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How to make evolve the engineering practices
in a large organization?



It is not the most
infellectual of the
species that survives; it is
not the strongest that
survives; but the species
that survives is the one
that is able best to
adapt and adjust to the

changing environment

In which it finds itself
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Reconcile yourself
with your past

Embrace the future




Reconciling with the past:
Models & Textual Requirements



Needs & Contexi
model

helps formalize and
consolidate
stakeholders and
system requirements

Textual Solution model
requirements

helps validate
are at the heart of feasibility,
the current elicit/justify new
engineering requirements for the
practices system/subsystems




Models add rigor to needs expression / solution description

Models can be processed to ensure completeness and consistency

... Why not considering that models ARE requirements?
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Abstract. Model-based systems engineering has developed significantly over the last few years,
resulting in an increased usage of models in systems specification and architecture description. The
question of the positioning of requirement engineering versus MBSE is a recurrent one. This paper
describes one vision of this articulation where textual and model requirements actually complete each
other. The results are improved contracts across engineering levels and more formalized verification
and validation practices.

Introduction

In most engineering practices today, requirements constitute the main vector for managing technical
contracts between customers and suppliers, at any level of the breakdown. Customers express their
needs as requirements using natural language (“the system shall ...””) and suppliers analyze, interpret,
reformulate, refine, and complete these requirements in order to describe the expectations on the
solution system. A flaw of these practices 1s that requirements are sometimes the main vector to
perform design analysis and describe the architecture of the solution.

Model-based systems engineering (MBSE) has gain popularity in the last ten years. MBSE covers a
very broad spectrum of applications, spanning from high-level architecture modeling to detailed
design at the frontier of simulation. Whatever the scope of application, MBSE is expected to provide
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Requirements can either be

textual “shall” statements, either

model elements: textual and

model requirements actually

complete each other
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Some of the Arcadia concepts can be Some expectations (Environmental, Regulations,
considered as Functional and Interfaces efc. ) are easier to express with textual

requirements, eventually with related descriptions with traceability links to model
Performance requirements. elements




N-Level:

Tablet is a
constituent of a
drone-based
system

N+1 Level:
Tablet is the
(sub)system
of interest

43 Drone body

Acquire aircraft
@ visuals

Compute drone

&) position and =
attitude

éﬂ @ n|eWn

Compute motion
® orders

D=8l payload cantrol
=l

223 dures and video stre il

D=5l Flight progress
Bl

o
f—

7

D:'mmquesl

g )
light data
g

~.

T

51 computed instructif

Textual
Requirements

% Operator

~_

D=l vidtea_stream
—

—

% @) Detect defects

® Pasition drone
S era orientatio camera

)

bicture seguest

-

Execute
@ automated flight E
= plan

aircraft chaice

Control drone

art netification navigation

Models + Textual
requirements bring
clarity and rigor to

“contracts” between
engineering levels



Textual Model Verification and
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Models + Textual requirements
enable a better coordination and
planning of IVV activities



Embracing the future:
Models and Agility



Models add rigor to needs expression / solution description

Agility on systems engineering is required to cope with customers’
expectations

... Why not implementing Model-Based Agility?
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Abstract. Complex systems engineering programs not only deal with the inherent complexity of the
systems they develop, they also face shorter time-to-market, increasing changes in environments and
usages, and more sophisticated industrial schemes. The ability to adapt to new circumstances, or
agility, becomes mandatory. In this paper we present how Model-Based Systems Engineering
(MBSE) approaches can be enablers of the impl on of agility in complex systems engineering
programs. Known to provide additional engineering rigor and quality, MBSE also brings key con-
cepts favoring agility and co-engineering.

Introduction

Agility, defined as the ability to adapt to new circumstances, is intrinsic to systems engineering. The
systems approach highlights the interactions between the system parts and between the system and
the entities external to it, in order to better understand, analyze and develop solutions that satisfy the
expectations and the ¢ of the stakeholders. Such an approach 1s well suited to address the
cases 1n which these expectations and constraints evolve in time, as the elements of the system are
not considered as single entities, but as parts of a whole which environment and context of usage
may evolve in time.

Nevertheless, the way systems engineering has been traditionally implemented in organizations de-
veloping complex systems, struggle to address situations in which expectations and constraints
change at a very fast pace. As the pressure for developing new products and services even faster and
cheaper increases, agility becomes mandatory for organizations developing such systems!.

Model-based practices are
effective enablers of systems
engineering agility

Build the solution in an
incremental way based on
value creation, using system-
level Capabilities and end-to-
end Functional Chains and
Scenarios
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“Warm-up” “Run”

Warm-up - collaborative definition Run - iterative effort
of the detailed scope, goals an punctuated by
schedule of the increment and of iteration reviews
the necessary resources

>
“"Evaluation”

Evaluate - assess how the
engineering was performed, that the
expected outcomes are there and
that conditions for pursuing are met
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System architectural design

Subsystems, software, etc.

System-level V&V procedures
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A key concept: Functional Chains

@ State ﬂi

(M) Mode

Functional Chains are sets of
functions working together to
perform a service at a given
context. Functions are
allocated to components work
together through interfaces.

(<) Capability

describes

F< Functional Chain

J/ involves

@ Function

l/ allocated to

Component

provides /
requires

Q Interface

Functional Chains represent
different contexts of usage of a
given capability of the system.
Examples: real-time
visualization, visualization from
recorded dataq, ...

Capabilities are high-level
services for which the customer
is paying for.



Functional Chains describing transverse, end-to-end system-level capabilities at
19 physical architecture level
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Model elements such
as Capabilities and
Functional Chains
provide meaning to
what SW developers
are doing
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