

SysML v2 Submission Team (SST) SysML v2 Update January 30, 2021

Sanford Friedenthal SST Co-Lead <u>safriedenthal@gmail.com</u>

www.incose.org/IW2021

30 January 2021

55

Presentation Purpose & Agenda

- Purpose
 - $\odot\,$ Provide an update from the 2020 IW on the status of SysML v2
- Agenda
 - SysML v2 Background and Objectives
 - SysML v2 Submission Team
 - O SysML v2 Approach
 - SysML v2 Language Architecture
 - O SysML v2 API & Services
 - Summary

SysML v2 Background and Objectives

Systems Modeling Language™ (SysML®)

Supports the specification, analysis, design, and verification and validation of complex systems that may include hardware, software, information, processes, personnel, and facilities

- SysML has evolved to address user and vendor needs
 v1.0 adopted in 2006; v1.6 current version; v1.7 in process
- SysML has facilitated awareness and adoption of MBSE
- Much has been learned from using SysML for MBSE

SysML v2 Objectives

Increase adoption and effectiveness of MBSE by enhancing...

- Precision and expressiveness of the language
- Consistency and integration among language concepts
- Interoperability with other engineering models and tools
- Usability by model developers and consumers
- Extensibility to support domain specific applications
- Migration path for SysML v1 users and implementors

4th Qtr 2022

SysML v2 Milestones

December, 2017 SysML v2 RFP issued

June, 2018 SysML v2 API & Services RFP issued

August, 2020 Initial Submission

August, 2021Final Submission (to be confirmed)

4th Qtr 2021 Beta Specification (pending OMG approvals)

Finalized Specification (pending OMG approvals)

SysML v2 Submission Team (SST)

- A broad team of end users, vendors, academics, and government liaisons
 - Over 100 members representing 70+ organizations
- Developing submissions to both RFPs
- Driven by RFP requirements and user needs

- Contact Software
- DEKonsult

•

•

•

.

- Delligatti Associates
- Draper Lab
- Elbit Systems of America
- ESTACA
- Ford
- Fraunhofer FOKUS
- General Motors
- George Mason University
- GfSE
- Georgia Tech/GTRI
- IBM
- Idaho National Laboratory

- Maplesoft
- Mgnite Inc
- MITRE
- ModelAlchemy Consulting
- Model Driven Solutions
- Model Foundry
- NIST
- No Magic/Dassault Systemes
- OAR
- Obeo
- OOSE
- Ostfold University College
- Phoenix Integration
- PTC

- System Strategy *
- Tata Consultancy Services
- Thales
- Thematix
- Tom Sawyer
- UFRPE
- University of Western Switzerland (Rosas Center)
- University of Cantabria
- University of Alabama in Huntsville
- University of Detroit Mercy
- University of Kaiserslautern / VPE
- Vera C. Rubin Observatory
- Vitech
- 88solutions

- 1. Project Management Ed Seidewitz, Sandy Friedenthal
 - Infrastructure John Watson, Chris Delp
- 2. Requirements V&V Sandy Friedenthal
- 3. Profile Development Yves Bernard, Tim Weilkiens
- 4. Metamodel Development Karen Ryan, Chas Galey
- 5. API/Services Development Manas Bajaj
- 6. Pilot Implementation Ed Seidewitz

SysML v2 Approach

- New Metamodel that is not constrained by UML
 - Preserves most of UML modeling capabilities with a focus on systems modeling
 - Grounded in formal semantics
- Robust visualizations based on flexible view & viewpoint specification and execution
 - Graphical, Tabular, Textual
- Standardized API to access the model

SysML v2 Validation Cases

- The following 16 validation cases capture required language functionality reflects 2/3 of the SysML v2 RFP requirements
 - O 1-Parts Tree
 - 2-Parts Interconnection
 - O 3-Function-based Behavior
 - O 4-Functional Allocation
 - O 5-State-based Behavior
 - O 6-Individuals and Snapshots
 - 7-Variant Configuration
 - 8-Requirements

- 9-Verification
- O 10-Analysis and Trades
- O 11-View and Viewpoint
- O 12-Dependency and Allocation
- 0 13-Model Containment
- O 14-Language Extension
- O 15-Properties, Values, & Expressions
- 16-Proxy validation case

Base capability as of January 2020 in process

55

SysML v2 Language Capabilities

SysML v2 Reuse Patterns

- Definition and usage
 - A definition element defines an element such as a part, action, or requirement
 - A usage element is a usage of a definition element in a particular context There can be many different usages of the same definition element in either different contexts or the same context
 - Pattern is applied consistently throughout the language

Variability

- Variation points represent elements that can vary
- Variation applies to all definition and usage elements
- A variant represents a particular choice at a variation point
- A choice at one variation point can constrain choices at other variation points
- A system can be configured by making choices at each variation point consistent with specified constraints

55

SysML v2 Notation (1 of 2) Textual and Graphical

```
package 'Vehicle Parts Tree' {
  part vehicle {
    attribute mass;
    perform providePower:
    part engine {
      attribute mass;
       perform generateTorque;
      part cylinders [6];
    part transmission {
      attribute mass;
      perform amplifyTorque;
package 'Vehicle Action Tree'{
    action providePower {
       action generateTorque;
       action amplifyTorque;
```


SysML v2 Notation (2 of 2) Textual and Graphical

Tom Sawyer Visualization Prototype

SysML v2 Language Architecture

SysML v2 Language Architecture SST

SysML v2 API & Services

SysML v2 API & Services

- Enables other tools and applications to access SysML models in a standard way
- Provides services to:
 - Create, update, and delete elements
 - Query and navigate model
 - Other services including support for model management, analysis, transformation, and file export generation
- Support systems engineering functional threads such as change impact assessment
- Facilitates use of different implementation technologies such as REST/HTTP, Java, or OSLC

Pilot Implementation Using Standard API

High-Level Architecture of SysML v2 Testbed

30 January 2021

SST

SysML v2 API and Services Progress

- Mandatory Services
 - Model Navigation, Creation, Update, Deletion Services
 - External Relationship Management Service
- Non-Mandatory Services
 - Model Query Service
 - Advanced Model Construction Services (realized by client side API calls)
 - Model View and Viewpoint Management Services
 - Model Analysis Services
 - Model Management Services
 - Versioning Service
 - Branching Service
 - Model Transformation Services
 - General Services Timestamp and UUID generation, API Call Back
- API Platform-Specific Models (API PSMs)
 - REST/HTTP binding
 - OSLC 3.0 binding

Base capability as of January 2021 in process

Summary

Contrasting SysML v1 with SysML v2 SST

• Simpler to learn and use

- Systems engineering concepts designed into metamodel versus added-on
- Consistent use of definition and usage pattern
- More consistent terminology
- Ability to decompose parts, actions, ...

• More precise

- Textual syntax and expression language
- Formal semantic grounding
- O Requirements as constraints
- Reified relationships (e.g., membership, annotation)

• More expressive

- $\ensuremath{\circ}$ Variant modeling
- Analysis case
- Trade-off analysis
- Individuals, snapshots, time slices
- More robust quantitative properties (e.g., vectors, ..)
- Query expressions
- More extensible
 - Simpler language extension capability
 - Based on model libraries
- More interoperable
 - Standardized API

SST Public Repositories

- Current release: 2020-12 (2021-01 planned for early February)
- Monthly release repository
 - O <u>https://github.com/Systems-Modeling/SysML-v2-Release</u>
- Release content
 - Specification documents (for KerML, SysML and API)
 - Training material for SysML textual notation
 - Example models (in textual notation)
 - Installer for Jupyter tooling
 - Installation site for Eclipse plug-in
 - Web access to prototype repository via SysML v2 API
 - Web access to Tom Sawyer visualization tooling
- Open-source repositories
 - O <u>https://github.com/Systems-Modeling</u>
- Google group for comments and questions
 - <u>https://groups.google.com/g/SysML-v2-Release</u>
 (to request membership, provide name, affiliation and interest)

Summary

SST

- SysML v2 is addressing SysML v1 limitations to improve MBSE adoption and effectiveness
 - Precision, expressiveness, usability
 - Interoperability with other engineering models and tools

Initial approach

- Simplified SysML v2 metamodel with formal semantics overcomes fundamental UML limitations
- Flexible graphical notations and textual notation
- Standardized API for interoperability
- Roadmap established to revised submission

Upcoming Events

- SysML v2 Session at IW Demo and Q&A at IW (2 repeat sessions)
 - Session 1 on Sun, Jan 31, 13:00 15:00 US ET
 - Session 2 on Mon, Feb 1, 09:00 11:00 US ET
- SysML v2 Stakeholder Review (2 repeat sessions)
 - Session 1 on Tue, Feb 23, 09:00 15:00 US ET
 - Session 2 on Thu, Feb 25, 11:00 17:00 US ET

Primary References

Monthly Release Repository <u>https://github.com/Systems-Modeling/SysML-v2-Release</u>

Friedenthal S., Seidewitz E., A Preview of the Next Generation System Modeling Language (SysML v2), Project Performance International (PPI), <u>Systems Engineering Newsletter, PPI</u> SyEN 95 27 November, 2020

Thank you!!