University of T Nominal EST 1.36 1.00	Southern California
Valerdi, University of T Nominal EST 1.00	Southern California
EST 1.36 1.00	
EST 1.36 1.00	Difficult
EST 1.06 1.00	
EST 1.36 1.00	
EST 1.36 1.00	
EST 1.36 1.00	
EST 1.36 1.00	
1.32	
1.00	8
1.00	
1.00	
1.00	1 12
1.21	
1.00	
1.00	
1.00	
1.00	- C
1.15	
1.00	
	1.00 1.21 1.00 1.00 1.00 1.00 1.10 1.15 1.00

Recursive application of COSYSMO concepts for each constituent system in SoS, plus considerations specific to SoS top-level.

Healthcare SoS Case Study [Lane 2009] Implemented Using SysML Building Blocks: *Selected SysML Diagrams*

Implementation Results

Good verification compared to original results

Original Results Summary [Lane 2009]

(subject to known corrections & round-off)

SysML-Based Results Summary

See also live demo.

Healthcare SoS Case Study [Lane 2009] Implemented Using SysML Building Blocks: DNA Signature View

Model Execution

Tool for Solving SysML Instance Structures

(object-oriented spreadsheet-like tool)

ParaMagic(R) 17.0.2 - sos1			<u>_ ×</u>	Ton-Lovel SveML Instances
Name	Type Causality		Values	
ioS Total Effort Model	SoS Total Effort Model		A	(bdd view - after solving in ParaMagic)
cf_A	Real	given	38.550	
ण cf_B	Real	given	1.060	and a SaC Tatal Effort Medal
U constiuent systems effort	person-months	ancillary	63.955	sost: sos rotal citort model
🔍 em_SoS-CR	Real	ancillary	2,500	sose effort : person-months = "40.485734666062356"
U em_SoS-MR	Real	ancillary	0.466	total effort : person-months = (137.874) 7862723192"
U infrastructure components effort	person-months	ancillary	33,433	
🔍 osf	Real	given	0.100	
<pre></pre>	Real	ancillary	50.000	
sos_MR	Real	ancillary	20.000	
🛡 sos_Treq	Real	ancillary	52.000	
🖲 sose effort	person-months	ancillary	40.486	cst-pharmacy-sys : SoS-affected LS Effort Model
🔍 total effort	person-months	target	(137.874)	effort : person-months = (24.73153975895236"
P cds_SoS-CR	Cost Drivers			
🕑 cds_SoS-MR	Cost Drivers			
P constiuent systems	SoS-affected CS Effort Model[0,?]			
constiuent systems[0]	SoS-affected CS Effort Model			cs2-lab-mgt-sys : SoS-affected CS Effort Model
	Real	ancillary	20.000	effort : nereon-months = "10 61194247237522"
EM_CS_CRwSOSE	Real	ancillary	1.063	enolt. persolFmonuns = 19.01164247237322
	Real	ancillary	0.721	
	Real	ancillary	50.000	
	Real	given	38.550	cs3-imaging-sys : SoS-affected CS Effort Model
<mark></mark> cf_B	Real	given	1.060	
	Real	given	0.150	effort : person-months = "19.61184247237522"
····· cs_TreqSoSE	Real	ancillary	70.000	
	person-months	target	24.732	
🖶 🖳 cds_non_sos	Cost Drivers			
terent cds_sos	Cost Drivers			IC1-hc-network : Primitive SOI Effort Model
🗄 🖳 sds_non_sos	Size Drivers			effort : person-months = "33,433419257466774"
⊞ <mark>.</mark> sds_sos	Size Drivers			
…constiuent systems[1]	SoS-affected CS Effort Model			
	SoS-affected CS Effort Model		-	
Expand Collapse All	Solve Reset Preserve	Refs Update	e to SysML	
oot (SoS Total Effort Model)				

Name			Relation				
e22	γ		em_SoS-CR = cds_SoS-CR.composite effort multiplier	7			
e23	Y		em_SoS-MR = cds_SoS-MR.composite effort multiplier	•			
e24	Y		sos_CR = sds_SoS-CR.equivalent number of nominal reqs				
e25	Y		sos_MR = sds_SoS-MR.equivalent number of nominal reqs	☑			
eqn1	Y		total effort=sose effort+constiuent systems effort+infrastructure components effort	•	1		
eqn2a	Y		constiuent systems effort=sum(constiuent systems.effort)		-		

- ITAP/RT46 project context & summary
- Leveraged bodies of work (BW_i)
 - BW2: Patterns for model interoperability (MIM)
 - BW1: Trade study capabilities (FACT)
 - BW3: Cost modeling capabilities (COSYSMO ...)
 - BW4: Implementation enablers (MBSE/SysML ...)
- Results from Stage 1 work (Oct-Dec 2013)
 - Building blocks and case study implementation
- Summary & observations
 - Proposed future work
 - Selected bibliography

Summary & Observations

- Created cost modeling building blocks in SysML
- Applied to healthcare SoS case study [Lane 2009]
- Challenges
 - Creating reusable building blocks takes time (like s/w libs)
 - SysML tools need better interactions with tabular data
- Benefits
 - Enables better knowledge capture
 - More modular, reusable, precise, maintainable, complete (e.g., units), ...
 - Acausal; better verification & validation vs. spreadsheets; ...
 - Enables swapping in/out alternative subsystem designs
 - Provides patterns that are easy-to-apply in other cases
- Provides key step towards affordability trade studies involving diverse "-ilities"

- ITAP/RT46 project context & summary
- Leveraged bodies of work (BW_i)
 - BW2: Patterns for model interoperability (MIM)
 - BW1: Trade study capabilities (FACT)
 - BW3: Cost modeling capabilities (COSYSMO ...)
 - BW4: Implementation enablers (MBSE/SysML ...)
- Results from Stage 1 work (Oct-Dec 2013)
 - Building blocks and case study implementation
- Summary & observations
- Proposed future work
 - Selected bibliography

Proposed Future Work

- Demonstrate building block usage in other more complex case studies
- Interface cost modeling with system design models (via MIM patterns)
- Include cost modeling in diverse "-ilities" trade space contexts
- Demonstrate in sponsor case studies and enable production deployment

Selected Bibliography

- M Culler (2010) Modeling Product Life Cycle Networks in SysML with a Focus on LCD Computer Monitors. Master's thesis, GW Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta.
- T Ender et al. (2014) Online Design: Novel Collaborative Software Helps Systems Engineers Link Performance and Cost. Georgia Tech Research News, Jan 22, 2014 . http://www.gtresearchnews.gatech.edu/collaborative-software-helps-systems-engineers-link-performance-and-cost/
- JA Lane (2009) Cost Model Extensions to Support Systems Engineering Cost Estimation for Complex Systems and Systems of Systems. 7th Annual Conference on Systems Engineering Research (CSER), Loughborough.
- RS Peak, CJJ Paredis, LF McGinnis, SA Friedenthal, RM Burkhart, et al. (2010) Integrating System Design with Simulation and Analysis Using SysML. INCOSE MBSE Challenge, Modeling & Simulation Interoperability (MSI) Team, Phase 2 Final Report (v2.1). http://www.pslm.gatech.edu/projects/incose-mbse-msi/
- Y Romaniw, B Bras, T Guldberg (2011) Sustainable Manufacturing Analysis using Activity Based Costing in SysML. ASME IDETC/CIE, Washington DC.
- Y Romaniw and B Bras (2010) Sustainable Manufacturing Analysis using an Activity Based Object Oriented Method. SAE Journal of Aerospace 2(1) 214-224.
- SERC Systems Engineering Research Center. http://www.sercuarc.org/
- DR Tamburini, RS Peak, CJJ Paredis (2005) Composable Objects (COB) Requirements & Objectives v1.0. Technical Report, Georgia Tech, Atlanta. http://eislab.gatech.edu/projects/nasa-ngcobs/

Full Disclosure: Georgia Tech & InterCAX LLC

- Some of this material presents products, tools, services, and/or examples that are developed by InterCAX (www.intercax.com) and/or Georgia Tech (www.gatech.edu), including the ParaMagic[®] tool for SysML parametrics execution, and/or SLIM, and/or similar tools.
- The intent is to present vendor-independent concepts and examples in an objective educational way that participants will find helpful. References are made to commercial products by InterCAX and non-commercial tools by Georgia Tech for the purpose of making these concepts concrete. Participants are responsible to evaluate these products and tools for themselves and to investigate similar products and tools by other organizations where applicable.
- Note that Dr. Russell Peak (a member of the Georgia Tech research faculty) has a business interest in InterCAX LLC per the following: InterCAX LLC is a spin-off company that has commercialized technology from Dr. Peak's Georgia Tech group. Georgia Tech has licensed technology to InterCAX and has an equity stake in the company. Dr. Peak is one of several business partners in InterCAX.