
Integrating Reasoning with SysML

Henson Graves

Algos Associates

henson.graves@hotmail.com
2829 West Cantey Street, Fort Worth, Texas 76109

Copyright © 2012 by Author Name. Published and used by INCOSE with permission.

Abstract. Most engineering tasks require in-depth reasoning. For some tasks, automated

reasoning is feasible and can provide high leverage for solving difficult practical problems.

Engineering questions can be represented as questions about a model, provided the model

contains sufficient domain knowledge. The widely used UML family languages have been

embedded within logics. By embedding a model as an axiom set within a suitable logic,

engineering questions translate into questions about axiom sets. Automated reasoning can

potentially be used to answer these questions. Examples of engineering questions that can be

represented as logic questions include verification of a system capability (or a requirement

satisfaction) and verification of whether a design change invalidates design constraints. By

using this embedding engineers can use languages and tools that they are familiar with, have

their models transparently translated into logic, automated inference applied, and the results

be returned to their development environment. The logic embedding results of SysML, one of

the UML family, is used to illustrate how engineering problems translate into logic problems

and how the logic solutions translate back to engineering solutions. An engineering use case

for air system capability analysis is used to show how a SysML model can be translated into

an axiom set and the engineering question translates into a logic question and illustrates how

formal reasoning about an axiom set can be used to answer the engineering question.

Introduction

Engineering models in languages such as SysML (OMG SysML 2008) are used to represent,

specify, and analyze systems. The integration of modeling with automated reasoning provides

the potential to use logic to answer engineering questions. The direct way to integrate

reasoning with SysML is to embed a model as an axiom set within a logic. Of course the

formal semantics of the logical system has to be in accord with the informal semantics of

SysML. Otherwise reasoning may give incorrect results. The issue of representing

engineering questions as logical questions is straightforward provided the model has been

properly designed. For a properly designed model, an engineering question translates directly

into a logic question. The principles for constructing models derived from logic embedding

results to be used to answer questions apply even when automated reasoning is not used.

The paradigm of representing engineering questions as questions about axiom sets is not new

(Graves and Horrocks 2008). The direct approach of constructing an axiom set to represent

an engineering problem has been adopted for specialized classes of problems, such as

verifying safety critical software. However, directly constructing axiom sets to represent

engineering problems is not in widespread use. Practically it has proven very difficult for

engineers to develop an axiom set to describe a problem. Constructing a SysML model rather

than an axiom set requires less specialized training than does learning to construct axioms

within a logic system. Even though the axiom set and the model have the same information,

the graphical notation of SysML is an efficient way of constructing an axiom set and opens a

practical path to integrate reasoning with engineering development.

SysML is a general purpose graphical modeling language that can be used to represent

system structure, behavior, parametric aspects, and requirement relationships. SysML has

widespread use, and fragments of the language have been embedded within logic. SysML has

become the defacto standard in many engineering domains. Engineers can use it, it scales for

aerospace development, and retrofitting it with a formal foundation is feasible. This is not to

say that SysML is as developed as other languages and tools for specialized areas, or that the

language doesn’t need improvement. OMG the keeper of the UML family of language

specifications recognizes that the standards need improvement and are beginning to recognize

that the languages need a formal semantics. The embedding of SysML into logic provides a

practical way to integrate reasoning with product development. There do not appear to be

other engineering languages that meet these success criteria for integration with reasoning.

This paper uses embedding results of SysML into logic to illustrate how reasoning can be

used to answer engineering questions. Examples are given of how models are developed to

answer engineering questions. These examples are used to show how reasoning about an

axiom set answers the original question. Results on embedding SysML models into a logical

system (Berardi, et al. 2005) (Graves and Bijan 2011) are used to illustrate how engineering

questions translate into questions about axiom sets which are amenable to automated

inference. The reasoning example is simplified a static problem by averaging behavioral

change. Examples where the SysML models involve behavior will be treated in future work.

Using reasoning results based on SysML models is dangerous unless precaution has been

taken to ensure that the models correctly represent the application domain. In addition to

being incorrect models may over or under specify the subject being modeled. A model

underspecifies a problem domain when there are interpretations in addition to the intended

interpretation. For underspecified problems the conclusions that can be made from the model

are often insufficient to solve the engineering problem. Over specification results in a model

that doesn’t accurately describe the intended specification. Model validation, the term

commonly used by engineers use for model correctness has an extensive practice, particularly

for product test and evaluation. This paper is concerned with how an engineer’s problem as

represented within a SysML model translates into a reasoning problem and how the reasoning

problem answers the engineering question. The answer is contingent on the validity of the

assumption in the model.

Models and Interpretations

Engineering questions that can be represented as questions about models include questions of

system capability and design solution verification. For example, can an aircraft under

specified operating conditions identify a target? The aircraft may be an existing aircraft, a

proposed design, or a design modification. Simulation is the obvious method for

understanding requirements and validating a design. However, simulation in itself does not

verify that a design solution satisfies the capability. The engineering question is answerable

in the context of the assumptions and constraints on the aircraft operation. If we build a

SysML model which contains all of the domain assumptions, then the question is equivalent

to whether the axiom set corresponding to the model logically implies the target recognition

conditions. While including domain assumptions and design constraints requires effort, a

strong case can be made to include this information in the application model even if

automated reasoning is not used. Overlooking these assumptions is where most design errors

occur.

Figure 1 is a schematic diagram that shows the relationship between a SysML model and an

interpretation. In this case the model represents an air system and its operating context; the

interpretation corresponds the model elements to elements in a domain. The interpretation of

the model shows an aircraft and a region of terrain as seen through a sensor display on the

aircraft. The operator on the aircraft is attempting to identify a target from the video of a

sensor display. A model may have multiple interpretations, where an interpretation is

anything that satisfies the relationships within the model. Building a system description

model does not itself guarantee that any interpretations of the model exist. A model that

cannot possibly have any valid interpretations is called inconsistent. For SysML, an

inconsistent model is one in which all of the blocks of the model have an empty interpretation

in any domain.

Figure 1. Relationship between Model and Interpretation

In logic, the use of the term “model” is reversed from its use in engineering: In logic a model

is an interpretation of an axiom set within a logical system. In engineering, a model is a

representation or description of its possible interpretations. However, the concepts of

interpretation in engineering and model in logic are similar. Logical systems typically have

an inference semantics and a reference semantics. In a logical system, axioms are assertions

which are assumed to be true. An inference semantics is given by rules which can be used to

derive conclusions from axioms, i.e., other true statements. The reference semantics for an

axiom set describes the class of valid interpretations. The axioms are by definition true in any

valid interpretation. Of course, an axiom set may not have any valid interpretations. The

inference rules are sound if a statement derived from the axioms is true in any valid

interpretation. The inference rules are complete when all statements true in the reference

semantics can be derived from the axiom set.

The reference semantics for a SysML model is an interpretation of the model. An

interpretation is a collection of real or imaginary (simulation) subdomains of a domain which

correspond the SysML types. The properties and inclusion relationships in the model are

preserved in the domain. Any inclusion relationships between the elements of a SysML

model are satisfied in the domain by the interpretation. The correctness of inference depends

on the soundness and completeness for the logical system. When a model is embedded as an

axiom set within a logic, questions about model translate to questions about the axiom set.

For example the question of model consistency becomes the question of axiom set

consistency. The question of whether a component or relationship be added to the model

without making it inconsistent becomes the logical question of whether adding the statement

corresponding to the model change make the axiom set consistent.

Logic Embedding Overview

SysML has been embedded into several varieties of logic, however when the embedding is

done properly the different embeddings are equivalent. Some of the logics used are noted in

the Venn diagrams in Figure 2. In each of these cases, a SysML model is encoded as an

axiom set within the language of a logic. The axioms take different forms in OWL and in

First Order Logic (FOL). In OWL the axioms are class inclusion assertions. In FOL the

axioms are quantified logical formulas using binary and unary predicates, i.e., predicates with

two or one argument. The diagram in Figure 2 uses lines to indicate the embedding of

SysML class diagrams in both OWL (OWL 2 2008) and in FOL, and correspondences

between the two different forms of logic. When these correspondences are made precise the

embeddings are equivalent.

Figure 2. Relationship of Candidate Logics

Syntactically SysML and OWL languages have a lot of syntactic overlap. SysML uses a

graphical syntax with elements for blocks, associations, part properties, and subclass

relationships between classes. The OWL 2, the most recent and precise version of OWL, uses

classes, properties, and individuals. OWL 2 as a conceptual modeling language uses the

paradigm of representing knowledge as an axiom set (model in engineering terms) and using

reasoning on the axiom set to answer questions. In conceptual modeling an axiom set is also

called a Knowledge Base (KB). Where SysML models have been embedded within OWL2

they are embedded as axiom sets.

The formal foundation for OWL 2 (Horrocks, et al. 2006) is SROIQ which is a Description

Logic (DL) (Baader at al. 2010). SysML blocks and associations correspond respectively to

OWL2 classes and properties. When SysML is embedded in OWL 2, model questions

become axiom set questions. A fragment of UML, called class diagrams has been embedded

within the Description Logic (DL) SROIQ (Berardi, et al. 2005). Class diagrams are models

that use only blocks and binary associations. The DL is known to correspond to a fragment of

First Order Logic. This correspondence provides the equivalence of the OWL 2 embedding of

a class model with the FOL embedding. The results hold as well for the corresponding

fragment of SysML. This embedding provides the integration of a fragment of SysML with

OWL reasoning. In OWL consistency of an axiom set and logical implication are decidable.

OWL2 reasoners are well-developed and robust. They are able to reason about very large

class diagrams.

Many language constructions essential to SysML’s success are not covered by the class

diagram embedding, for example structure diagrams. A structure diagram describes concrete

structures which are assembles of parts and connections between the parts. Structure

diagrams are common in engineering and science. An automobile model that contains a part

decomposition with connections between the parts is a structure diagram. Finding the kinds

of restrictions on axioms where the logical services are decidable has presented a challenge.

Description Logic (DL) is a natural candidate for structural modeling. The ability to represent

graph structures such as can be constructed with SysML Internal Block Diagrams (IBDs) is

beyond the capability of OWL 2. A SysML model of a structure can be translated into the

language of SROIQ (Horrocks, et al. 2006). However, the resulting axiom set contains

property subtype assertions that do not satisfy the constraints of SROIQ axiom sets. OWL 2

with a Description Graph (DG) extension has been proposed as a candidate for structural

modeling. Analysis of application-use cases suggest that often the DL axioms, as well as the

DG extension axioms, do not correctly capture the properties of the structures being modeled.

An approach to the characterization of a SysML IBD as axiom set within an extended

Description Logic has been described in (Graves and Bijan. 2011). A proof of the decidability

of satisfaction for these axiom sets is in draft form (Graves. 2012).

Other language constructions used in SysML which are not class diagrams are operations

with arguments that are declared within a block. Dynamic behavior and time are also not

included. The air system target identification example is outside the scope of class and

structure diagrams. The full potential for integration of reasoning with SysML requires

finding a way to build on and extend these results to embed SysML models as axiom sets

within a richer logic where automated reasoning is still feasible. The results embedding a

class diagram in a DL have been extended using a logical system called type theory (Lambek

and Scott, 1986). Type theory contains both classes and formulae and a built-in

correspondence between classes and properties with respectively unary and binary predicates

within the type theory as well as with types in the type theory. The static part of SysML has

been embedded into type theory (Graves and Bijan, 2012). The extension of the embedding

of class and structure diagram fragments of SysML is needed to answer questions such as the

aircraft loitering question. The same kind of reasoning used in OWL 2 can be used to

determine whether the resulting axiom set is consistent or inconsistent, which gives an

answer to the engineering question, provided that decidability results hold. Logical

implication problems such as the loitering question can be represented within type theory.

Type theory extends OWL 2, and the embedding of SysML into type theory is consistent with

the class diagram embedding of SysML models within OWL 2.

The correspondence between classes and formulas can be used to characterize exactly when

an axiom set is consistent. In the SysML to type theory embedding, axiom set consistency is

equivalent to the satisfiablility of the formula that represents the conjunction of the axioms. A

class diagram is consistent if it admits an instantiation, i.e., if its classes can be populated

without violating any of the assertions of the diagram. A class C is satisfiable in a class

diagram if it is not equivalent to Nothing. When the diagram is not consistent, then Nothing =

Thing. An arbitrary axiom set may not be decidable and the sense that there is an algorithm

which will terminate after a finite number of steps with a true or false answer. However, for

some cases correspondence between classes and formulas can be used to reduce subclass

assertions to be in a Description Logic which is decidable.

Representing Engineering Questions as Model Questions

This section introduces an engineering question and sketches how a SysML model can be

developed to assist in answering the question. By embedding the model as an axiom set

within logic the engineering question translates into a logic question. The approach to

answering the logic question coincides with the way that engineers go about answering the

question. The embedding of the model into logic will be treated informally. The SysML

model is referred to as the Mission Model. The design analysis incrementally produces a

composite model made up of many component models. The example is adapted from (Graves

and Bijan, 2012). More detail can be found there.

Figure 3. A Block Diagram for the Mission Model

Figure 1 represents schematically the relationship between a model, called the Mission

Model and its interpretation. Figure 3 illustrates a more detailed diagram of the Mission

Model. The model has a top level block, called MissionDomain. MissionDomain contains

components for the aircraft, the physical environment, and the target. By using a single

composite model there is less risk that inconsistent assumptions are used. Top level

assumptions and constraints about how the subsystems interact with each other and the

environment are represented in constraint blocks that are part of the MissionDomain block.

The diagram in Figure 3 describes what components occur in an interpretation but do not

show any constraint information. The complete Mission Model contains much more detail

than is shown in this diagram.

The engineering question is whether a specifically equipped model of aircraft can perform

target identification under specified operation conditions. A question such as the target

identification question concerns the air system interaction with its operation environment. By

constructing a SysML model that contains a model of the air system and the target, the

physical environment specified by the operating conditions enables the assumptions to be

explicit. For simplicity we assume that the answer is true or false. The approach outlined

extends to probabilistic statements.

In engineering practice the answer to a question, such as the target identification question

uses analysis based on engineering models and possibly simulation. The quality of the answer

depends on the accuracy and detail of the engineering models used. As analysis proceeds the

DomainModel is refined to reflect more precise understanding.To answer questions based on

a model requires more content than might ordinarily be produced in the development process.

However, even if automated inference is not used the additional content is needed to justify

engineering answers. SysML constraint constructions can be used to specify operating

conditions, flight dynamic models, electro-optical models of sensors, and other factors that

influence the answer. To answer the target identification question blocks corresponding to

assumptions and constraints of component models are added to the Mission Model.

Composite structure

The diagram in Figure 3 has the form of a tree whose root is the block MissionDomain. The

nodes are the blocks, and the edges are part properties such as itsAirSystem, itsEnvironment,

and itsAirVehicle. An interpretation of Mission Model contains a mission domain. The part

property itsAirSystem is interpreted as a binary relation which assigns an air system to the

mission domain. While SysML does not have instances the embedding logic has instances

and one can write md:MissinDomain for an instance of MissionDomain. Then md.itsAirSytem

is the air system that belongs to that domain.

A block such as AirVehicle may have a compartment labeled attributes which contains

attributes; AirVehicle has attributes position, rateOfmotion, and speed. A block may also

contain a compartment for operations. For example, the EOIR block of the Air Vehicle

contains the components sendvideo():Void and senseIR():Void. These components are SysML

operations. Each component of the AirSystem may have components with the same name.

Qualified names are used to distinguish the names of operations of the EOIR_Sensor if there

are two of them. For if there are two air systems a1 and a2 then is

a1.itsEOIT_Sensor.sendvideo() distinct from a1.itsEOIT_Sensor.sendvideo(). The operation

Sensor.sendvideo() has no arguments as indicated by the empty parenthesis and the Void

value type. However, when activated they can read other air system attributes and update the

value of air system attributes. Of course these operations have to be defined in terms of

operations that are assumed to be available. While these two operations are extreme cases in

that they do not have arguments or return values they illustrate the issue of the assumptions

on what they are allowed to read and update. The assumption is that they have visibility only

to those variables which are components of the same owner that the operation has.

State spaces

The attributes translate into variables in the logic embedding. However, one has to use their

qualified name to distinguish all of the unique variables. For example one variable is

itsAirsystem.position and another is itsEnvironment.itsTarget.position. These qualified

variables represent the state space of the problem. The change in values of these variables

represent state change. In everyday mathematics these variables define a Cartesian product

type of the types of the variables. SysML does not have a product type construction, but

SysML can be embedded within logic that does have product types. For each variable

occurring in the Mission model, let xi : Xi be a variable with its corresponding type. The

notation

 Domain = (x1 : X1, . . . , xn : Xn)

is used for the product of the types X1, . . . , Xn with named variables x1,…,xn. The notation

<a1,…an> is used for a tuple of values. An easy way to understand the state space is to

consider how one constructs a simulation for the Mission Model. Each variable in the state

space will correspond to a variable in a software simulation of the Mission Model. In a

simulation each variable does vary over time. For this example properties involving time

have been averaged out to make the model static. As we will see not all tuples in Domain are

valid for a simulation, only those which satisfy the constraint properties of the model.

Constraints define subtypes

The SysML Mission Model contains a lot of information not shown in Figures 3. This

information includes models of aerodynamic performance of the aircraft, the effect of aircraft

motion on the stability of the sensors, and further detailed decomposition of the air system.

Figure 4. Using a Parametric Diagram to express application constraints

The diagram in Figure 4 is a SysML parametric diagram is a component of the

DomainModel. The block named avMotion is a reusable dynamic model for aircraft motion.

The motion is a functional relation of the flight commands and the wind in the operating

context. The diagram contains three rectangles labeled Operator, Physical Environment, and

Air Vehicle. These represent blocks. The small rectangles inside are value properties. The

lines in Figure 4 connecting the parameters and the attributes are binding operations. The

attributes are bound to the values of the parameters as computed by the equations in the

parametric diagram. For example the diagram has the effect of enforcing the relationship

between that attributes to which the parametric variables are bound. In avMotion small blocks

fltCmds, wind, and motion are called parameters and are represented in logic as variables. The

function:

 rateOfMotion = function(wind,flightCommands)

gives the name function to the mathematical function which the rate of motion is a function of

the wind and the flight commands. The parameters do not introduce new variables into the

state space; they are a mechanism to enforce constraints between attributes in the state space.

If we introduce that name AirVehicleMotion for product type

 AirVehicleMotion = (flightCommand:cmd, wind:Wind, rateOfMotion:Rate)

then the functional relation defines a subtype of the product type of AirVehicleMotion using a

type abstraction construction this is written in the logic as:

 { <flightCommand, wind, rateOfMotion> : motion = function(fltcmds,wind) }

 ⊑ AirVehicleMotion

Conversely, for an abstraction subtype such as AirVehicleMotion there is a Boolean valued

operation in the logic which is the characteristic operation for the subtype.

SysML constraint constructions are used to specify operating conditions, flight dynamic

models, electro-optical models of sensors, and other factors that influence the answer. For

this example the constraints can be represented as Boolean valued operations. Let

 allConstraints(x1 : X1, . . . , xn : Xn) : Bool

be the conjunction of all constraints on the state variables defined by the parametric

diagrams. Then MissionDomain is the subtype of Domain defined as:

 MissionDomain = {< x1, . . . , xn > : allConstraints(x1, . . . , xn) = true}.

For notational simplification let x = < x1, . . . , xn> then

 MissionDomain = {x : allConstraints(x) = true}.

An interpretation of the Mission Model assigns values to each of the state variables in

Mission Model and which preserves all of the inclusion assertions. The state variables can be

generalized to be functions of time and time based simulations are interpretations. For this

example all of the time varying values of the attributes are averaged to give point solutions.

Formalizing Requirements

The requirements for target identification have the form that if specified constraints regarding

target size and distance from the air system are satisfied then the air system has an operation

that can correctly identify the target. To answer the target identification question the

assumptions and constraints on component models must be added to the Mission Model. If a

design solution is found then design verification shows that the target identification operation

gives the correct result when the requirement constraints are met. The states that satisfy the

requirements and physics constraints can be formalized as a subtype assertion within SysML

extended with abstraction types. The requirement constraints are represented as a subtype of

Domain type which satisfied the requirements constraints. We will write this as

 { x : idFeasible(x) = true }

For the requirements to have a solution all of the constraints that follow from the laws of

physics as they apply to the mission domain must be satisfied as well. Thus,

 { x : idFeasible(x) = true } ∩ { x : allConstraints(x) = true } ≠ Nothing

Otherwise no requirements solution is possible and the requirements constraints are

inconsistent with the model constraints. The formalized requirements statement can be

expressed as there exists an operator f:Operator(AirSystem):()idResult with

 IdCapable ⊑ { x : f(x) = itsEnvironment.itsTarget.id }

The statement f:Operator(AirSystem):()idResult says that the domain of f is AirSystem. The

operation f can access attributes such as itsOperator.view and itsAirVehicle.itsSensor.display,

but can only access variables that occur as attributes within AirSystem.

Defining the Target Identification Operation

The requirements will be verified for an air system target identification operation named

identifytarget. The operation will be defined in terms of operations of the aircraft’s

components. These components are assumed to exist and satisfy given specifications. The air

system components include the display of the sensor, and also include an operation of the

human operator. The air system and its subsystems determine its location, airspeed, and any

other attributes needed by its subsystems to navigate the air vehicle and direct the sensors.

The pilot operator is assumed to keep the rate of motion of the aircraft within the bounds

required for the sensor to perform successfully, provided this is within the range of motion

permissible by the air vehicle. An operator views the sensor display to make the actual

identification. Assumptions about the ability of the operator to identify a target provided the

sensor resolution is sufficient are part of Mission Model.

The operation identifyTarget():idResult is shown as a component of the AirSystem block in

Figure 3. The graphical syntax shows identifyTarget()idResult as a component of a

compartment in the block AirSystem is written in as linear syntax as:

 identifyTarget : Operations(AirSystem): ()idResult

This syntax makes explicit that identifyTarget is a function of an air system argument. The

operation is a declaration for the AirSystem block. If there were two air systems in the

Mission Model then each would have its own operation and the two operations would not

necessarily give the same result. For simplicity identifytarget will be defined as a

composition of operations. The attributes of components of the air system are available for

use in the definition of identifytarget. These values do not have to be passed explicitly as

argments.

The Mission Model models the real world by using constraint blocks to enforce the

relationship between what the sensor sees and the environment attributes, as well as what the

human operator identifies as a result of viewing the sensor display. The sensor’s attributes are

connected to the environment attributes via a parametric diagram. The EOIR_sensor has a

showSensorVideo operation and the Operator has a view operation. The declarations in a

linear syntax are:

 showSensorVideo :Operations(Display) : ()VideoStream

 view: Operations(Operator) :()idResult

The air system's target identification operation is the composition of the operator’s view

operation which view the sensor display. The sensor displays the result of the sensor's target

tracking operation. The image display that the operator uses to identify the target depends on

the sensor image and on degradation of video feed, screens resolution, refresh rate, and

screen size. The operation identifyTarget is defined as

 identifyTarget(AirSystem) =

 itsOperator.view(itsSensor.itsDisplay.showSensorVideo())

The definition applies to any air system instance as:AirSystem. The syntactic correctness of

the definition depends on the fact that AirSystem has as components an operator and an air

vehicle. This assertion is represented within the embedding logic using a Description Logic

type construction as:

 AirSystem ⊑ ∃itsAirVehicle[1].AirVehicle ⋂ ∃itsOperator[1].Operator

where itsAirVehicle and itsOperator are part properties used to define existentially restrictied

types. The states in MissionDomain for which the targeting operation is correct can be written

as:

 IdentificationCorrect = { x : itsAirSystem.identifytarget() = itsEnvironmnet.target.id }

If we can show that

 identificationCapable ⊑ IdentificationCorrect

then the correctness of identifyTarget is verified within the context of the Mission Model.

Within Mission Model the air system is a component of MissionDomain which is assumed to

have an air system component, an environment component, and constraints which relate the

attributes of the air system to those of the target component of the environment.

 itsAirSystem.itsOperator.view(itsSensor.itsDisplay.showSensorVideo())

 = itsTarget.id

Answering Questions

The engineering problem is a logical implication problem: do the mission model axioms

imply the type inclusion

 IdCapable ⊑ { x : f(x) = itsEnvironment.itsTarget.id }?

To attempt to prove this assertion, one typically uses assumptions of the form

 A ⊑ { x : identifytarget() = itsEnvironment.itsTarget.id}

to attempt to show

 { x : idFeasible(x) = true } ⊑ A.

to obtain the desired conclusion.

What engineers do in practice to verify a system capability is to decompose the hoped for

conclusion into a conjunction of statements. The decomposition of the conclusion is derived

from the definition of the operation which purports to provide the capability. Then the task is

to find assumptions about product components and the environment that they interact. These

assumptions are used to validate or falsify the conclusion. We do not yet have sufficient

assumptions to verify that the operation identifies targets under the conditions of the

requirements.

Operator Identification Assumptions

For this problem we use assumptions about the ability of human operators to identify objects

of certain sizes from a video display. The assumptions are derived from empirical studies of

how operators perform. The operator assumptions give conditions on a sensor display image

for which an operator can make a correct identification. The conditions are defined in terms

of functions defined on the display. The motion on a sensor display which can be tolerated by

the operator trying to identify a target is assumed to be less than MAXMOTION.

MAXMOTION was determined by experimentation with operators. We assume that if the

sensor display is sufficiently stable and other distance and size conditions are met then an

operator viewing the display can make the correct identification. Sufficiently stable is defined

by the type:

 OperatorConstraint = { x :

 display.image_stability < MAXMOTION and

 display.image_resolution < MINRESOLUTION and

 display.pixels > MINPIXELS }

The assumption made about operators can be expressed as:

 OperatorConstraint ⊑ IdentificationCorrect

The question becomes can the sensor can produce the required stability results under the

feasibility conditions.

Sensor assumptions

The design solution is contingent on finding a sensor for which an operator can correctly

identify the target. The assumptions for the sensor are based on electro-magnetic laws of

physics applied in their engineering form. These laws are expressed as a constraint. In the

form applied to air systems they are represented by a function image_stability&resolution

which is a function of the field of view of the sensor, which is itself a function of the air

vehicle and target locations as well as environmental conditions. The air vehicle motion is

also an argument. The air vehicle motion is a function of the flight commands and the wind in

the environment. Each of image_stability&resolution, inFOV, and avModtion are

represented using parametric diagrams. The composition

 image_stability&resolution(inFOV(avloc,tloc,sensor.pA,sensor.fov),

 avMotion(fltcmd,wind) < k

is represented by binding parameters to attributes. We assume that avMotion (fltcmd,wind) is

less than some constant for which the value of the image_stability&resolution function has an

acceptable value. With this assumption what has to be shown is that the sensor satisfies the

stability and distance conditions when the identificationFeasible conditions are satisfied. The

sensor is supplied with a specification which can be represented as a parametric diagram of

the form:

 sensorspec:Constraints(MissionDomain) =

 Equation(image_stability&resolution(inFOV(avloc,tloc,sensor.pA,sensor.fov),

 avMotion(fltcmd,wind)), MAXMOTION)

Thus is we define the abstraction type SensorSpec corresponding to the parametric diagram

we have:

 SensorSpec ⊑ OperatorConstraint

This says that the sensor specification provides sufficient stability for the operator to make a

correct identification.

Putting it together

Putting the inclusions together and recognizing that the final result is contingent on the

operator assumptions and the sensor assumptions we have:

 IdentificationFeasible ∩ SensorSpec ⊑ OperatorConstraint ⊑

 IdentificationCorrect

and so

 IdentificationFeasible ⊑ IdentificationCorrect

which gives the desired result. This capability analysis scenario which has been translated

into a verification scenario has represented the problem in a schematic form. The details can

be filled in. Most of the work involves engineers using domain knowledge to find or solve

equations to satisfy the assumptions. The verification scenario provides not only the plan for

solving the problem but a justification of the results.

Conclusion

The use of reasoning to answer engineering questions has been illustrated with a capability

question; can an air system can perform target identification correctly under specified

conditions. The proof of correctness of the air system identification operation is outlined and

it corresponds directly to standard design analysis and verification techniques. This example

shows how reasoning can be integrated with SysML and provides evidence that formal

methods can be integrated with everyday engineering activity. The integration is based on the

fact that widely used engineering languages such as SyML can be retrofitted with a formal

semantics. The reasoning in the example is justified by a semantic embedding of a fragment

of SysML into type theory logic. One lesson implicit in the example is that one can and

should include assumptions and constraints in models even if automated reasoning is not

used. The verification is contingent on the validity of the context model with respect to the

real world domain.

The embedding of the SysML Mission Model into type theory uses several principles:

1. SysML blocks, properties, and operations are mapped directly to corresponding type

theory constructions. Attributes (value properties) are mapped to type theory

projection maps (variables). Value properties of components of the model correspond

to variables in the logic.

2. Product types within type theory corresponding to the types of the attributes contained

within the blocks of the model are introduced to represent the state space of a model.

3. Parametric diagrams correspond to truth-valued operations defined for their variables.

For each parametric diagram a subtype of the product which are the tuples of values

for which the formulas are true is introduced

4. SysML contains composite constructions for parts, attributes, operations, and

behaviour. These constructions embed as type constructions within type theory.

While there are other languages with a formal semantics such as the B-language (Abrial.

1996) that have some of the features needed to represent this example, there are no

engineering languages with widespread use and good tool support that appear to have the

traction of SysML.

Analysis of the examples suggests that a number of additions to the SysML language would

be useful. These include adding: the abstraction subtype construction, DL class and property

constructions, individuals, “Function call” to block diagrams. A bolder step would be to use

an engineered version of type theory as the foundation for SysML. The engineered type

theory could be part of the SysML specification. Type theory provides the language

extensions suggested by the examples with a formal semantics well adapted for use with

inference engines. To extend the use of reasoning for SysML for behavior constructions

additional axioms are needed for mechanical inference. Again type theory is well suited for

representing behavior. The next step in integration of reasoning with SysML is the translation

of the SysML model into type theory axioms and the integration of a reasoned to operate on

the translation.

References

Abrial, J. R. The B-Book. Cambridge University Press, 1996.

Baader, F., Calvanese, D., McGuinness, D. L., and Nardi, D. 2010. The Description Logic

 Handbook. Cambridge University Press.

Berardi, D., Calvanese, D., and De Giacomoa, G. 2005. “Reasoning on UML class

diagrams.” Artificial Intelligence Volume 168, Issues 1-2.

Estefan, J.A., 2008. ``Survey of Model-Based Systems Engineering (MBSE) Methodologies,"

 Rev. B, INCOSE Technical Publication, International Council on Systems

 Engineering.

Graves, H., Horrocks, I. 2008. “Application of OWL 1.1 to Systems Engineering”, OWL

 Experiences and Directions April Workshop.

———, 2010. Ontological Foundations for SysML, Proceedings of 3rd International

 Conference on Model-Based Systems Engineering.

———2008. Representing Product Designs Using a Description Graph Extension to OWL

 2. OWL Experiences and Directions October Workshop.

———, Bijan, Y. 2011. Modeling Structure in Description Logic, DL2011.

———, Bijan, Y. “Using Formal Methods with SysML in Aerospace Design and

 Engineering” to be published in: Annals of Mathematics and Artificial Intelligence.

Horrocks, I., Kutz, O., Sattler, U. 2006. The Even More Irresistible SROIQ, in: Proc. KR

 2006, Lake District, UK.

Lambek, J., Scott, P. J., Introduction to higher-order categorical logic, Cambridge University

 Press, 1986.

OMG Systems Modeling Language (OMG SysML™), V1.1, November 2008.

OWL 2 Web Ontology Language, W3C Working Draft 11, June 2009.

Biography

Dr. Henson Graves is a Lockheed Martin Senior Technical Fellow Emeritus and a San Jose

State University Emeritus Professor in Mathematics and Computer Science. He has a PhD in

mathematics from McMaster University. Dr. Graves is the principle of Algos Associates, a

technology consulting firm.

