THALES

)

vecl

n any way, in whole orin

ales 2018 All rights reser

; Reconciling with the past,
embracing the future

Lessons learned on implementing
MBSE in Thales

Juan Navas
Thales Corporate Engineering
juan.navas@thalesgroup.com

This document may not be reproduced, modified, adapted, puk
part or disclosed to a third party without the prior written consent o

www.thalesgroup.com

mailto:juan.navas@thalesgroup.com

Thales today

a > 80k employees, > 56 countries company, developing systems for:

AEROSPACE GROUND
TRANSPORTATION DEEENCE

Multi - cultural, multi - industry, multi - background, ...

How to make evolve the engineering practices
in a large organization?

It is not the most
infellectual of the
species that survives; it is
not the strongest that
survives; but the species
that survives is the one
that is able best to
adapt and adjust to the

changing environment

In which it finds itself

0]
/7 A

Reconcile yourself
with your past

Embrace the future

Reconciling with the past:
Models & Textual Requirements

Needs & Contexi
model

helps formalize and
consolidate
stakeholders and
system requirements

Textual Solution model
requirements

helps validate
are at the heart of feasibility,
the current elicit/justify new
engineering requirements for the
practices system/subsystems

Models add rigor to needs expression / solution description

Models can be processed to ensure completeness and consistency

... Why not considering that models ARE requirements?

£
| e)
Wi

= 29" #nual INCOSE
T{F? O"Ian;do‘,n',U‘SA
Y

Augmenting requirements with models to improve
the articulation between system engineering levels
and optimize V&V practices

Jean-Luc Voirin
Thales Airborne Systems
Thales Technical Directorate
ean-luc voirin@fr thalesgroup.com

Stephane Bonnet
Thales Corporate Engineering
stephane bonnet@thalesgroup.com

Juan Navas
Thales Corporate Engineering
uan navas@thalesgroup com

Copyright © 2019 by Stéphane Boznet. Permission granted to INCOSE to publizh and uze

Abstract. Model-based systems engineering has developed significantly over the last few years,
resulting in an increased usage of models in systems specification and architecture description. The
question of the positioning of requirement engineering versus MBSE is a recurrent one. This paper
describes one vision of this articulation where textual and model requirements actually complete each
other. The results are improved contracts across engineering levels and more formalized verification
and validation practices.

Introduction

In most engineering practices today, requirements constitute the main vector for managing technical
contracts between customers and suppliers, at any level of the breakdown. Customers express their
needs as requirements using natural language (“the system shall ...””) and suppliers analyze, interpret,
reformulate, refine, and complete these requirements in order to describe the expectations on the
solution system. A flaw of these practices 1s that requirements are sometimes the main vector to
perform design analysis and describe the architecture of the solution.

Model-based systems engineering (MBSE) has gain popularity in the last ten years. MBSE covers a
very broad spectrum of applications, spanning from high-level architecture modeling to detailed
design at the frontier of simulation. Whatever the scope of application, MBSE is expected to provide

a cartain laval af farmaliem ta nravide a cinola canree af tmith and ta maka the madal a rafarence

Requirements can either be

textual “shall” statements, either

model elements: textual and

model requirements actually

complete each other

Textual
Requirements

R

Model elemenis
Requiremen

ts

-

d-0

N Model requirements Model + textual requirements

@ 555-REQ-005

DH1VOD Movie Play Selectionz . I""Audio Video Media - The system shall interrupt automated flight on
Comma [F205D Mavie Stop Select TEVOD Movie Contro joystick move detection
@ nd VOD lovie Stop lecti
Service [P VOD Movie Pause Selecti =
7
:

oS . e
'VOD Movie Language Se\ecgl% Retrieve YOD Movie D:

BEVOD Movie Selection

Displayed Movie Descripti
Displayed Available Languages

Displayed VOD Movies Lis

Dl Movie Cover

i
s @ Store Digital Media '

'
[™) Manual mode manual motion Ur'ders (™) Automatic mode
\ Q Streaming Protocol | VOD Movie Control

start notification
Audio-Video Stream Header(video: Command

g e V03 o Models formalize stakeholders requirements

Stream Header)
> Audio-Video Packets(packets:Audio Command, seat:Seat)

Video Packet)

3

@ 555-REQ-015

@Streaming Server - The system shall implement the SDB30052019

- TR | regulation when flying over urban a...

a
'

© Media Request & Control drone motion and orientation

Media ID(movie:
- vie;

/
.
— ‘
o ht plan @ Process flight plan D motion instructions -
~ and orientation
B e o © Media Files otion limi
Media File(file:Media File

Some of the Arcadia concepts can be Some expectations (Environmental, Regulations,
considered as Functional and Interfaces efc.) are easier to express with textual

requirements, eventually with related descriptions with traceability links to model
Performance requirements. elements

N-Level:

Tablet is a
constituent of a
drone-based
system

N+1 Level:
Tablet is the
(sub)system
of interest

43 Drone body

Acquire aircraft
@ visuals

Compute drone

&) position and =
attitude

éﬂ @ n|eWn

Compute motion
® orders

D=8l payload cantrol
=l

223 dures and video stre il

D=5l Flight progress
Bl

o
f—

7

D:'mmquesl

g)
light data
g

~.

T

51 computed instructif

Textual
Requirements

% Operator

~_

D=l vidtea_stream
—

—

% @) Detect defects

® Pasition drone
S era orientatio camera

)

bicture seguest

-

Execute
@ automated flight E
= plan

aircraft chaice

Control drone

art netification navigation

Models + Textual
requirements bring
clarity and rigor to

“contracts” between
engineering levels

Textual Model Verification and
WV validation

Version

@ (RV/DV)

Requirements Requirements

R

~ o
-~
-~ o
—_

(Derived,
reconstructed link)

Models + Textual requirements
enable a better coordination and
planning of IVV activities

Embracing the future:
Models and Agility

Models add rigor to needs expression / solution description

Agility on systems engineering is required to cope with customers’
expectations

... Why not implementing Model-Based Agility?

3" 12! INCOSE
!| na’) Cape Town Sgufif\fnca
| ,’ :
Models as enablers of agility
in complex systems engineering

}

Juan Navas Stéphane Bonnet
Thales Corporate Engineering Thales Avionics Technical Directorate
juan navas@thalesgroup com stephane bonnet@thalesgroup com

Jean-Luc Voirin Guillaume Journaux
Thales Airborne Systems Thales Airborne Systems
Thales Technical Directorate guillaume journaux@ fr thalesgroup.com

ean-luc.voirin@fr.thalesgroup.com

Copynght © 2020 by Juan Navas. Permission granted to INCOSE to publich and use

Abstract. Complex systems engineering programs not only deal with the inherent complexity of the
systems they develop, they also face shorter time-to-market, increasing changes in environments and
usages, and more sophisticated industrial schemes. The ability to adapt to new circumstances, or
agility, becomes mandatory. In this paper we present how Model-Based Systems Engineering
(MBSE) approaches can be enablers of the impl on of agility in complex systems engineering
programs. Known to provide additional engineering rigor and quality, MBSE also brings key con-
cepts favoring agility and co-engineering.

Introduction

Agility, defined as the ability to adapt to new circumstances, is intrinsic to systems engineering. The
systems approach highlights the interactions between the system parts and between the system and
the entities external to it, in order to better understand, analyze and develop solutions that satisfy the
expectations and the ¢ of the stakeholders. Such an approach 1s well suited to address the
cases 1n which these expectations and constraints evolve in time, as the elements of the system are
not considered as single entities, but as parts of a whole which environment and context of usage
may evolve in time.

Nevertheless, the way systems engineering has been traditionally implemented in organizations de-
veloping complex systems, struggle to address situations in which expectations and constraints
change at a very fast pace. As the pressure for developing new products and services even faster and
cheaper increases, agility becomes mandatory for organizations developing such systems!.

Model-based practices are
effective enablers of systems
engineering agility

Build the solution in an
incremental way based on
value creation, using system-
level Capabilities and end-to-
end Functional Chains and
Scenarios

Between 2

Gate Gate Itercﬂion X:
production

of macro-
increment X

Concept

Development

Gates, teams terton
go through

phases that can

be iterated:

[terations

increments at %1 to X.n

the team level ® ® ‘ ‘ ‘ ‘ W

——" " Y

Gate Gate

Time

Release

Stakeholder needs
Architecture definition
Design

Implementation

J \ J

“Warm-up” “Run”

Warm-up - collaborative definition Run - iterative effort
of the detailed scope, goals an punctuated by
schedule of the increment and of iteration reviews
the necessary resources

>
“"Evaluation”

Evaluate - assess how the
engineering was performed, that the
expected outcomes are there and
that conditions for pursuing are met

\

Definition of increments with
< Display acquired HD videoin live eXpeCTed FUﬂCTIOhOl ChC“ﬂS
Vertical slices of architectural
\ .

design across need and
solution models

=< Display multi-speciral image in live

Q[s) Display thermal image in live
F< Visualize all collected mission data 'N2C

QB Visualize substance level in live

E e B
© n T 5]

System architectural design

Subsystems, software, etc.

System-level V&V procedures

17

A key concept: Functional Chains

@ State ﬂi

(M) Mode

Functional Chains are sets of
functions working together to
perform a service at a given
context. Functions are
allocated to components work
together through interfaces.

(<) Capability

describes

F< Functional Chain

J/ involves

@ Function

l/ allocated to

Component

provides /
requires

Q Interface

Functional Chains represent
different contexts of usage of a
given capability of the system.
Examples: real-time
visualization, visualization from
recorded dataq, ...

Capabilities are high-level
services for which the customer
is paying for.

Functional Chains describing transverse, end-to-end system-level capabilities at
19 physical architecture level

WHAT ARE YOU DCING, I'M CUTTING
MY GOOD MAN? STONES.

L 1

°.
Qe o

AND 7 I'M BUILDING
-t

20

Model elements such
as Capabilities and
Functional Chains
provide meaning to
what SW developers
are doing

The road to Digital

Engigeering isingdront of

— ‘ . '
ngineering. issi nt of us -

22

Juan Navas

Modelling & Simulation Lead Expert
Thales Corporate Engineering
juan.navas@thalesgroup.com

[linkedin.com/in/junavas

Thank you

e Capella website:
mmmm hitps://www.eclipse.org/capella/

Twitter
https://twitter.com/capella_arcadia

LinkedIn
https://www.linkedin.com/groups/8605600

THALES

mailto:juan.navas@thalesgroup.com
https://www.linkedin.com/in/junavas

