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Abstract. Most engineering tasks require in-depth reasoning. For some tasks, automated 

reasoning is feasible and can provide high leverage for solving difficult practical problems. 

Engineering questions can be represented as questions about a model, provided the model 

contains sufficient domain knowledge. The widely used UML family languages have been 

embedded within logics. By embedding a model as an axiom set within a suitable logic, 

engineering questions translate into questions about axiom sets. Automated reasoning can 

potentially be used to answer these questions. Examples of engineering questions that can be 

represented as logic questions include verification of a system capability (or a requirement 

satisfaction) and verification of whether a design change invalidates design constraints. By 

using this embedding engineers can use languages and tools that they are familiar with, have 

their models transparently translated into logic, automated inference applied, and the results 

be returned to their development environment. The logic embedding results of SysML, one of 

the UML family, is used to illustrate how engineering problems translate into logic problems 

and how the logic solutions translate back to engineering solutions. An engineering use case 

for air system capability analysis is used to show how a SysML model can be translated into  

an axiom set and the engineering question translates into a logic question and illustrates how 

formal reasoning about an axiom set can be used to answer the engineering question. 

Introduction 

 

Engineering models in languages such as SysML (OMG SysML 2008) are used to represent, 

specify, and analyze systems. The integration of modeling with automated reasoning provides 

the potential to use logic to answer engineering questions. The direct way to integrate 

reasoning with SysML is to embed a model as an axiom set within a logic. Of course the 

formal semantics of the logical system has to be in accord with the informal semantics of 

SysML. Otherwise reasoning may give incorrect results. The issue of representing 

engineering questions as logical questions is straightforward provided the model has been 

properly designed. For a properly designed model, an engineering question translates directly 

into a logic question.  The principles for constructing models derived from logic embedding 

results to be used to answer questions apply even when automated reasoning is not used.  

 

The paradigm of representing engineering questions as questions about axiom sets is not new 

(Graves and Horrocks 2008). The direct approach of constructing an axiom set to represent 

an engineering problem has been adopted for specialized classes of problems, such as 

verifying safety critical software. However, directly constructing axiom sets to represent 

engineering problems is not in widespread use. Practically it has proven very difficult for 

engineers to develop an axiom set to describe a problem. Constructing a SysML model rather 

than an axiom set requires less specialized training than does learning to construct axioms 

within a logic system. Even though the axiom set and the model have the same information, 

the graphical notation of SysML is an efficient way of constructing an axiom set and opens a 

practical path to integrate reasoning with engineering development.  



SysML is a general purpose graphical modeling language that can be used to represent 

system structure, behavior, parametric aspects, and requirement relationships.  SysML has 

widespread use, and fragments of the language have been embedded within logic. SysML has 

become the defacto standard in many engineering domains. Engineers can use it, it scales for 

aerospace development, and retrofitting it with a formal foundation is feasible. This is not to 

say that SysML is as developed as other languages and tools for specialized areas, or that the 

language doesn’t need improvement.  OMG the keeper of the UML family of language 

specifications recognizes that the standards need improvement and are beginning to recognize 

that the languages need a formal semantics. The embedding of SysML into logic provides a 

practical way to integrate reasoning with product development. There do not appear to be 

other engineering languages that meet these success criteria for integration with reasoning.  

 

This paper uses embedding results of SysML into logic to illustrate how reasoning can be 

used to answer engineering questions. Examples are given of how models are developed to 

answer engineering questions. These examples are used to show how reasoning about an 

axiom set answers the original question. Results on embedding SysML models into a logical 

system (Berardi, et al. 2005) (Graves and Bijan 2011) are used to illustrate how engineering 

questions translate into questions about axiom sets which are amenable to automated 

inference. The reasoning example is simplified a static problem by averaging behavioral 

change. Examples where the SysML models involve behavior will be treated in future work.  

 

Using reasoning results based on SysML models is dangerous unless precaution has been 

taken to ensure that the models correctly represent the application domain. In addition to 

being incorrect models may over or under specify the subject being modeled. A model 

underspecifies a problem domain when there are interpretations in addition to the intended 

interpretation. For underspecified problems the conclusions that can be made from the model 

are often insufficient to solve the engineering problem. Over specification results in a model 

that doesn’t accurately describe the intended specification. Model validation, the term 

commonly used by engineers use for model correctness has an extensive practice, particularly 

for product test and evaluation. This paper is concerned with how an engineer’s problem as 

represented within a SysML model translates into a reasoning problem and how the reasoning 

problem answers the engineering question. The answer is contingent on the validity of the 

assumption in the model.  

Models and Interpretations 

 

Engineering questions that can be represented as questions about models include questions of 

system capability and design solution verification. For example, can an aircraft under 

specified operating conditions identify a target? The aircraft may be an existing aircraft, a 

proposed design, or a design modification. Simulation is the obvious method for 

understanding requirements and validating a design. However, simulation in itself does not 

verify that a design solution satisfies the capability. The engineering question is answerable 

in the context of the assumptions and constraints on the aircraft operation. If we build a 

SysML model which contains all of the domain assumptions, then the question is equivalent 

to whether the axiom set corresponding to the model logically implies the target recognition 

conditions. While including domain assumptions and design constraints requires effort, a 

strong case can be made to include this information in the application model even if 

automated reasoning is not used. Overlooking these assumptions is where most design errors 

occur.  

 



Figure 1 is a schematic diagram that shows the relationship between a SysML model and an 

interpretation. In this case the model represents an air system and its operating context; the 

interpretation corresponds the model elements to elements in a domain. The interpretation of 

the model shows an aircraft and a region of terrain as seen through a sensor display on the 

aircraft. The operator on the aircraft is attempting to identify a target from the video of a 

sensor display. A model may have multiple interpretations, where an interpretation is 

anything that satisfies the relationships within the model. Building a system description 

model does not itself guarantee that any interpretations of the model exist. A model that 

cannot possibly have any valid interpretations is called inconsistent. For SysML, an 

inconsistent model is one in which all of the blocks of the model have an empty interpretation 

in any domain.  

 

 
  

Figure 1. Relationship between Model and Interpretation 

 

In logic, the use of the term “model” is reversed from its use in engineering: In logic a model 

is an interpretation of an axiom set within a logical system. In engineering, a model is a 

representation or description of its possible interpretations. However, the concepts of 

interpretation in engineering and model in logic are similar. Logical systems typically have 

an inference semantics and a reference semantics. In a logical system, axioms are assertions 

which are assumed to be true. An inference semantics is given by rules which can be used to 

derive conclusions from axioms, i.e., other true statements.  The reference semantics for an 

axiom set describes the class of valid interpretations. The axioms are by definition true in any 

valid interpretation. Of course, an axiom set may not have any valid interpretations. The 

inference rules are sound if a statement derived from the axioms is true in any valid 

interpretation. The inference rules are complete when all statements true in the reference 

semantics can be derived from the axiom set.  

 

The reference semantics for a SysML model is an interpretation of the model. An 

interpretation is a collection of real or imaginary (simulation) subdomains of a domain which 

correspond the SysML types. The properties and inclusion relationships in the model are 

preserved in the domain. Any inclusion relationships between the elements of a SysML 



model are satisfied in the domain by the interpretation. The correctness of inference depends 

on the soundness and completeness for the logical system. When a model is embedded as an 

axiom set within a logic, questions about model translate to questions about the axiom set. 

For example the question of model consistency becomes the question of axiom set 

consistency.  The question of whether a component or relationship be added to the model 

without making it inconsistent becomes the logical question of whether adding the statement 

corresponding to the model change make the axiom set consistent.  

Logic Embedding Overview 

 

SysML has been embedded into several varieties of logic, however when the embedding is 

done properly the different embeddings are equivalent. Some of the logics used are noted in 

the Venn diagrams in Figure 2. In each of these cases, a SysML model is encoded as an 

axiom set within the language of a logic. The axioms take different forms in OWL and in 

First Order Logic (FOL). In OWL the axioms are class inclusion assertions. In FOL the 

axioms are quantified logical formulas using binary and unary predicates, i.e., predicates with 

two or one argument. The diagram in Figure 2 uses lines to indicate the embedding of 

SysML class diagrams in both OWL (OWL 2  2008) and in FOL, and correspondences 

between the two different forms of logic. When these correspondences are made precise the 

embeddings are equivalent.  

 

Figure 2. Relationship of Candidate Logics 

 

 

Syntactically SysML and OWL languages have a lot of syntactic overlap. SysML uses a 

graphical syntax with elements for blocks, associations, part properties, and subclass 

relationships between classes. The OWL 2, the most recent and precise version of OWL, uses 

classes, properties, and individuals. OWL 2 as a conceptual modeling language uses the 

paradigm of representing knowledge as an axiom set (model in engineering terms) and using 

reasoning on the axiom set to answer questions. In conceptual modeling an axiom set is also 

called a Knowledge Base (KB). Where SysML models have been embedded within OWL2 

they are embedded as axiom sets.  

 



The formal foundation for OWL 2 (Horrocks, et al. 2006) is SROIQ which is a Description 

Logic (DL) (Baader at al. 2010). SysML blocks and associations correspond respectively to 

OWL2 classes and properties.  When SysML is embedded in OWL 2, model questions 

become axiom set questions. A fragment of UML, called class diagrams has been embedded 

within the Description Logic (DL) SROIQ (Berardi, et al. 2005). Class diagrams are models 

that use only blocks and binary associations. The DL is known to correspond to a fragment of 

First Order Logic. This correspondence provides the equivalence of the OWL 2 embedding of 

a class model with the FOL embedding. The results hold as well for the corresponding 

fragment of SysML. This embedding provides the integration of a fragment of SysML with 

OWL reasoning. In OWL consistency of an axiom set and logical implication are decidable. 

OWL2 reasoners are well-developed and robust. They are able to reason about very large 

class diagrams.  

 

Many language constructions essential to SysML’s success are not covered by the class 

diagram embedding, for example structure diagrams. A structure diagram describes concrete 

structures which are assembles of parts and connections between the parts. Structure 

diagrams are common in engineering and science. An automobile model that contains a part 

decomposition with connections between the parts is a structure diagram. Finding the kinds 

of restrictions on axioms where the logical services are decidable has presented a challenge. 

Description Logic (DL) is a natural candidate for structural modeling. The ability to represent 

graph structures such as can be constructed with SysML Internal Block Diagrams (IBDs) is 

beyond the capability of OWL 2. A SysML model of a structure can be translated into the 

language of SROIQ (Horrocks, et al. 2006). However, the resulting axiom set contains 

property subtype assertions that do not satisfy the constraints of SROIQ axiom sets. OWL 2 

with a Description Graph (DG) extension has been proposed as a candidate for structural 

modeling. Analysis of application-use cases suggest that often the DL axioms, as well as the 

DG extension axioms, do not correctly capture the properties of the structures being modeled. 

An approach to the characterization of a SysML IBD as axiom set within an extended 

Description Logic has been described in (Graves and Bijan. 2011). A proof of the decidability 

of satisfaction for these axiom sets is in draft form (Graves. 2012). 

 
Other language constructions used in SysML which are not class diagrams are operations 

with arguments that are declared within a block. Dynamic behavior and time are also not 

included. The air system target identification example is outside the scope of class and 

structure diagrams. The full potential for integration of reasoning with SysML requires 

finding a way to build on and extend these results to embed SysML models as axiom sets 

within a richer logic where automated reasoning is still feasible. The results embedding a 

class diagram in a DL have been extended using a logical system called type theory (Lambek 

and Scott, 1986). Type theory contains both classes and formulae and a built-in 

correspondence between classes and properties with respectively unary and binary predicates 

within the type theory as well as with types in the type theory. The static part of SysML has 

been embedded into type theory (Graves and Bijan, 2012). The extension of the embedding 

of class and structure diagram fragments of SysML is needed to answer questions such as the 

aircraft loitering question. The same kind of reasoning used in OWL 2 can be used to 

determine whether the resulting axiom set is consistent or inconsistent, which gives an 

answer to the engineering question, provided that decidability results hold. Logical 

implication problems such as the loitering question can be represented within type theory. 

Type theory extends OWL 2, and the embedding of SysML into type theory is consistent with 

the class diagram embedding of SysML models within OWL 2. 

 



 

The correspondence between classes and formulas can be used to characterize exactly when 

an axiom set is consistent. In the SysML to type theory embedding, axiom set consistency is 

equivalent to the satisfiablility of the formula that represents the conjunction of the axioms. A 

class diagram is consistent if it admits an instantiation, i.e., if its classes can be populated 

without violating any of the assertions of the diagram. A class C is satisfiable in a class 

diagram if it is not equivalent to Nothing. When the diagram is not consistent, then Nothing = 

Thing. An arbitrary axiom set may not be decidable and the sense that there is an algorithm 

which will terminate after a finite number of steps with a true or false answer. However, for 

some cases correspondence between classes and formulas can be used to reduce subclass 

assertions to be in a Description Logic which is decidable.  

Representing Engineering Questions as Model Questions 

 

This section introduces an engineering question and sketches how a SysML model can be 

developed to assist in answering the question.  By embedding the model as an axiom set 

within logic the engineering question translates into a logic question. The approach to 

answering the logic question coincides with the way that engineers go about answering the 

question. The embedding of the model into logic will be treated informally. The SysML 

model is referred to as the Mission Model. The design analysis incrementally produces a 

composite model made up of many component models. The example is adapted from (Graves 

and Bijan, 2012). More detail can be found there. 

 
 

Figure 3. A Block Diagram for the Mission Model 
 

Figure 1 represents schematically the relationship between a model, called the Mission 

Model and its interpretation. Figure 3 illustrates a more detailed diagram of the Mission 

Model. The model has a top level block, called MissionDomain. MissionDomain contains 



components for the aircraft, the physical environment, and the target. By using a single 

composite model there is less risk that inconsistent assumptions are used. Top level 

assumptions and constraints about how the subsystems interact with each other and the 

environment are represented in constraint blocks that are part of the MissionDomain block. 

The diagram in Figure 3 describes what components occur in an interpretation but do not 

show any constraint information. The complete Mission Model contains much more detail 

than is shown in this diagram.  

 

The engineering question is whether a specifically equipped model of aircraft can perform 

target identification under specified operation conditions. A question such as the target 

identification question concerns the air system interaction with its operation environment. By 

constructing a SysML model that contains a model of the air system and the target, the 

physical environment specified by the operating conditions enables the assumptions to be 

explicit. For simplicity we assume that the answer is true or false. The approach outlined 

extends to probabilistic statements.  

 

In engineering practice the answer to a question, such as the target identification question 

uses analysis based on engineering models and possibly simulation. The quality of the answer 

depends on the accuracy and detail of the engineering models used. As analysis proceeds the 

DomainModel is refined to reflect more precise understanding.To answer questions based on 

a model requires more content than might ordinarily be produced in the development process. 

However, even if automated inference is not used the additional content is needed to justify 

engineering answers. SysML constraint constructions can be used to specify operating 

conditions, flight dynamic models, electro-optical models of sensors, and other factors that 

influence the answer. To answer the target identification question blocks corresponding to 

assumptions and constraints of component models are added to the Mission Model.  

 

Composite structure 

 

The diagram in Figure 3 has the form of a tree whose root is the block MissionDomain. The 

nodes are the blocks, and the edges are part properties such as itsAirSystem, itsEnvironment, 

and itsAirVehicle. An interpretation of Mission Model contains a mission domain. The part 

property itsAirSystem is interpreted as a binary relation which assigns an air system to the 

mission domain. While SysML does not have instances the embedding logic has instances 

and one can write md:MissinDomain for an instance of MissionDomain. Then md.itsAirSytem 

is the air system that belongs to that domain.  

 

A block such as AirVehicle may have a compartment labeled attributes which contains 

attributes; AirVehicle has attributes  position, rateOfmotion, and speed. A block may also 

contain a compartment for operations. For example, the EOIR block of the Air Vehicle 

contains the components sendvideo():Void and senseIR():Void. These components are SysML 

operations. Each component of the AirSystem may have components with the same name. 

Qualified names are used to distinguish the names of operations of the EOIR_Sensor if there 

are two of them. For if there are two air systems a1 and a2 then is 

a1.itsEOIT_Sensor.sendvideo() distinct from a1.itsEOIT_Sensor.sendvideo(). The operation 

Sensor.sendvideo() has no arguments as indicated by the empty parenthesis and the Void 

value type. However, when activated they can read other air system attributes and update the 

value of air system attributes. Of course these operations have to be defined in terms of 

operations that are assumed to be available. While these two operations are extreme cases in 

that they do not have arguments or return values they illustrate the issue of the assumptions 



on what they are allowed to read and update. The assumption is that they have visibility only 

to those variables which are components of the same owner that the operation has.   

 

State spaces 

 

The attributes translate into variables in the logic embedding. However, one has to use their 

qualified name to distinguish all of the unique variables. For example one variable is 

itsAirsystem.position and another is itsEnvironment.itsTarget.position. These qualified 

variables represent the state space of the problem. The change in values of these variables 

represent state change. In everyday mathematics these variables define a Cartesian product 

type of the types of the variables. SysML does not have a product type construction, but 

SysML can be embedded within logic that does have product types. For each variable 

occurring in the Mission model, let xi : Xi be a variable with its corresponding type.  The 

notation   

 

 Domain = (x1 : X1, . . . , xn : Xn)  

 

is used for the product of the types X1, . . . , Xn with named variables x1,…,xn. The notation 

<a1,…an> is used for a tuple of values. An easy way to understand the state space is to 

consider how one constructs a simulation for the Mission Model. Each variable in the state 

space will correspond to a variable in a software simulation of the Mission Model. In a 

simulation each variable does vary over time. For this example properties involving time 

have been averaged out to make the model static. As we will see not all tuples in Domain are 

valid for a simulation, only those which satisfy the constraint properties of the model.  

 

Constraints define subtypes 

The SysML Mission Model contains a lot of information not shown in Figures 3. This 

information includes models of aerodynamic performance of the aircraft, the effect of aircraft 

motion on the stability of the sensors, and further detailed decomposition of the air system.  

 

 
 

Figure 4. Using a Parametric Diagram to express application constraints 
 



The diagram in Figure 4 is a SysML parametric diagram is a component of the 

DomainModel. The block named avMotion is a reusable dynamic model for aircraft motion. 

The motion is a functional relation of the flight commands and the wind in the operating 

context. The diagram contains three rectangles labeled Operator, Physical Environment, and 

Air Vehicle. These represent blocks. The small rectangles inside are value properties. The 

lines in Figure 4 connecting the parameters and the attributes are binding operations. The 

attributes are bound to the values of the parameters as computed by the equations in the 

parametric diagram. For example the diagram has the effect of enforcing the relationship 

between that attributes to which the parametric variables are bound. In avMotion small blocks 

fltCmds, wind, and motion are called parameters and are represented in logic as variables. The 

function: 

 

 rateOfMotion = function(wind,flightCommands) 

 

gives the name function to the mathematical function which the rate of motion is a function of 

the wind and the flight commands. The parameters do not introduce new variables into the 

state space; they are a mechanism to enforce constraints between attributes in the state space. 

If we introduce that name AirVehicleMotion for product type 

 

 AirVehicleMotion = ( flightCommand:cmd, wind:Wind, rateOfMotion:Rate) 

then the functional relation defines a subtype of the product type of AirVehicleMotion using a 

type abstraction construction this is written in the logic as: 

 

 { <flightCommand, wind, rateOfMotion> : motion = function(fltcmds,wind) }   

    ⊑  AirVehicleMotion 

  

Conversely, for an abstraction subtype such as AirVehicleMotion there is a Boolean valued 

operation in the logic which is the characteristic operation for the subtype.  

 

SysML constraint constructions are used to specify operating conditions, flight dynamic 

models, electro-optical models of sensors, and other factors that influence the answer. For 

this example the constraints can be represented as Boolean valued operations. Let 

 

 allConstraints(x1 : X1, . . . , xn : Xn) : Bool 

be the conjunction of all constraints on the state variables defined by the parametric 

diagrams. Then MissionDomain is the subtype of Domain defined as: 

 

 MissionDomain = {< x1, . . . , xn > : allConstraints(x1, . . . , xn) = true}.  

For notational simplification let x = < x1, . . . , xn> then  

 MissionDomain = {x : allConstraints(x) = true}. 

An interpretation of the Mission Model assigns values to each of the state variables in 

Mission Model and which preserves all of the inclusion assertions. The state variables can be 

generalized to be functions of time and time based simulations are interpretations. For this 

example all of the time varying values of the attributes are averaged to give point solutions. 

 

 



Formalizing Requirements 

The requirements for target identification have the form that if specified constraints regarding 

target size and distance from the air system are satisfied then the air system has an operation 

that can correctly identify the target. To answer the target identification question the 

assumptions and constraints on component models must be added to the Mission Model. If a 

design solution is found then design verification shows that the target identification operation 

gives the correct result when the requirement constraints are met. The states that satisfy the 

requirements and physics constraints can be formalized as a subtype assertion within SysML 

extended with abstraction types. The requirement constraints are represented as a subtype of 

Domain type which satisfied the requirements constraints. We will write this as 

 { x : idFeasible(x) = true } 

For the requirements to have a solution all of the constraints that follow from the laws of 

physics as they apply to the mission domain must be satisfied as well. Thus,  

  { x : idFeasible(x) = true }   ∩    { x : allConstraints(x) = true }  ≠ Nothing 

Otherwise no requirements solution is possible and the requirements constraints are 

inconsistent with the model constraints. The formalized requirements statement can be 

expressed as there exists an operator f:Operator(AirSystem):()idResult with 

 IdCapable  ⊑  { x : f(x) = itsEnvironment.itsTarget.id } 

The statement f:Operator(AirSystem):()idResult says that the domain of  f is AirSystem.  The 

operation f can access attributes such as itsOperator.view and itsAirVehicle.itsSensor.display, 

but can only access variables that occur as attributes within AirSystem.  

Defining the Target Identification Operation 

The requirements will be verified for an air system target identification operation named 

identifytarget. The operation will be defined in terms of operations of the aircraft’s 

components. These components are assumed to exist and satisfy given specifications. The air 

system components include the display of the sensor, and also include an operation of the 

human operator. The air system and its subsystems determine its location, airspeed, and any 

other attributes needed by its subsystems to navigate the air vehicle and direct the sensors. 

The pilot operator is assumed to keep the rate of motion of the aircraft within the bounds 

required for the sensor to perform successfully, provided this is within the range of motion 

permissible by the air vehicle. An operator views the sensor display to make the actual 

identification. Assumptions about the ability of the operator to identify a target provided the 

sensor resolution is sufficient are part of Mission Model. 

 

The operation identifyTarget():idResult is shown as a component of the AirSystem block in 

Figure 3. The graphical syntax shows identifyTarget()idResult as a component of a 

compartment in the block AirSystem is written in as linear syntax as:  

 

 identifyTarget : Operations(AirSystem): ()idResult  

 

This syntax makes explicit that identifyTarget is a function of an air system argument. The 

operation is a declaration for the AirSystem block. If there were two air systems in the 

Mission Model then each would have its own operation and the two operations would not 



necessarily give the same result. For simplicity identifytarget will be defined as a 

composition of operations. The attributes of components of the air system are available for 

use in the definition of identifytarget. These values do not have to be passed explicitly as 

argments.  

 

The Mission Model models the real world by using constraint blocks to enforce the 

relationship between what the sensor sees and the environment attributes, as well as what the 

human operator identifies as a result of viewing the sensor display. The sensor’s attributes are 

connected to the environment attributes via a parametric diagram. The EOIR_sensor has a 

showSensorVideo operation and the Operator has a view operation. The declarations in a 

linear syntax are: 

 

 showSensorVideo :Operations(Display) : ()VideoStream 

 

 view: Operations(Operator) :()idResult 

 

The air system's target identification operation is the composition of the operator’s view 

operation which view the sensor display. The sensor displays the result of the sensor's target 

tracking operation. The image display that the operator uses to identify the target depends on 

the sensor image and on degradation of video feed, screens resolution, refresh rate, and 

screen size. The operation identifyTarget is defined as  

 

 identifyTarget(AirSystem) =   

  itsOperator.view(itsSensor.itsDisplay.showSensorVideo()) 

 

The definition applies to any air system instance as:AirSystem. The syntactic correctness of 

the definition depends on the fact that AirSystem has as components an operator and an air 

vehicle. This assertion is represented within the embedding logic using a Description Logic 

type construction as: 

 

 AirSystem ⊑  ∃itsAirVehicle[1].AirVehicle ⋂ ∃itsOperator[1].Operator 

 

where itsAirVehicle and itsOperator are part properties used to define existentially restrictied 

types. The states in MissionDomain for which the targeting operation is correct can be written 

as: 

 

 IdentificationCorrect = { x : itsAirSystem.identifytarget() = itsEnvironmnet.target.id } 

 

If we can show that  

 

 identificationCapable ⊑   IdentificationCorrect 

 

then the correctness of identifyTarget is verified within the context of the Mission Model. 

Within Mission Model the air system is a component of MissionDomain which is assumed to 

have an air system component, an environment component, and constraints which relate the 

attributes of the air system to those of the target component of the environment.  

 

 itsAirSystem.itsOperator.view(itsSensor.itsDisplay.showSensorVideo())  

   =  itsTarget.id   

 



Answering Questions 

 

The engineering problem is a logical implication problem: do the mission model axioms 

imply the type inclusion  

 

 IdCapable  ⊑  { x : f(x) = itsEnvironment.itsTarget.id }? 

To attempt to prove this assertion, one typically uses assumptions of the form 

 

 A ⊑ { x : identifytarget() = itsEnvironment.itsTarget.id} 

 

to attempt to show 

 

 { x : idFeasible(x) = true } ⊑  A.  

 

to obtain the desired conclusion.  

 

What engineers do in practice to verify a system capability is to decompose the hoped for 

conclusion into a conjunction of statements.  The decomposition of the conclusion is derived 

from the definition of the operation which purports to provide the capability. Then the task is 

to find assumptions about product components and the environment that they interact. These 

assumptions are used to validate or falsify the conclusion. We do not yet have sufficient 

assumptions to verify that the operation identifies targets under the conditions of the 

requirements.  

Operator Identification Assumptions 

 

For this problem we use assumptions about the ability of human operators to identify objects 

of certain sizes from a video display. The assumptions are derived from empirical studies of 

how operators perform. The operator assumptions give conditions on a sensor display image 

for which an operator can make a correct identification. The conditions are defined in terms 

of functions defined on the display. The motion on a sensor display which can be tolerated by 

the operator trying to identify a target is assumed to be less than MAXMOTION. 

MAXMOTION was determined by experimentation with operators. We assume that if the 

sensor display is sufficiently stable and other distance and size conditions are met then an 

operator viewing the display can make the correct identification. Sufficiently stable is defined 

by the type: 

 

 OperatorConstraint  = { x : 

   display.image_stability  < MAXMOTION and 

   display.image_resolution < MINRESOLUTION and   

   display.pixels >  MINPIXELS } 

 

The assumption made about operators can be expressed as: 

 

          OperatorConstraint  ⊑  IdentificationCorrect 

 

The question becomes can the sensor can produce the required stability results under the 

feasibility conditions.  

 



Sensor assumptions 

 

The design solution is contingent on finding a sensor for which an operator can correctly 

identify the target. The assumptions for the sensor are based on electro-magnetic laws of 

physics applied in their engineering form. These laws are expressed as a constraint. In the 

form applied to air systems they are represented by a function image_stability&resolution 

which is a function of the field of view of the sensor, which is itself a function of the air 

vehicle and target locations as well as environmental conditions. The air vehicle motion is 

also an argument. The air vehicle motion is a function of the flight commands and the wind in 

the environment.  Each of image_stability&resolution, inFOV, and avModtion are 

represented using parametric diagrams. The composition  

  

 image_stability&resolution(inFOV(avloc,tloc,sensor.pA,sensor.fov), 

   avMotion(fltcmd,wind) < k 

 

is represented by binding parameters to attributes. We assume that avMotion (fltcmd,wind) is 

less than some constant for which the value of the image_stability&resolution function has an 

acceptable value. With this assumption what has to be shown is that the sensor satisfies the 

stability and distance conditions when the identificationFeasible conditions are satisfied. The 

sensor is supplied with a specification which can be represented as a parametric diagram of 

the form: 

 

 sensorspec:Constraints(MissionDomain) =  

 Equation(image_stability&resolution(inFOV(avloc,tloc,sensor.pA,sensor.fov), 

   avMotion(fltcmd,wind)), MAXMOTION)  

 

Thus is we define the abstraction type SensorSpec corresponding to the parametric diagram 

we have: 

 

 SensorSpec ⊑ OperatorConstraint 

 

This says that the sensor specification provides sufficient stability for the operator to make a 

correct identification.  

 

Putting it together 

 

Putting the inclusions together and recognizing that the final result is contingent on the 

operator assumptions and the sensor assumptions we have: 

 

 IdentificationFeasible ∩ SensorSpec  ⊑   OperatorConstraint   ⊑     

   IdentificationCorrect 

and so 

 

 IdentificationFeasible ⊑  IdentificationCorrect 

 

which gives the desired result. This capability analysis scenario which has been translated 

into a verification scenario has represented the problem in a schematic form. The details can 

be filled in. Most of the work involves engineers using domain knowledge to find or solve 

equations to satisfy the assumptions. The verification scenario provides not only the plan for 

solving the problem but a justification of the results. 



Conclusion 
 
The use of reasoning to answer engineering questions has been illustrated with a capability 

question; can an air system can perform target identification correctly under specified 

conditions. The proof of correctness of the air system identification operation is outlined and 

it corresponds directly to standard design analysis and verification techniques.  This example 

shows how reasoning can be integrated with SysML and provides evidence that formal 

methods can be integrated with everyday engineering activity. The integration is based on the 

fact that widely used engineering languages such as SyML can be retrofitted with a formal 

semantics. The reasoning in the example is justified by a semantic embedding of a fragment 

of SysML into type theory logic. One lesson implicit in the example is that one can and 

should include assumptions and constraints in models even if automated reasoning is not 

used. The verification is contingent on the validity of the context model with respect to the 

real world domain.  

 

The embedding of the SysML Mission Model into type theory uses several principles: 

 

1. SysML blocks, properties, and operations are mapped directly to corresponding type 

theory constructions. Attributes (value properties) are mapped to type theory 

projection maps (variables). Value properties of components of the model correspond 

to variables in the logic. 

 

2. Product types within type theory corresponding to the types of the attributes contained 

within the blocks of the model are introduced to represent the state space of a model.  

3. Parametric diagrams correspond to truth-valued operations defined for their variables. 

For each parametric diagram a subtype of the product which are the tuples of values 

for which the formulas are true is introduced 

 

4. SysML contains composite constructions for parts, attributes, operations, and 

behaviour. These constructions embed as type constructions within type theory.  

 

While there are other languages with a formal semantics such as the B-language (Abrial. 

1996) that have some of the features needed to represent this example, there are no 

engineering languages with widespread use and good tool support that appear to have the 

traction of SysML.  

 

Analysis of the examples suggests that a number of additions to the SysML language would 

be useful. These include adding: the abstraction subtype construction, DL class and property 

constructions, individuals, “Function call” to block diagrams. A bolder step would be to use 

an engineered version of type theory as the foundation for SysML. The engineered type 

theory could be part of the SysML specification. Type theory provides the language 

extensions suggested by the examples with a formal semantics well adapted for use with 

inference engines. To extend the use of reasoning for SysML for behavior constructions 

additional axioms are needed for mechanical inference. Again type theory is well suited for 

representing behavior. The next step in integration of reasoning with SysML is the translation 

of the SysML model into type theory axioms and the integration of a reasoned to operate on 

the translation.  
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