
2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

Eric Honour
+1 (615) 614-1109

ehonour@hcode.com

An Effective, Tool-Supported Methodology for
SoS Engineering in Europe

Near-final results from the three-year DANSE project.

1
January 2015

Honourcode, Inc.

Agenda

n  Systems of systems concepts
n  DANSE methodology
n  Solution methods
n  DANSE tools
n  Implementation

DANSE Methodology Training 2

DANSE
Methodology

Integrated Water
Treatment and Supply

Air Traffic
Management

Automated
Ground Transport

Emergency
Response

2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

Systems of Systems Concepts

What does DANSE mean by a system of systems?
To what kinds of projects does this methodology

apply?

3

Honourcode, Inc.

SoS

control
constit.
system

subsys
subsys
subsys
subsys

source info services

Architecture of an SoS

Constituent systems
n  Independently operated and

managed
n  Gather/receive source info
n  Perform services
n  Interact

System of systems
n  Provides emergent services through

system interactions

Systems of Systems Concepts

constit.
system

subsys
subsys

subsys
subsys

source info services

constit.
system

subsys
subsys

subsys
subsys

source info services

constit.
system

subsys
subsys

subsys
subsys

source info services

constit.
system

subsys
subsys

subsys
subsys

source info services

source info

services

Evolution
sys

model
sys

model

SoS
model

DANSE partners
business opportunities

n  Can be modeled n  May need control

4

Honourcode, Inc. SoS Design: Current Research

SoS Characteristics

A System is a “System of Systems” if it exhibits
significant amounts of:

n  Emergent behavior - SoS performs functions not
achievable by the independent component systems

n  Geographic distribution - geographic extent forces the
elements to exchange information in a remote way

n  Evolutionary development - functions and purposes are
added, removed and modified in an ongoing way

n  Operational independence - component systems have
purpose even if detached

n  Managerial independence - component systems are
developed and managed for their own purposes
- Mark Maier 1998, “Architecting Principles for SoS,” Systems Engineering (INCOSE)

5

Honourcode, Inc.

DANSE Region of Interest

Systems of Systems Observed Characteristics

Opera&onal	
Independence	

Managerial	
Independence	

Evolu&onary	
Development	

Emergent	 	
Behaviour	

Geographic	
Distribu&on	

LOW

HIGH

MED

The Internet

Supply Chain Management

Military

Airport

Differing Levels of “SoS-ness”

Integrated Water
Treatment/Supply
Air Traffic Management
Autonomous Ground
Transport

Emergency Response

Systems of Systems Concepts

Virtual

Collaborative

Acknowledged

Directed

6

Primary work: Honourcode

Honourcode, Inc.

Emergency Response SoS

Communicate

MeteoCom: Control Centre

WaterCom: Control Centre

Additional Actors
providing add. Resources

& Capabilities

FireCom: Control Centre

FireBrigade_4: FireStation

FireBrigade_1: FireStation

FireBrigade_2: FireStation

FireBrigade_3: FireStation

Hospital_1: Hospital

Hospital_2: Hospital

Hospital_3: Hospital

Communicate/ control

MRS_1: Mobile
Radio System

TDAS: Threat Detection &
Alert System

Control

communicate/ control

MRS_3: Mobile
Radio System

communicate

MRS_2: Mobile
Radio System

PoliceCom: Control Centre

Police_3: PoliceStation

Police_2: PoliceStation

Police_1: PoliceStation

Police_4: PoliceStation Police_5: PoliceStation

WaterPolice_1: WaterPoliceStation

WaterPolice_2: WaterPoliceStation

Catastrophe &
Emergency CCC

Primary work: Airbus

Honourcode, Inc.

Emergency Response SoS Dynamicity

Design Exploration
Architecture Alternatives

Run Time Analysis
& Simulation

Modelling the
SoS

SoSE Challenges

Years

Decades

Hours

Minutes

Life Cycle
Dynamicity

System
Dynamics

Operational
Dynamicity

So
S

op
er

at
io

na
l t

im
el

in
e

an
d

dy
na

m
ic

ity
 a

sp
ec

ts

Improved Emergency response performance in terms of

response time to emergency call and situational awareness

Population increase

New C4I command & control organization & communication
system (e.g. introduction of LTE)

New buildings, roads and crossroads are created

New fire, police and health care department stations are
built or moved (More stations in order to serve smaller city

areas)

More fire, police and health care department units are
allocated

Primary work: Airbus

2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

DANSE Methodology

What is the DANSE project?
What is the life cycle of an SoS?

How does the DANSE methodology work in that life
cycle?

9

Honourcode, Inc.

DANSE Consortium

Loughborough
University

Airbus France

THALES

INRIA
Rennes

SODIUS Advanced Laboratory
on Embedded Systems

OFFIS
Co-ordinator

Airbus Germany

Carmeq

Israel Aerospace
Industries

IBM Haifa

Contact:
Bernhard Josko
josko@offis.de

Honourcode
(technical support)

Course Introduction 10

Honourcode, Inc.

DANSE Project

n  Develop approaches for SoS engineering (design + manage)
n  Methodology to support evolution, adaptive and iterative SoS lifecycle
n  Contracts as semantically-sound model for SoS interoperations
n  Architecting Approaches for SoS – continuous and non-disruptive

constituent system integration
n  Supportive tools for SoS analysis, simulation, optimization

n  Validation by real-life test cases
n  Emergency Response; Integrated Water Treatment and Supply;

Air Traffic Management; Autonomous Ground Transport

SoS Design: Current Research 11

Honourcode, Inc.

DANSE SoS Life Cycle

Single model to embody the
integrating thoughts

n  An initiation phase
n  Optional creation phase
n  Forward movement

through the SoS life
n  Constant cycling of events/

scenarios
n  A “capability learning cycle”

n  Where the DANSE
benefit happens!

n  Normal Vee-based SE in
the constituent systems

DANSE Methodology 12

SoS	
Ini&a&on	
Phase	

TIME

SoS	 Opera&on	 Phase	
(con&nuous)	

SoS	
Engineering	

Cons&tuent	
Systems	

Engineering	

Capability	
Learning	 Cycle	

Model	 SoS	 behaviour	

Operate	 the	 SoS	

Define	 poten&al	 needs	

Analyze	 possible	 architecture	 changes	

Influence	 and	 implement	 changes	

(SoS	
Crea&on	
Phase)	

Alternate	 star*ng	 points:	
•  SoS	 is	 acknowledged	 among	 exis&ng	 systems	
•  SoS	 is	 created	 by	 a	 Lead	 System	 Integrator	

Primary work: Honourcode

Honourcode, Inc.

TIME

Model	 SoS	 behaviour	

Operate	 the	 SoS	

Define	 poten&al	 needs	

Analyze	 possible	 architecture	 changes	

Influence	 and	 implement	 changes	

SoS	
Engineering	

Cons&tuent	
Systems	

Engineering	

Capability	
Learning	

Cycle	

SoS	 Opera&on	 Phase	
(con&nuous)	

(SoS	
Crea&on	
Phase)	

SoS	
Ini&a&on	
Phase	

Capability Learning Cycle

n  Constantly improve the SoS by a cycle
of learning:
n  Define potential needs
n  Analyze possible architecture

changes using models
n  Influence and implement changes

DANSE Methodology 13

SoS

SoS
ctrl sys

source info
services

system
subsys

subsys
subsys

subsys

source info services

system
subsys

subsys
subsys

subsys

source info services

system
subsys

subsys
subsys

subsys

source info services

system
subsys

subsys
subsys

subsys

source info services

source info services

source info services

source info services

source info services

source info services

system
model

model
model

system
model

model
model

system
model

model
model system

model
model

model

SoS
model

model
model

Capability	
Learning	 Cycle	

Primary work: Honourcode

2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

DANSE Solution Methods

What actions can an SoS manager/architect perform
within the DANSE methodology?

14

Honourcode, Inc.

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Solution Methods

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

DANSE Solution Methods 15

Honourcode, Inc.

Solution Methods

DANSE Solution Methods 16

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Honourcode, Inc.

Solution Methods in the Lifecycle

DANSE Solution Methods 17

• Configure DANSE Tool-Net environment
• Model SoS
• Abstract constituent system models
• Share models • Perform joint simulation

• Evaluate emergent behaviour

• Evaluate goals and contracts
• Perform joint simulation
• Evaluate emergent behaviour

• Evaluate goals and contracts
• Apply architecture patterns
• Generate architecture alternatives
• Generate optimized architectures
• Optimize SoS architecture
• Perform joint simulation
• Evaluate emergent behaviour
• Perform statistical model checking
• Perform formal verification
• Share models

• Evaluate goals and contracts
• Optimize SoS architecture
• Perform joint simulation
• Evaluate emergent behaviour
• Perform formal verification
• Share models

Primary work: Honourcode

Honourcode, Inc.

Example “Use Case” of Methodology

DANSE Solution Methods 18

SoS Requirements Analysis SoS Goals/Contracts

SoS Modelling

SoS Architecture Model
(UPDM/NAF/etc.)

Activities

Products

Architecture Optimization

Alternative Architecture
Generation

Patterns

CS Modelling

Joint Simulation
Emergent Behaviour

Parametric Analysis

Statistical Model Checking Formal Verification

Primary work: Honourcode

Honourcode, Inc.

DANSE Tools

19

UPDM Rhapsody

Real SoS

DANSE Tools

Joint
Simulation

Statistical
Model
Checking

Constituent
Systems

2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

DANSE Tools

What automated tools does DANSE provide to support
the solution methods?

20

Honourcode, Inc.

Solution Methods
Modeling

DANSE Solution Methods 21

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Honourcode, Inc.

UPDM Overview

n  “Unified Profile for DoDAF and MoDAF,” also covers NAF
All Viewpoint Capability

Viewpoint

Data &
Information
Viewpoint

Operational
Viewpoint

Project
Viewpoint

Services
Viewpoint

Standards
Viewpoint

Systems
Viewpoint

Operational Viewpoint
OV-1 High-Level Operational Concept

Graphic
OV-2 Operational Resource Flow

Description
OV-3 Operational Resource Flow Matrix
OV-4 Organizational Relationships Chart
OV-5a Operational Activity Decomposition

Tree
OV-5b Operational Activity Model
OV-6a Operational Rules Model
OV-6b State Transition Description
OV-6c Event-Trace Description

Systems Viewpoint
SV-1 Systems Interface Description
SV-2 Systems Resource Flow Descr.
SV-3 Systems-Systems Matrix

SV-4 Systems Functionality Description
SV-5a Operational Activity to Systems

Function Traceability Matrix
SV-5b Operational Activity to Systems

Traceability Matrix
SV-6 Systems Resource Flow Matrix
SV-7 Systems Measures Matrix
SV-8 Systems Evolution Description
SV-9 Systems Technology and Skills

Forecast
SV-10a Systems Rules Model
SV-10b Systems State Transition

Description
SV-10c Systems Event-Trace Description

Honourcode, Inc.

Executable UPDM Views

n  SoS model should be executable as a simulation
n  Compare results with real world
n  Project “what if” scenarios

n  These views support execution, lead to joint simulation

SoS Modeling 23

View Name Simulation

OV-5a Operational Activity
Decomposition Tree

SysML BDD, IBD: structure of OV executable
elements

OV-5b Operational Activity Model SysML Use Case, Activity forms

OV-6b State Transition Description SysML State diagrams

OV-6c Event-Trace Description SysML Sequence diagrams

SV-1 Systems Interface Description SysML BDD, IBD: structure of SV executable
elements

SV-4 Systems Functionality Description SysML Use Case, Activity forms

SV-10b Systems State Transition
Description

SysML State diagrams

SV-10c Systems Event-Trace Description SysML Sequence diagrams

Honourcode, Inc.

Progressive Level of Detail

n  No “Big Bang” – complexity of SoS prevents ability to create a
full SoS model
n  Constituent systems changing on their own
n  Do the math … SoS typically changes monthly!

n  Create SoS models at progressive levels of detail
n  High level abstracted representation

•  Quick simulations, moderate accuracy, few emergent
behaviours

DANSE Methodology Training 24

Primary work: Thales

n  States and modes representation
•  More detail using abstracted CS

models
n  Details from CSs as available

•  Best simulation, richest emergent
behaviours

Honourcode, Inc.

Constituent System Models

CS1 CS2 use

communicate

authority SoS View

System View

Com-Link

sendToDistirct(…)

requestStatus(…)

Lift systems on the level of
SoS

25 Abstraction Methods

Primary work: OFFIS

Honourcode, Inc.

Abstraction Methods

Abstraction Methods 26

Partner
Group nodes with
similar interactions

Spotlight
Focus on key elements,

others generalized

Timing
Focus on timing issues;

other issues ignored

Steady State
Focus on stable states
& transitions among

Statistical
Match statistical

behavior w/o details

Flow
Focus on I/O and key

parameters

…others also exist

Primary work: OFFIS

Honourcode, Inc.

Solution Methods
Goals and Contracts

DANSE Solution Methods 27

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Honourcode, Inc.

Goals and Contracts as SoS
“Requirements”

n  Goal: statement of a desired condition, with quantifiable
measurement of the degree to which it is met.
n  Communications coverage over the urban area

 (% area covered)
n  Response time to a fire

 (minutes between call and arrival)
n  Graded levels of performance

n  Contract: statement of an essential condition, with
quantifiable measurement whether it is met.
n  Within the urban area, response time to a fire is no greater

than 15 minutes with probability 99.5%
n  Catastrophe and Emergency Center has direct

communications with all fire, police, ambulance centers
n  Yes/No evaluation

Adaptive Evolution 28

Primary work: OFFIS

Honourcode, Inc.

Goals/Contracts Specification
Language (GCSL) Overview

n  Bridges the gap between
n  Natural language used by people
n  Formal languages required by analysis

tools
n  Textual pattern with specific semantics
n  Formalization process

1.  Define natural language goals/contracts
2.  Structure each statement into the

•  Assumption part (“If X is true…”) and the
•  Promise part (“…then Y must be true”)

3.  Select a GCSL pattern for the type of
relation

4.  Write “X” and “Y” in the GCSL syntax

Goals and Contracts Specification Language 29

Catastrophe and Emergency
Center has direct comms
with all police centers

If CEC exists…
…then it has direct comms
with all police centers

SoS.itsCEC->exists(CEC) implies
SoS.itsCEC->ForAll(PoliceCenter->
comms=true)

Primary work: OFFIS

Honourcode, Inc.

GCSL Editor

n  Rhapsody plug-in, part of DANSE UPDM profile extensions
n  Create UPDM block

n  Associated with SoS object of interest
n  Contains GCSL statements

n  GCSL Editor checks syntax

Goals and Contracts Specification Language 30

Primary work: OFFIS

Honourcode, Inc.

Solution Methods
Architecture Exploration

DANSE Solution Methods 31

Nbr Solution Method What it Does

1 Model SoS Create UPDM SoS model, particularly
focused on the SoS behaviour

2 Abstract CS model Make a pre-existing (or new) constituent
system model available for joint use with
the SoS model

3 Apply architecture
patterns

Build or enhance the SoS model by the
use of a repository of useful patterns,
proven by prior use

4 Generate architecture
alternatives

Create multiple architecture alternatives
for analysis, by the use of graph
grammar constructs

5 Generate optimized
architectures

Create and evaluate multiple architecture
alternatives using concise modelling, with
selection of an optimum

Honourcode, Inc.

SoS Architecture Patterns

n  Templates to describe solutions to
known problems
n  Context – Problem - Solution

n  Provide a generalized guideline to
realize certain architecture
characteristics.

n  Built on a common anatomy

n  DANSE has developed an SoS
pattern repository
n  Searchable database of patterns
n  UPDM profiles that can be

inserted into the SoS model

Architecture Patterns

Response
System A

Command
System 1

Intelligence
System 1

Response
System B

Response
System C

Response
System D

Intelligence
System 2

Intelligence
System 3

Intelligence
System 4

Command
System 2

Command
System 3

Command
System 4

Response
System A

Command
System

Intelligence
System 1

Response
System B

Response
System C

Response
System D

Intelligence
System 2

Intelligence
System 3

Intelligence
System 4

Response
System A

Local
Command
System 1

Command
System

Intelligence
System 1

Intelligence
System

Response
System B

Response
System C

Response
System D

Local
Command
System 2

Intelligence
System 2

Intelligence
System 3

Intelligence
System 4

Response
System A

Command
System 1

Intelligence
System 1

Response
System B

Response
System C

Response
System D

Intelligence
System 2

Intelligence
System 3

Intelligence
System 4

Command
System 2

Command
System 3

Command
System 4

Response
System A

Local
Command
System 1

Intelligence
System 1

Command /
Intelligence

System

Response
System B

Response
System C

Response
System D

Local
Command
System 2

Intelligence
System 2

Intelligence
System 3

Intelligence
System 4

De
si

gn

Pa
tte

rn
s

Component
 Models

Systems
 Models

SoS Life Cycle Support

A
l
w
a
y
s
d
o
t
h
i
s
i
n
a
d
d
it
i
o
n
t
o
a
n
y
o
t
h
e
r
o
p
ti
o
n

D
e
c
i
s
i
o
n

D
e
c
i
s
i
o
n

A
l
w
a
y
s
d
o
t
h
i
s
i
n
a
d
d
it
i
o
n
t
o
a
n
y
o
t
h
e
r
o
p
ti
o
n

If
'
N
o
',
d
o
t
h
i
s

If
'
Y
e
s
',
d
o
t
h
i
s

YesNo

A
f
t
e
r
d
o
i
n
g
t
h
i
s
..
.

..
.
a
n
d
t
h
i
s
.

..
.
d
o
t
h
i
s
..
.

Operational
 Models

Ar
ch

ite
ct

ur
al

Pa

tte
rn

s

In
te

ra
ct

io
n

Pa
tte

rn
s

32

Primary work: Loughborough Univ

Honourcode, Inc.

Architecture Pattern Anatomy

The Author of
the Pattern

Rhapsody Models
Available for

Download

Any key words
that may

appear in the
pattern that

will be useful
when looking
up the pattern
in a repository.

Name of Pattern

This refers to the
problem and why
you would use the

pattern to
address the issue.

Statement of why
the pattern would

be utilised to
address the design

problem or
situation. It will
help understand
the structure and

consequences later
in the pattern.

Also known as.

Diagram of
Pattern’s
Structure

14 other fields also available

Primary work: Loughborough Univ

Honourcode, Inc.

Architecture Patterns Repository

Sophisticated online repository for
architecture patterns with powerful search
capabilities, option to store new patterns.
The repository exists itself in three forms;

a document-based repository,
a repository of IBM Rhapsody profiles,
and
an online searchable repository with the
option to download IBM Rhapsody
SysML/UPDM profiles for inclusion in
DANSE Tool-net.

 34

 Architecture Patterns repository includes larger catalog of patterns
 e.g. UPDM, SysML,Test Cases etc.

Accessed via:
Conventional web browser (all popular browsers supported),
Apple iPad running the free FileMaker App – FileMaker Go.
User run-time version of FileMaker

Primary work: Loughborough Univ

Honourcode, Inc.

RHS LHS

Graph Grammar

1.   Reader: Matched, not changed.
2.   Eraser: Matched and removed.
3.   Creator: Added to the model.
4.   Embargo: Prevents the match.

FS

FT FT FT FT

PS FS

FT FT FT FT

FS

Story Chart

FS

FT FT FT FT

PS FS

FS

FT FT

FS

FT FT FT FT

PS FS

FT FT FT FT FT

FS

FT FT FT FT

FS

FT FT FT

FS

FT FT FT FT

PS FS FS

FT FT FT FT

PS

FS

FS

FT FT FT FT

PS

Architecture Generation: Graph Grammar

n  Rules for changing the form of a set of relationships
n  Left hand side (LHS) depicts a pattern that can be matched
n  Right hand side (RHS) depicts a transformed version
n  Story Chart combines LHS and RHS into a transformation rule

n  Any successful find of the LHS pattern can be replaced with the RHS
n  This method can automatically

 generate new architectures

FT: Fire truck
FS: Fire station
PS: Police station

 35

Primary work: OFFIS

Honourcode, Inc.

DANSE Graph Grammar

•  Story Charts implemented as special UPDM diagrams
•  Based on a UPDM profile to enable the modeling of a rule
•  Revised models created automatically by applying the rules

•  Can match models in any BDD or IBD

Architecture Generation: Graph Grammar 36

Primary work: OFFIS

Honourcode, Inc.

Exploration of Design Space

Contract
Violation

Low Goal
Satisfaction

OK

OK

OK

Low Goal
Satisfaction

Low Goal
Satisfaction

Contract
Violation

Contract
Violation

Contract
Violation

Contract
Violation

Contract
Violation

SoS contract
• Assumption
… (GCSL)
• Promise
… (GCSL)

Primary work: OFFIS

Honourcode, Inc.

Reachability of Future Architectures

Centralized Decentralized

Contract
Violation

Low Goal
Satisfaction

OK

38 Architecture Generation: Graph Grammar

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

Intermediate

×

Intermediate

Intermediate

×
Intermediate

Intermediate

Intermediate

Intermediate

Intermediate ×

×

Primary work: OFFIS

Honourcode, Inc.

Architecture Optimization Concept

39 Architecture Optimization: Concise Modelling

Primary work: IBM

Honourcode, Inc.

Concise Modeling

SysML models combined with tabular data
n  SysML depicts the system composition rules (architectural

template or pattern)
n  Tables contain instantiations, variations in quantities or

parameters
n  Automatic Generation tool creates architecture variants by

applying the table data to the template

Architecture Optimization: Concise Modelling

DMS_Technical
«block»

switches1..*

power

switchToSwitchConnector

RDCs1..*

power

network

doorClosedSensors1..*power output

latchActuators1..*
power

control

controllers1..*

power

network

powerBays2

power

doorLockedSensors1..*power
output

doorLatchedSensors1..*

power
output

lockActuators1..*
power control

switchToSwitchConnector

DMS_Expanded.DoorLatchActuator @ Door 6_225:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.RDC @ Door 6_229:RDC
1 «block,VaryingPart» power:intdevice

network

Link_110106Link_110106

DMS_Expanded.DoorLockActuator @ Door 3_166:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.Controller @ Avionics Bay_105:Controller
1 «block,VaryingPart» power:intnetwork

Link_81080

DMS_Expanded.RDC @ Door 3_167:RDC
1 «block,VaryingPart» power:intdevice

network

Link_81080

DMS_Expanded.Switch @ Switch Bay 1_113:Switch
1 «block,VaryingPart» power:int

network[NumOfPorts]

Link_41049

Link_110049

Link_41049

Link_110049

DMS_Expanded.DoorClosedSensor @ Door 4_171:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

DMS_Expanded.DoorLockedSensor @ Door 1_138:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.DoorLockedSensor @ Door 4_174:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.DoorLockActuator @ Door 1_142:DoorLockActuator
1 «block,VaryingPart»

power:int
control

DMS_Expanded.DoorLatchActuator @ Door 4_177:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorClosedSensor @ Door 2_147:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

DMS_Expanded.DoorLockActuator @ Door 4_178:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLatchActuator @ Door 2_153:DoorLatchActuator
1 «block,VaryingPart» power:int

control

Link_90084

DMS_Expanded.RDC @ Door 4_179:RDC
1 «block,VaryingPart»

latency:float=50.0
power:float=15.0

 Operations

power:intdevice

network

Link_90086

Link_90088

Link_90049
Link_90089

Link_90084

Link_90086

Link_90088

Link_90049
Link_90089

DMS_Expanded.RDC @ Door 2_155:RDC
1 «block,VaryingPart»

weight:float=0.138
analog:int

 Operations

power:int

device

network

Link_72070Link_72049

Link_72066

Link_72070Link_72049

Link_72066

DMS_Expanded.DoorClosedSensor @ Door 5_207:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_81077
DMS_Expanded.DoorLockedSensor @ Door 3_162:DoorLockedSensor
1 «block» power:intoutput Link_81077

DMS_Expanded.DoorLockedSensor @ Door 5_210:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.Switch @ Switch Bay 1_108:Switch
1 «block,VaryingPart» power:int

network[NumOfPorts]

Link_44049

Link_81044

Link_44049

Link_81044

DMS_Expanded.DoorLatchActuator @ Door 5_213:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLatchActuator @ Door 1_141:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLockActuator @ Door 5_214:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLockedSensor @ Door 2_150:DoorLockedSensor
1 «block» power:intoutput

Link_72068Link_72068

Link_100097

DMS_Expanded.RDC @ Door 5_216:RDC
1 «block,VaryingPart» power:intdevice

network

Link_100098

Link_100095
Link_100093 Link_100044

Link_100097
Link_100098

Link_100095
Link_100093 Link_100044

Link_81075

DMS_Expanded.DoorClosedSensor @ Door 3_159:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_81075

Link_110103

DMS_Expanded.DoorClosedSensor @ Door 6_220:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_110103

DMS_Expanded.DoorLockActuator @ Door 2_154:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

Link_72071Link_72071

DMS_Expanded.DoorLatchActuator @ Door 3_165:DoorLatchActuator
1 «block,VaryingPart» power:intcontrolLink_81079Link_81079

DMS_Expanded.RDC @ Door 1_145:RDC
1 «block,VaryingPart» power:intdevice

network

Link_65062

Link_65059

Link_65061

Link_65044

Link_65062

Link_65059

Link_65061

Link_65044

Link_110104
DMS_Expanded.DoorLockedSensor @ Door 6_222:DoorLockedSensor
1 «block» power:intoutput Link_110104

Link_40044

DMS_Expanded.Controller @ Avionics Bay_102:Controller
1 «block,VaryingPart» power:intnetwork Link_40044

DMS_Expanded.DoorLockActuator @ Door 6_226:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

Link_110107Link_110107

DMS_Expanded.DoorClosedSensor @ Door 1_136:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_65058Link_65058

40

Primary work: IBM

Honourcode, Inc.

Dashboard for Architecture
Optimization

•  Single environment
n  Main tool of the Systems Engineer
n  Controlling the design and analysis

process

•  Based on Design Manager and JTS

•  Interaction with modeling
environments
n  Review and comment mechanisms
n  Models import / export control
n  Back-end model transformations

•  Integration with analysis tools
n  Simulations, computations, domain

specific views
n  White-box, black-box
n  Analysis results feedback into models

•  Visual analytics

Modeling
management

Data management

DMS_Expanded.DoorLatchActuator @ Door 6_225:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.RDC @ Door 6_229:RDC
1 «block,VaryingPart» power:intdevice

network

Link_110106Link_110106

DMS_Expanded.DoorLockActuator @ Door 3_166:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.Controller @ Avionics Bay_105:Controller
1 «block,VaryingPart» power:intnetwork

Link_81080

DMS_Expanded.RDC @ Door 3_167:RDC
1 «block,VaryingPart» power:intdevice

network

Link_81080

DMS_Expanded.Switch @ Switch Bay 1_113:Switch
1 «block,VaryingPart» power:int

network[NumOfPorts]

Link_41049

Link_110049

Link_41049

Link_110049

DMS_Expanded.DoorClosedSensor @ Door 4_171:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

DMS_Expanded.DoorLockedSensor @ Door 1_138:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.DoorLockedSensor @ Door 4_174:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.DoorLockActuator @ Door 1_142:DoorLockActuator
1 «block,VaryingPart»

power:int
control

DMS_Expanded.DoorLatchActuator @ Door 4_177:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorClosedSensor @ Door 2_147:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

DMS_Expanded.DoorLockActuator @ Door 4_178:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLatchActuator @ Door 2_153:DoorLatchActuator
1 «block,VaryingPart» power:int

control

Link_90084

DMS_Expanded.RDC @ Door 4_179:RDC
1 «block,VaryingPart»

latency:float=50.0
power:float=15.0

 Operations

power:intdevice

network

Link_90086

Link_90088

Link_90049
Link_90089

Link_90084

Link_90086

Link_90088

Link_90049
Link_90089

DMS_Expanded.RDC @ Door 2_155:RDC
1 «block,VaryingPart»

weight:float=0.138
analog:int

 Operations

power:int

device

network

Link_72070Link_72049

Link_72066

Link_72070Link_72049

Link_72066

DMS_Expanded.DoorClosedSensor @ Door 5_207:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_81077
DMS_Expanded.DoorLockedSensor @ Door 3_162:DoorLockedSensor
1 «block» power:intoutput Link_81077

DMS_Expanded.DoorLockedSensor @ Door 5_210:DoorLockedSensor
1 «block» power:intoutput

DMS_Expanded.Switch @ Switch Bay 1_108:Switch
1 «block,VaryingPart» power:int

network[NumOfPorts]

Link_44049

Link_81044

Link_44049

Link_81044

DMS_Expanded.DoorLatchActuator @ Door 5_213:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLatchActuator @ Door 1_141:DoorLatchActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLockActuator @ Door 5_214:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

DMS_Expanded.DoorLockedSensor @ Door 2_150:DoorLockedSensor
1 «block» power:intoutput

Link_72068Link_72068

Link_100097

DMS_Expanded.RDC @ Door 5_216:RDC
1 «block,VaryingPart» power:intdevice

network

Link_100098

Link_100095
Link_100093 Link_100044

Link_100097
Link_100098

Link_100095
Link_100093 Link_100044

Link_81075

DMS_Expanded.DoorClosedSensor @ Door 3_159:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_81075

Link_110103

DMS_Expanded.DoorClosedSensor @ Door 6_220:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_110103

DMS_Expanded.DoorLockActuator @ Door 2_154:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

Link_72071Link_72071

DMS_Expanded.DoorLatchActuator @ Door 3_165:DoorLatchActuator
1 «block,VaryingPart» power:intcontrolLink_81079Link_81079

DMS_Expanded.RDC @ Door 1_145:RDC
1 «block,VaryingPart» power:intdevice

network

Link_65062

Link_65059

Link_65061

Link_65044

Link_65062

Link_65059

Link_65061

Link_65044

Link_110104
DMS_Expanded.DoorLockedSensor @ Door 6_222:DoorLockedSensor
1 «block» power:intoutput Link_110104

Link_40044

DMS_Expanded.Controller @ Avionics Bay_102:Controller
1 «block,VaryingPart» power:intnetwork Link_40044

DMS_Expanded.DoorLockActuator @ Door 6_226:DoorLockActuator
1 «block,VaryingPart» power:intcontrol

Link_110107Link_110107

DMS_Expanded.DoorClosedSensor @ Door 1_136:DoorClosedSensor
1 «block,VaryingPart» power:intoutput

Link_65058Link_65058

Multiple
Analyses

Results management

Back-Annotation

Objectives
management

41 Architecture Optimization: Concise Modelling

Primary work: IBM

Honourcode, Inc.

Solution Methods
Joint Simulation and Analysis

DANSE Solution Methods 42

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Honourcode, Inc.

Performance Evaluation Concepts

n  Have generated multiple architecture alternatives
n  Patterns application
n  Graph grammar automated generation
n  Concise modeling with optimization

n  Need SoS joint simulation to evaluate performance
n  Predict characteristics of interest
n  Evaluate contracts and goals during simulation
n  Dynamic aspects of optimization
n  Stochastic variability

n  Provide information for decision analysis

Joint Simulation: Performance Evaluation 43

Honourcode, Inc.

Joint simulation

Constituent
Systems

SoS
Specification

UPDM

FMI

Constituent
Systems

Models

SoS
Structure

•  FMI standard for component integration
•  Constituent system models exported as FMUs from tool
•  SoS architecture exported to DESYRE
•  FMUs imported in DESYRE
•  Simulation run in DESYRE
•  Simulation results output from DESYRE

44 Joint Simulation: Performance Evaluation

Primary work: ALES

Honourcode, Inc.

FMI Standard

Over 35 tools support FMI

45 Joint Simulation: Performance Evaluation

Honourcode, Inc.

Statistical Model Checking Concepts

n  Have multiple architecture alternatives,
evaluated
n  Generated through different methods
n  Simulated with statistical results
n  Values for characteristics of interest

n  Still must check for formal verification
n  Meet “requirements”?
n  Comply with contracts?
n  Comply with goals?
n  Note: may be many such goals/

contracts/requirements; they may
conflict

Statistical Model Checking 46

Honourcode, Inc.

Statistical Model Checking

n  Goals and Contracts specified in UPDM model
n  GCSL translated into a set of properties that

can be evaluated by PLASMA
n  UPDM parameters set as observable, traced

by the simulator
n  DESYRE simulator provides PLASMA with the

value assumed by the variables step-by-step
during the simulation

n  PLASMA verifies the properties
n  PLASMA returns the Statistical Model

Checking and contract verification results

Statistical Model Checking 47

FMU

FMU

FMU

FMU

FMU FMU

FMU FMU

FMU FMU

FMU FMU

MEAN(SoS.itsDistri
cts.fireArea-
>sum(), duration/
interval) <
0.01/100 *
SoS.itsDistricts.area
->sum()

SoS.itsDistricts-
>forAll(district |
 Whenever
[district.fireArea >
0] occurs,
[district.fireArea =
0]

Whenever
[SoS.itsDistricts.fire
Area->sum() > 0]
occurs,
[SoS.itsDistricts.fire
Area->sum() = 0]
occurs within [0,
false)

The probability that a
district does not stay
under fire more than 3
hours shall be greater
than 99.9%

Primary work: INRIA

Honourcode, Inc. Emergent Behaviour 48

SoS Emergent Behaviours

Useful Neutral Destructive
Designed Desired

capabilities
Facts

of design
Accepted
trade-offs

Surprise Exploitable
features

Facts of
existence

Fearful
features

Classes of emergent properties

n  Emergence definition
n  Complex pattern formation from more

basic constituent parts or behaviors
n  “Properties of the whole that are not

evident from the parts.”

Termite cathedral mound

Honourcode, Inc. Emergent Behaviour 49

Classical ways to work with
Emergent Properties

n  Top-down design
n  Identify the desired emergent properties
n  Architect the SoS – component systems and their

relationships – to create the desired emergence
n  Identify the acceptable trade-offs

n  Bottoms-up integration
n  Simulate and test to find the emergent properties
n  Test for presence of the desired properties
n  Test to discover the surprise properties
n  Evaluate the acceptable trade-offs

Honourcode, Inc.

Method Discovery Modelling Analysis

Parameter-
based

Observation of
parameter
variation

Define parameters in
the UPDM model

Simulate, observe
parameter behaviour,
identify anomalies,
emergence

Event-
based

None Model GCSL
assertions of the
desired events

Simulate, determine
statistical compliance

Scenario-
based

Observe
differences in
scenario
behaviour from
expected

Model expected
scenarios
Create UPDM models
of the SoS

Simulate, generate
traces, compare traces
with the expected
scenarios

Test-based Inspect behaviour
over a test
objective

Create GCSL test
objectives in the
UPDM models

Simulate for the test
case, check compliance

Method Discovery Modelling Analysis

Parameter-
based

Observation of
parameter
variation

Define parameters in
the UPDM model

Simulate, observe
parameter behaviour,
identify anomalies,
emergence

Event-
based

None Model GCSL
assertions of the
desired events

Simulate, determine
statistical compliance

Scenario-
based

Observe
differences in
scenario
behaviour from
expected

Model expected
scenarios
Create UPDM models
of the SoS

Simulate, generate
traces, compare traces
with the expected
scenarios

Test-based Inspect behaviour
over a test
objective

Create GCSL test
objectives in the
UPDM models

Simulate for the test
case, check compliance

Method Discovery Modelling Analysis

Parameter-
based

Observation of
parameter
variation

Define parameters in
the UPDM model

Simulate, observe
parameter behaviour,
identify anomalies,
emergence

Event-
based

None Model GCSL
assertions of the
desired events

Simulate, determine
statistical compliance

Scenario-
based

Observe
differences in
scenario
behaviour from
expected

Model expected
scenarios
Create UPDM models
of the SoS

Simulate, generate
traces, compare traces
with the expected
scenarios

Test-based Inspect behaviour
over a test
objective

Create GCSL test
objectives in the
UPDM models

Simulate for the test
case, check compliance

Four Methods to Check Emergence

Method Discovery Modelling Analysis

Parameter-
based

Observation of
parameter
variation

Define parameters in
the UPDM model

Simulate, observe
parameter behaviour,
identify anomalies,
emergence

Event-
based

None Model GCSL
assertions of the
desired events

Simulate, determine
statistical compliance

Scenario-
based

Observe
differences in
scenario
behaviour from
expected

Model expected
scenarios
Create UPDM models
of the SoS

Simulate, generate
traces, compare traces
with the expected
scenarios

Test-based Inspect behaviour
over a test
objective

Create GCSL test
objectives in the
UPDM models

Simulate for the test
case, check compliance

Emergent Behaviour 50

Honourcode, Inc.

Solution Methods
DANSE Tool-Net

DANSE Solution Methods 51

Nbr Solution Method What it Does

6 Perform joint
simulation

Time-based execution of a joint
simulation using SoS and CS models

7 Perform statistical
model checking

Identification of simulated performance
levels against parameters/goals

8 Evaluate emergent
behaviour

Confirmation/discovery of desired or
unknown SoS emergent behaviours

9 Evaluate goals and
contracts

Definition of SoS/CS goals/contracts, with
automated checking during simulation

10 Perform formal
verification

Knowledge of time-based compliance
against formal requirements

11 Configure DANSE Tool-
Net environment

Installation of necessary tools,
ontologies, rules, and clients to perform
DANSE modelling

12 Share models Share SoS or CS models with other Tool-
Net participants

Honourcode, Inc.

Tool-Net Connections

52

UPDM Rhapsody

Real SoS

DANSE Tools

Joint
Simulation

Statistical
Model
Checking

Constituent
Systems

Constituent
Systems
Models

System of
Systems

Model

Joint
Simulation

Statistical
Model

Checking

Architecture
Tools

Analysis
Tools

Primary work: IBM

Honourcode, Inc.

Mediator Mediator

Jazz Team Server

RDF storage of JTS

DM Jazz application

Disk IO

RESTful

Semantic Mediation Container (DM plugin)

Configuration Mediator(s)…
GUI

Services

Tool Tool Tool(s)…

OSLC / RESTful
protocol

3rd parties

SM container

IBM Product

RELM
RTC

DOORS
Etc.

domains OSLC
web

Tool-Net Structure

53 Tool-Net Capabilities

Primary work: IBM/Sodius

2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

Implementation

How does the DANSE methodology support change in
the SoS?

54

Honourcode, Inc. Changing the SoS 55

Control vs. Influence

n  Traditional systems typically rely heavily on centralized
command and control
n  Single acquisition authority
n  Prime contractor
n  Subcontractors via contractual arrangement
n  Suppliers
n  Other stakeholders

n  SoSs rely on influence and indirect control
n  Multiple acquisition authorities
n  May be a SoS Integrator
n  Multiple System Contractors
n  Several additional stakeholders

Honourcode, Inc.

Constituent System Requirements

n  Each change to the SoS and constituent system models
implies a change to the actual constituent systems

n  Changed / new requirements become inputs to acquisition
processes
n  Modify existing systems
n  Implement new systems

Changing the SoS 56

source info services

source info services

source info services

source info services

source info services

system
model

model
model

system
model

model
model

system
model

model
model system

model
model

model

SoS
model

model
model

CS requirements
modification

Requirements
for a new CS

2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

Summary

An effective methodology for SoS evolution supported
by useful tools

57

Honourcode, Inc.

DANSE SoS Lifecycle

Single model to embody the
integrating thoughts

n  An initiation phase
n  Optional creation phase
n  Forward movement

through the SoS life
n  Constant cycling of events/

scenarios
n  A “capability learning cycle”

n  Where the DANSE
benefit happens!

n  Normal Vee-based SE in
the constituent systems

DANSE Methodology 58

SoS	
Ini&a&on	
Phase	

TIME

SoS	 Opera&on	 Phase	
(con&nuous)	

SoS	
Engineering	

Cons&tuent	
Systems	

Engineering	

Capability	
Learning	 Cycle	

Model	 SoS	 behaviour	

Operate	 the	 SoS	

Define	 poten&al	 needs	

Analyze	 possible	 architecture	 changes	

Influence	 and	 implement	 changes	

(SoS	
Crea&on	
Phase)	

Alternate	 star*ng	 points:	
•  SoS	 is	 acknowledged	 among	 exis&ng	 systems	
•  SoS	 is	 created	 by	 a	 Lead	 System	 Integrator	

Honourcode, Inc.

Example “Use Case” of Methodology

DANSE Solution Methods 59

SoS Requirements Analysis SoS Goals/Contracts

SoS Modelling

SoS Architecture Model
(UPDM/NAF/etc.)

Activities

Products

Architecture Optimization

Alternative Architecture
Generation

Patterns

CS Modelling

Joint Simulation
Emergent Behaviour

Parametric Analysis

Statistical Model Checking Formal Verification

Honourcode, Inc.

DANSE Tools

60

UPDM Rhapsody

Real SoS

DANSE Tools

Joint
Simulation

Statistical
Model
Checking

Constituent
Systems

2015 INCOSE IW MBSE

Designing for Adaptability and evolutioN in
System of systems Engineering

Eric Honour
+1 (615) 614-1109

ehonour@hcode.com

January 2015
61

DANSE
Methodology

Integrated Water
Treatment and Supply

Air Traffic
Management

Automated
Ground Transport

Emergency
Response

Carmeq

Airbus

IAI

Thales

