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Abstract. This paper summarizes the conclusions of the MBSE Usability Group for 2012. 

Five perspectives are offered with each perspective grounded by an exemplar from the 
authors’ practice using Model Based Systems Engineering Environments.  These exemplars 
range from very detailed step-by-step descriptions with identification of fine-grained usability 
issues to system of systems simulations developed by geographically dispersed operations in 
a global company.  Discussion of each exemplar within the Usability Group led to significant 
lessons learned for the team.  This paper summarized the chief lessons learned during this 
process.  Today, the process continues.  In the words of Ron Lyells, “Usability is an emergent 
quality.” 

1.0 Introduction 
In 2011, participants at the INCOSE International Workshop identified potential use cases 

for MBSE based modeling efforts.  When the group voted on the priority of the various use 
cases, the use of modeling libraries was designated as most important.  This natural emphasis 
arises from two considerations:  1) placing an object from a library is often the first step in 
building a model and 2) libraries are the natural residing place for a wealth of information 
related to modeling efforts. In a very real sense, libraries are the repositories of 
knowledge-rich artifacts and key insights from prior modeling efforts.  The model 
components themselves naturally have associated:  1) names, 2) types, 3) classification 
semantics, 4) internal structure, 5) a set of problems that they can be used to solve, 6) 
historical examples of application, 7) a description of how they solve the problem, 8) 
tailoring information, 9) graphical representation, and 10) associated components and 11) 
architectural patterns, and 12) best of class algorithms.  George Sawyer develops some of 
these themes with his description of modeling templates in Section 2.4. Organizations with a 
wealth of experience in modeling have the potential to develop rich modeling libraries that 
embody their technical knowledge assets.  Tool vendors have significant incentives to 
support this activity.  Language designers who want to put power at the fingertips of 



 

	   	  

modelers have a significant opportunity to support the systems engineering modeling 
community by addressing the representation of these assets.  Systems engineering leaders 
who wish to streamline project activities need to understand the power of this approach.  For 
instance Sawyer (See Section 2.4.) cites an example of a project that cut integration time in 
half by careful modeling of interfaces prior to the integration effort.  Standard tools, language 
capabilities, and modeling practices are limited in their ability to support this richness. The 
role of the MBSE Usability group is to address usability issues in MBSE environments; 
however, it rapidly became clear as we focused upon the substance of usability issues that 
many of the practical usability problems that arise using an MBSE environment are 
associated with basic functionality.  For instance, most of the use cases identified at the 2011 
INCOSE International Workshop assumed integration and collaboration functions that are not 
routinely available in today’s MBSE environments.  We have addressed some of these issues 
in this paper. 

Lempia (See Figure 1.) suggests 3 actors and 5 use cases associated with library usage 
and offers a detailed exemplar demonstrating creation of a simple product model.  A key 
insight is that the roles of these actors are only partially defined, particularly when we 
consider the informal aspects of collaboration.  Formal roles are only ‘the tip of the iceberg’ 
when we consider the evolution of model components and the development of major 
technical innovations. 

	  
Figure 1:  Library Usage Example - Actors and Use Cases 

 
Simulation is a common theme in the exemplars described in this paper.  While the 

development of SysML has accelerated the growth of modeling practice, SysML in its current 
form mainly supports descriptive models.  Yet much of the potential power in an MBSE 
environment comes from the ability to predict system dynamic behavior.  Several of the 
exemplars in this paper address the practical challenges of creating MBSE simulation 
environments.  There are practical advantages to studying such pioneering efforts; however, it 
is also clear that these examples merely hint at the spectrum of opportunities in MBSE 
practice.   

2.0 Exemplars of Modeling Library Applications 
We begin the examination of Library exemplars with a fine-grained examination of 

placing components from a library.  There is much to be learned from studying ‘the humble 
mouse click.’ 

2.1 Building a Fine-Grained Simulation Model – David Lempia 
 

This section of the paper focuses on one of these five use cases, the Create Product Model 
use case. The Product Modeler creates a product model, a behavior or structure model of the 
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product, to meet a modeling objective. The modeling 
objective includes both the understanding of what the model 
needs to do and an understanding of the expected results. To 
illustrate this use case, a very simple example of a testing 
model for a low-pass filter is developed. The objective of this 
example model is to verify that the rise time of the low-pass 
is consistent with the time constant. The example model is 
built using a SysML Activity Diagram.  The process of 
creating the product model is described in the use case shown 
in Figure 2.  (In the text below, each Usability Challenge is 
designated, UC #.) 

The pre-condition for this use case is a list of library 
elements that is available and ready to use. The actions for 
this use case are listed below: 

1. Capture what the model needs to do 
(Requirements, use case, and/or test) – The product 
modelers require the ability to change the value of 
Tau for the Low pass filter. The tester must verify that Tau can be changed. 

2. Find library element - The Step Function, low pass, and Time History Plot library 
elements are found in the list of library elements. The library elements are 
implemented as SysML activities. The activities specify the behaviors needed to 
execute the model.   
a. UC 1 – It is hard to find, identify, and understand the usage of library elements in 

a model. Tools must minimize the time it takes to find and understand what the 
library element is and how to use it. Understanding comes from both an example 
and a description that includes the environmental constraints, the library element 
requirements, and the realized tests. 

3. Add library element - Create an 
instance of the library element in the 
editor. In this example, a step 
function action is placed in the 
editor. It becomes a call action.  The 
step function has one output and no 
inputs. The pin placement is visible 
and is located in the same place as 
the parameter on the library element 
activity. The icon draws a picture of 
a step function and scales the picture 
to mirror the default value of 1 for 
the step input and 1 for the step size. 
(See Figure3.) 
a. UC 2 – It takes a number of steps 

to re-size the action and to place 
the pins around the perimeter of 
the element. Tool vendors need to 
minimize the number of steps 
needed to re-size and adjust the 
location of the pins. As an example of how to do this, some vendors have used a 
template layout to position the pins and to size the action. 

b. UC 3 – Some vendors provide no graphical way to indicate which pin is an input 

Figure 4: Tailor the Library Element 

Figure 3: Add Library Element 
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and which pin is an output. 
c. UC 4 – There is no language support for developing custom icons. 

4. Tailor	  the	  library	  element	  –	  Select	  the	  variant	  of	  a	  library	  element	  to	  express	  
the	  characteristics	  needed	  for	  the	  model.	  Tailoring	  customizes	  form	  and	  function	  
of	  a	  library	  element	  for	  a	  specific	  use	  in	  the	  product	  model.	  In	  this	  example	  we	  
tailor	  the	  function	  by	  setting	  the	  
step	  insertion	  time	  at	  1	  second	  and	  
the	  step	  size	  at	  a	  value	  of	  1.	  	  
a. UC 5 - It is difficult to look at a 

diagram containing a library 
element and see the items that can 
be tailored on a library element 
and to see the value chosen for  
tailoring. 

b. UC 6 – It is easy to introduce errors in a model when pins are connected together 
with an object flow. This is because the pins connected together with the object 
flow may have incompatible types.  

5. Test the model – Verifying the rise 
time of the low-pass filter involves 
executing the model, looking at the 
time-history plot, and measuring the 
rise time. 
a. UC 7 – It is difficult to execute 

models. Sometimes executing 
models involves creating classes, 
placing the activities below the 
class, and writing software. This 
should be easy to setup and 
understand. 

b. UC 8 – It is difficult to visualize the results of an executable model. Capabilities 
such as the ability to single step, watch the value of a pin, and plot the 
time-history of a pin help understand the dynamics of a simulation and aid in 
testing. 

Each of the remaining use cases un-cover additional usability issues. This is a subject for 
a future paper. These additional use cases are summarized, below. 

Update a product model with library element fixes - Library elements will change over 
time. Changes may be driven by events such as feature enhancements, dependencies, or bug 
fixes. The product modeler needs a way to update the product model with changes.  

a. UC 9 – It is difficult to identify the dependencies associated with a change. 
Dependencies may include new model elements that need to be loaded into the 
model because of an update and assumptions for the model environment. 

Publish a set of common library elements - Common library elements only have value 
in an organization if they can be found and maintained over time. The Library Modeler 
publishes common library elements and notifies the product team (product support and 
product modelers).  

a. UC 10 – It is difficult to package and share multiple elements. Aspects include 
requirements, the design, the implementation, the tests, and the test results. 

b. UC 11 – It is difficult to document the help on a library element. 
Create library element - Creating library elements starts with creating a product model. 

Some of the model elements used to create a product model are usable across multiple 

Figure 5: Error Proof 

Figure 6: Plot Simulation Results 



 

	   	  

products in a product line, across all models in an enterprise or across all models in a 
modeling discipline. The Library Modeler considers the requirements of the user group and 
updates the library element, documents the library element, and tests the element to show that 
it meets the requirements. 

Update modeling tool with library elements - Finally, the Modeling Environment 
Support person updates the modeling tool when new or changed library elements are 
available. If desired, the product team also needs a way to update the existing models to use 
the new and improved library elements.  

a. UC 12 - It is difficult to configuration manage multiple versions of a library 
element in a model. Managing includes capabilities such as selecting only one 
version of a library element for use in a model, upgrading to a new version of 
a library element, and differencing one version of a library element with 
another. 

Creating product models from library elements is the most important use case selected by 
the MBSE Usability Group. This paper details the use case steps needed to build and manage 
a model from library elements and outlines the activities in other use cases.  These use cases 
revealed a number of necessary features. For example, there needs to be a way to tailor 
library elements, to capture environmental dependencies, to capture dependencies on other 
model elements, and to package numerous artifacts together (requirements, tests, test results, 
etc.). These features need to be supported by the tools, the tool environments, and the 
underlying modeling languages. 

2.2 Libraries and Domain-Specific Modeling – Bjorn Cole 
Building upon the insights from usage in a single domain, we consider the challenges of 

incorporating many specialized domains into a single modeling environment. 
 

For descriptive modeling frameworks such as SysML, there is an interesting quandary 
raised by those more familiar with traditional programming libraries.  The traditional libraries 
are executable – they confer desired functionality directly to a new codebase.  SysML models 
are not executable by themselves, but rather provide a regular structure for further 
computation.  Thus, one can easily ask: if the language is not an executable one, what is the 
value in libraries? 

The answer to this is that while SysML itself is not executable, it does provide a platform 
for steadily refining semantic definitions until other programs can execute them via 
“instructions” captured or constrained by the model.  The general SysML structure provides a 
great deal of guidance for execution.  For example, the behavioral constructs have many 
semantics for general execution according to a state machine, Petri net, or message-passing 
set of semantics. [Jankevicius 2011]  OMG provides standards for further refinement to aid 
execution [Open Modeling Group 2011].  The classification system provides guidance on 
using object-oriented concepts to run instances of generic classes through these behaviors, 
and SysML Parametrics expand this into solving static equations [Bajaj 2011].  So, if this 
comes “out of the box” so to speak, why are we further enhancing the language with 
libraries? 

This is the core of the issue.  While SysML provides a generic set of semantics, various 
engineering domains have very specific semantics that need to be respected.  An excellent 
example is considering the use of a power bus or a junction in hydraulics.  In basic SysML, a 
modeler would typically draw on an Internal Block Diagram (IBD) a series of components 
surrounding a part called “bus” with connectors linked to it.  The power bus or hydraulic 
junction’s purpose is to deliver all attached components to the same potential, whether it be 
voltage or pressure, for well-understood distribution.  Analysis tools can then be assured a 



 

	   	  

uniform description of this engineering element and be instructed in the proper way of 
incorporating that model datum into the execution of the algorithm.  The key point here is 
“uniform description.”  The advanced members of a given institution can discuss and argue 
about the appropriate or most elegant SysML elements to use for encoding a given semantic 
and then render the decision into a library. 

With the “best of class algorithms” notion discussed, it is time to turn to the more generic 
purposes of a library.  Providing an easy-to-access repository of modeling knowledge is of 
course of high value when one considers a real modeling team.  A real modeling team on a 
project is likely, even by project intention [Bayer 2012], to have a wide variety of skill levels 
in its members.  There will be an important subset of this team that does not have deep 
SysML modeling knowledge, but brings domain or general expertise to be encoded into the 
model. 

There have been calls and even a proposed implementation [Friedenthal 2011] of a 
so-called “SysML Lite” to help new modelers get a foothold in the language.  This is 
understandable, since SysML has many dozens of concepts that a modeler can use, and at 
least two dozen of them are necessary to cover a system in both its structural and behavioral 
aspects.  However, SysML Lite is generated by more or less reducing the depth of modeling 
across all aspects of the language.  This may or may not conform well to the needs of 
organizations that heavily emphasize behavioral representations or structural ones and need 
the more specialized types of full SysML. 

There are several core concepts in each domain that are brought together to build 
functional systems.  These concepts can be mapped to the concepts within SysML since it is a 
system-oriented language, and often in a straight-forward way.  The first stages of 
constructing the library are about formulating these mappings.  Once complete, the engineers 
can be assured that when they add a “propellant tank” or a “valve” to their model, it will be 
compatible with the modeling framework. 

Further, libraries support orienting new modelers to the object-oriented framework of 
SysML.  The Meta-Object Facility is built on a core of elements, element classification, 
relationships, and inheritance.  Elements and relationships are easily understood.  The more 
novel concepts are classification and inheritance of elements.  A library will typically support 
these naturally.  Using this library will walk a user through selecting the type and then 
selecting a specific part.  Inheritance among classifications is also natural.  For example, an 
engineer should be able to use a generic tank, or a tank with a specific material, or a tank with 
a specific material and propellant management device. 

This also highlights an important usage aspect of system modeling in general.  Systems 
engineering practice requires the breakdown of complicated machines into smaller pieces.  
Preferably, this breakdown enables the smaller pieces to be contained comfortably within an 
engineering specialty with trained engineers that are practiced at handling similar 
development problems.  This means that at some point in model-based practice, the domain 
engineers will have to make some inputs at the boundaries of the system model (and that the 
system modelers have sufficient cross-training to project some of their work into domain 
models).  Adding domain-specific libraries is not simply about helping new modelers into the 
enterprise; they provide a way to capture knowledge projected into the system model. 

A problem in discussing domain-specific icons is that the machine-readable part of the 
UML / SysML specification currently does not include the graphical elements of diagrams.  
At least one authoring tool currently has a customization capability that allows for 
experimenting with custom diagramming.  MagicDraw has served as the experimental 
platform at JPL for working with domain-specific libraries.  It has done so without a standard 
so far, but it has provided the chance to work out use cases and inputs from potential users 
regarding look and feel. 



 

	   	  

In Figure 7, the MagicDraw tool is shown to emphasize the relevant parts of the library.  
First is the custom icon itself, which is the most visible.  The toolbar of concepts for the 
custom diagram serves two purposes.  It provides access to the custom icons, but also serves 
to apply a Stereotype matching the component type directly to this part.  The next step is not 
yet automated, but is relatively straightforward.  The element has been stereotyped, but not 
yet classified.  In the Containment Tree, a set of SysML Blocks (eligible to be Classifiers) is 
housed to have properties for a specific component.  In this example, the library has been a 
source for directly applying domain-specific iconography, loading the type (and its associated 
properties like mass and cost) into the new model, and restricting semantics of SysML as 
appropriate for the kind of thing being placed on the diagram via its stereotype. 

Figure 7: Customized propulsion schematic in MagicDraw 
A standard is currently being developed to help improve the specification of custom 

diagrams.  It is an OMG product called Diagram Definition (also called Diagram Definition 
and Interchange) [OMG 2007].  Hopefully this standard will mature quickly, and interested 
readers at OMG member organizations are encouraged to investigate the status of this 
standard and contribute via knowledgeable representatives.  The development of this standard 
will also likely have the benefit of supporting not just libraries of custom diagrams, but 
libraries of diagrams of standard elements available in all authoring tools. 

2.3 MBSE Libraries for Automotive Engineering – Judy Che 
We	  build	  upon	  the	  detailed	  insights	  into	  collaboration	  between	  specialists	  by	  examining	  an	  
example	  of	  practical	  architecture	  that	  integrates	  specialized	  domain	  contributions.	  	  
	  

The complexity of designing today’s sophisticated vehicles requires a model-based 
development process supported by a set of robust vehicle system models.  The goal is to use 
vehicle system models earlier in the design process to develop and trade-off vehicle level 
attributes such as: 



 

	   	  

• Fuel economy 
• Performance 
• Drivability 
• Cabin comfort 
• Safety 
The	  vehicle	  system	  models	  described	  here	  include	  representations	  of	  both	  hardware	  

and	  controls	  elements	  and	  are	  intended	  to	  simulate	  the	  functional	  behaviors	  of	  complex	  
mechatronic	  systems.	  	  These	  vehicle	  system	  models	  can	  be	  built	  up	  by	  assembling	  a	  set	  
of	  domain	  or	  component	  models	  using	  a	  Vehicle	  Modeling	  Architecture	  (VMA)	  as	  shown	  
in	  Figure	  8.	  	  This	  architecture	  and	  typical	  applications	  have	  been	  described	  in	  previous	  
publications	  [Belton	  2003].	  	  	  

Figure 8:  Vehicle Model Architecture  
The	  VMA	  provides	  a	  well-‐defined	  high-‐level	  modular	  structure	  for	  dynamic	  vehicle	  

modeling	   with	   key	   vehicle	   subsystems	   represented	   as	   distinct	   elements.	   	   Subsystem	  
connections	   are	   specified	   through	   well-‐defined	   interfaces.	   	   While	   the	   structure	   and	  
interfaces	   are	   fixed,	  model	   content	   is	   not.	   The	   vehicle	  model	   architecture	   provides	   a	  
way	  to	  manage	  model	  requirements	  for	  each	  component	  for	  simulation	  use	  cases	  such	  
as	  vehicle	  performance	  or	  fuel	  economy	  analysis.	  	  	  
Our	  goal	  is	  to	  establish	  a	  well-‐defined	  process	  by	  which	  Subject	  Matter	  Experts	  (SME’s)	  
in	  each	  domain	  create	  and	  verify	  models	  for	  their	  domain	  such	  as	  engine,	  transmission,	  
etc.	   	   These	  domain	  models	   can	   then	  be	   integrated	   to	  build	  up	   a	   set	   of	   vehicle	   system	  
models	  as	  seen	  in	  Figure	  9.	  These	  sets	  of	  domain	  models	  can	  be	  managed	  through	  a	  set	  
of	   re-‐usable	   model	   libraries	   of	   component	   models	   with	   varying	   levels	   of	   fidelity.	   	   In	  
many	  cases,	  parameter	  data	  sets	  can	  be	  managed	  separately	  from	  the	  models	  so	  that	  a	  
single	  engine	  model	  can	  be	  made	  to	  represent	  a	  1.5L	  or	  a	  2.0L	  engine	  with	  a	  simple	  data	  
set	   change.	   	   In	   order	   to	   support	   such	   a	  model-‐based	   vehicle	  model	   creation	   process,	  
tools	  and	  utilities	  are	  needed	  to	  help	  specify,	  assess	  compatibility,	  edit,	  save	  and	  apply	  
model	  variant	  and	  data	  set	  choices.	  	  These	  steps	  include:	  
• Specify a set of model domain choices (both hardware and controls) for a particular 

analysis such as fuel economy or performance simulation as shown in Figure 10. 
• Specify data sets for each domain model – i.e. 1.5L or 2.0L engine maps 
• Assess model choice compatibility – i.e. between plant and controls models 

o Use meta-data or other mechanism to associate “compatible” plant & control models 

	  



 

	   	  

 
Figure 9:  Building Vehicle System Models by Assembling Domain Models 

o Verify interfaces line up for hooking up models 
 Signal definition ( e.g. Engine Brake Torque vs. Indicated Torque) 
 Units (Nm or Ft-lbs) 
 Data types (real, integer, etc.) 

• Allow edit and save of domain model choices and corresponding data sets 
• Provide automated way to build up vehicle model from domain model choices by 

auto-wiring signals (e.g. Simulink) or physical connections (e.g. Dymola flanges) 
• Ensure appropriate versions of models and data sets are selected 
Some	   previous	   work	   in	   using	   SysML	   to	   support	   Multidisciplinary	   vehicle	   system	  
modeling	  can	  be	  found	  in	  [Branscomb	  2013].	  
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2.4 Library Templates to Support Learning and Modeling Efficiency 

 – George Sawyer 
From	  an	  examination	  of	  architecture	  for	  an	  integrated	  modeling	  environment,	  we	  proceed	  
to	  look	  at	  mechanisms	  for	  lowering	  the	  barriers	  to	  using	  such	  a	  complex	  environment	  by	  
relying	  upon	  infrastructure	  that	  communicates	  the	  rich	  context	  of	  modeling	  practice.	  

2.4.1 Historical Context 
BAE Systems has experienced limited success in applying Model-Based Systems 

Engineering (MBSE) languages, tools and methodologies over the past decade. Several 
projects have seen very positive results particularly in allowing systems integration to 
proceed at a more rapid and reliable pace than with similar programs. In one specific 
program, the final systems integration was completed in just over three months as opposed to 
the six months originally planned. Despite this and other positive experiences, there has been 
both organizational and technical opposition to MBSE adoption in most business areas. 
Overcoming the technical challenges of adopting MBSE was seen as a prerequisite to 
increased organizational acceptance – one of the primary technical objectives was the 
development of a robust model template to use as a basis for “jump-starting” MBSE 
development efforts and allowing adopting projects to make “early gains” that would 
positively influence their decision to continue forward with the approach.  Specifically, the 
template was aimed at addressing the chief technical difficulties in adopting model 
development as identified by the SysML RFI [Bone and Cloutier, 2010]: 

 
1. Having to simultaneously learn a language, methodology and tool to be effective  
2. Lack of relevant, realistically complex examples with supporting narrative 
3. Lack of proven best practices for successful application across domains 
4. Difficulty in understanding and applying specific language areas (e.g. ports) 

2.4.2 Elements of a Useful Model Template 
Recognizing the above problems, we realized that modelers needed a better starting point 

for their models than was currently available. They needed something they could take with 
them from their training that would allow them to make rapid progress with their model 
development and keep their model development efforts going on a path to realize benefit to 
their projects. The following objectives for a useful model template were identified as 
follows:  

1. Provide an integrated definition of the development methodology  
2. Provide an extensible and adaptable structure for the overall model  
3. Provide a non-domain-specific infrastructure for developers to build upon 
4. Provide relevant examples of model items and diagrams illustrating correct usage 
5. Provide embedded directions for extending the model template to a specific solution 
6. Provide for robust integration of model elements with other development tools  

2.4.3 Integrating Methodology Support  
Within BAE Systems, the company-patented Functional Object Decomposition (FOD) 

methodology is one of the primary ones used however there are a number of widely 
recognized alternatives as identified by Jeff Estefan [Estefan, 2009]. Regardless of the 
development methodology (or methodologies) used by an organization, there is benefit to be 



 

	   	  

gained in making it an integral part of a model template. The following figures show how the 
methodology description itself can be incorporated as part of a SysML profile. The way in 
which the methodology description is incorporated takes a page from the development of 
UPDM in which Mathew Hause identifies the importance of “walking the talk” when it 
comes to model development [Hause 2010]. This is not done just for convenience but to 
demonstrate the utility of the language in defining the methodology of “how to use it”.  

2.4.4 Provide a Flexible and Extensible Model Structure.  
Getting the model structure right is one of the key considerations that will “make or 

break” a model as a useful tool in developing a new (or adapted) system. The model needs to 
be structured to support a number of critical and seemingly conflicting objectives, such as: 

 
1. Providing an efficient and intuitive means for accessing model information 
2. Maintaining consistency with the development methodology 
2. Supporting simultaneous, non-conflicting use by multiple developers 
3. Integrating with add-on capabilities such as document generation scripts 
4. Implementing reuse through import and export of system, subsystems and modules 

2.4.5 Providing Modeling Infrastructure to Build Upon 
The development of infrastructure is typically very resource intensive, therefore we 

started by initially developing lower-level modeling libraries that would potentially be useful 
to system developers regardless of domain. The first effort involved developing a  

Figure 11. Example Pattern for System Use Cases  
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and parametrics. Some modeling tools come with a set of International System of Units (SI) 
however our standard tool at the time did not. The library of units we developed, including 
both SI and “English” units, provided users with a common, pre-defined set of types and also 
laid the groundwork for additional generic infrastructure components such as the pre-defined 
system environments blocks and the generic shapes library. 

2.4.6 Providing Relevant Examples and Directions for Extension 
The SysML RFI results serve as a resounding confirmation of the general observations 

from teaching MBSE across several organizations: that applying the modeling constructs to 
real-world problems can be exceptionally difficult [Bone and Cloutier, 2010]. This is the 
rationale for embedding both generic model constructs as well as more concrete examples 
within the model template.  

 
The generic examples provide a “copy and paste” pattern for system developers to follow 

which result in more consistency and correctness of language usage. Additionally, the more 
complex examples serve to guide the development of the system-specific constructs from the 
basic patterns. Figure 11 provides an example of the type of guidance that is embedded in the 
model template.  

2.4.8 Improving Integration with Other Development Tools 
To support the integration with the requirements management tool, the model template 

includes a number of additions to the basic SysML profile. First, it includes the suggested 
additions to requirements as identified in appendix C of the SysML standard [OMG 2007]. 
This permits the stereotyping of requirements by their applicable category and dovetails with 
the FOD methodology in defining a standard means for identifying satisfaction of each 
requirement based on their type. The template also contains a set of stereotypes and 
associated tag types that map to the company-standard set of attributes use for supporting 
requirements management. By doing this, developers can synchronize all relevant 
requirements information between the SysML and requirements management tool and 
perform edits (if authorized) in either tool. Similar integrations have been developed for 
numerical analysis, configuration management and test automation support tools. 

    

            
Figure 12. How the Model Template Addresses MBSE Adoption Challenges 
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2.4.9 Summary on Using Model Templates 
In summary, model templates directly address some of the more serious challenges 

presented by the adoption of MBSE. With experience in using these templates on multiple 
projects and guidance from the recent SysML RFI, the usefulness of the templates has 
continued to improve over the past few years. As the following table shows, the current 
iteration of our model templates provides a level of resolution for each of the primary 
challenges identified in the RFI. It also addresses the one additional challenge area of 
infrastructure that we’ve identified as an additional concern. Our expectation is that the 
template will continue to improve in response to feedback from projects employing it. 

          

2.5 Practical Application of a Geographically Dispersed Modeling 
and Simulation Environment – Craig Schimmel & Ron Lyells 

At	  the	  highest	  level,	  we	  look	  at	  effective	  and	  efficient	  architecture	  for	  implementing	  a	  
modeling	  environment	  in	  a	  large	  system	  of	  systems.	  

2.5.1 Context   
The Problem: The use of simulation is not a new concept and is widely used. The 

INCOSE Handbook discusses the use of simulation in several system engineering venues; 
during concept generation, developing performance requirements, and during study of 
interactions between system elements, and between systems in a system of systems problem 
space.  However, there are issues of scale. Specifically, for organizations like Honeywell, 
who are combining product portfolio’s to build complex systems of systems, how does one 
effectively leverage simulations that have been independently developed in different 
geographic locations and in different simulation environments?  

The Opportunity: Borrowing from the gaming world; use of simulation environments 
for exploring concept of operations issues with the customer and then using that same 
simulation environment to support training of those same customers has proven to be a 
powerful capability that is especially useful for customers. 

A Matter of Persistence: Web based gaming environments provide a persistent 
environment where gamers can come and go, participating as desired. Using this as 
inspiration, consider two scenarios where system developers and users come and go for the 
purposes of exploring concept of operations issues and quantifying needs, system 
prototyping, and training.  

The Persistent Constructive based Simulation Environment: Simulated entities join a 
persistent environment for purposes of engineering evaluation or ConOps development.  The 
simulations that make up the environment can be swapped dynamically in order to focus on 
specific evaluation needs.  For instance, high fidelity simulations can replace baseline 
low/medium fidelity in order to explore specific operational or functional detailed aspects of 
the system.  

Such an environment would require the ability to host a large enough set of simulations to 
satisfy the evaluation needs – albeit with a properly scaled level of fidelity and scope to 
match the objectives of the evaluation.  Such a system would allow alternative concepts to be 
evaluated in a known, consistent environment.  The environment could have the ability to 
adapt and react dynamically (learn). 

The Persistent Live Training Environment:     In this scenario, distributed individuals join 
a persistent environment and train together. The simulation world may exist continuously and 
trainees can join at any time.  Multiple instances of the training environment can exist in 
parallel. This environment requires the ability to host a simulated world and provide access 



 

	   	  

for players to join and leave.  The world that each player sees must be synchronized and 
consistent among players.   The world must provide sufficient detail to achieve an immersive 
effect so the trainee acts and learns as if operating in the real world.  Such a system can host 
simulation on on a local scale (from a single laptop to a few workstations) to a much larger 
scale, operating remotely via the cloud, allowing trainees anywhere to participate in 
collaborative training.  Tactics, techniques and procedures can be updated by the customer as 
needed.   

2.5.2 What Would A Persistent Simulation Environment Look Like?   
An example of the kind of persistent simulation environment described in the scenarios 

above is depicted in the concept of operation diagram in Figure 13. The REAL (Reactive 
Environment for Active Learning) framework has been developed by Honeywell’s 
SMARTLAB organization to leverage its own simulation capabilities that are globally 
distributed.   

 
Figure 13.  Operational Scenario Using REAL Framework  

 
Key elements of the environment include:  
1. The Simulation Set is a meta-data database identifying REAL Framework 

compatible simulations.  It allows the system-of-system modeler to identify the 
simulations to be combined into a simulation environment and operational conditions.  

2. The Tool Set is set of common tools and libraries (including COTS components) that 
aid the creation of REAL Framework simulations and provide readymade, frequently 
used capabilities.  Eg. Simulation control, visualization, data capture and metrics.   

3. The Simulation Execution is the selected set of system of systems simulations and 
tools, combined with the run-time middleware into a complete simulation 
environment useful to the end user. 

4. The Middleware is the flexible mechanism of system model integration that ties all 
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of the other elements together.  A model needs only be integrated to the middleware 
once, yet the system modeler has the ability to change the apparent model behavior 
and reuse the model in any other simulation environment. 

But you say, “Simulation environments and standards are already defined… What’s 
the problem?”  The problem is that it takes a lot of work to adapt a simulation from one 
framework to another. (e.g HLA to DIS) The other problem is that environments like HLA 
are complex in themselves; developed to support very diverse simulation problems. So, the 
very breadth and capability come with a usability complexity that drives the learning curve 
for a modeler to levels that program timelines or organizational resources cannot support 
effectively. Because it takes so much work, many don't try to leverage potentially available 
simulations. Groups sometimes will invest the time to create their own new simulations, build 
a work around, or ignore simulation as a means altogether.  An internal study within one of 
Honeywell’s advanced modeling and simulation organizations, where HLA, DIS, and  
Honeywell-developed distributed simulation protocols are used, revealed that only about 40% 
of the simulation applications actually contained interfaces where data was shared. Of those, 
75% used custom messages over sockets and just sent data.   

2.5.3 A Theory For A Workable Countermeasure:   
If one can build a wrapper 

around existing simulations that 
removes the simulation 
environment attributes and 
complexity from the simulation, 
then one can focus on the 
management of data that is 
consumed and produced by a 
given simulation, thereby 
simplifying the simulation 
interface and improving the 
usability and availability of a 
given simulation. This 
theoretical “wrapper” is shown 
as the SimAPI in Figure 14.  

In this notional example 
using HLA, the wrapper would 
provide a significant reduction 
in needed interface complexity 
for those simulation problems 
that do not require the full suite 
of simulation capability that 
HLA affords. 

The Model - A Modified Framework Architecture Is Required: Figure 15 shows a 
simulation architecture created by Honeywell that utilizes a “SIM API” interface that 
effectively allows the removal of simulation interface complexity from the simulation itself 
The SIM API frees the simulation developer to focus solely on the simulation model and the 
simulation integrator to focus on the data needed for the simulations to interact.  The SIM  
API is based upon a simulation interface specification that also allows simulations designed 
with it to be easily reused between simulation architecture environments (e.g.  DIS vs HLA). 

Legacy simulations need to be updated to meet SIM API specification. This is not a labor 
intensive effort.   
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Figure 15. REAL Framework Run Time Architecture 
Once done the model transfer effort is reduced from several weeks to less than a day. This 

reduction in effort is possible because interfacing with existing HLA or DIS standards usually 
requires the simulation developer to modify or transform data between the internal simulation 
representation and a representation defined by the standard.  The SIM API allows the 
developer to use any representation, minimizing the translation effort within the individual 
simulation.  Instead, the simulation integrator (system of systems modeler) defines the 
transformation between the simulation data and the standard in use, which is applied 
automatically within the SIM API.   

2.5.4 The Method - Development Objectives For The SIM API:  
The team, that developed the SIM API interface specification, focused upon making the 

simulation developer and integrator as effective as possible. Effectiveness here being defined 
as giving the simulation team the ability to realize results from its simulation activity as 
quickly as possible. Some of the objectives considered include:  

• Make it convenient to use: 
o The SIM API should be similar in effort to low cost ad-hoc approaches, such 

as a simple socket based interface. 
o Allow the simulation to use its own data representation rather than an 

externally imposed representation. 
• Make it ‘write once’ for the simulation modeler 

o Many simulations are available in organizations without the interest or 
resources to integrate a variety of interfaces 

o Give the system of systems modeler the ability to change the underlying 
distribution technology (changing FOMS, HLA->DIS, etc) without flowing 
changes back into the simulations. 

• Keep the data formats concise 
o Let the simulation modeler define the data in simulation terms, 
o Recognize that any simulations have limited data needs, 
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o Let the SoS modeler perform the data connection and translation. 

2.5.5 Current progress and Conclusions:   
The REAL Framework environment has been developed and is currently dispersed to 

several locations across the globe in support of aerospace avionics related human factors 
studies in simulated airspace conditions. The simulation environment itself is working as 
intended with the expected reduction in simulation integration times being realized. There are 
no anticipated technical obstacles to further deployment and usage. However, there are 
cultural and awareness issues that need to be dealt for each engagement or deployment. These 
issues and concerns usually arise from uncertainty within the developer and stakeholder 
community as to the cost / benefit of engaging in systems of systems simulation effort when 
they have not been through the experience. The approach discussed here provides a way to 
quickly show progress and ease of use for those new to simulation or new to using simulation 
for exploring system concept of operations or training provisions.  
Definitions:	  

DIS – Distributed Interactive Simulation: A standard networking protocol for exchanging 
information between various simulation applications. Reference IEEE 1278.1. 

HLA – High Level Architecture: An architecture framework to support distributed 
modeling and simulation. Reference IEEE 1516.1 

REAL:  Reactive Environment for Active Learning 
SMART: Simulation and Modeling for Acquisition, Requirements and Training 
SMARTlab: Honeywell Advanced Technology modeling and simulation lab, which 

applies the SMART process for the entire product lifecycle 

3.0 Conclusions and Lessons Learned 
This paper has summarized five exemplars of usage for modeling libraries based upon the 

practical experience of the authors in varying contexts.  To some degree this is an eclectic 
mix of experiences; however, there were common themes: 

Experience with MBSE environments suggests that the modeling libraries of the future 
will contain knowledge-rich objects.  Modeling objects will contain and be associated with 
many types of information, including architectural and design patterns, tutorial examples, 
context of applicability, and integration data.  A significant segment of the modeling 
community wants to go beyond basic descriptions of designs.  They want to predict system 
behavior using overall system models that are integrated with specialized, discipline-specific 
models.  This creates several challenges: 

• Most	  integrated	  MBSE	  simulation	  environments	  rely	  upon	  significant	  
customization	  effort.	  	  General	  APIs	  for	  model	  interfaces	  tend	  to	  be	  complex.	  	  
However,	  as	  Lyells	  describes	  in	  Section	  2.5,	  above,	  there	  have	  been	  successful	  
large-‐scale	  implementations	  that	  reduce	  complexity	  by	  using	  specialized	  APIs	  
such	  as	  the	  SIM	  API	  shown	  in	  Figure	  15.	  	  Such	  middleware	  can	  significantly	  
reduce	  the	  workload	  for	  individual	  modelers	  who	  need	  to	  create	  a	  system	  level	  
simulation.	  	  We	  perceive	  such	  efforts	  as	  one	  necessary	  aspect	  of	  modeling	  
environments	  that	  are	  scalable	  to	  large	  projects.	  	  

• As	  Cole	  observes	  in	  Section	  2.2,	  in	  an	  integrated	  modeling	  and	  simulation	  
environment,	  discipline	  specific	  models	  need	  to	  “project	  meaning”	  into	  the	  
system	  simulation	  and	  vice	  versa.	  	  This	  semantic	  interoperability	  is	  one	  key	  to	  
integrated	  functioning.	  	  There	  are	  significant	  efforts	  in	  progress	  to	  address	  these	  
issues.	  	  See,	  for	  instance,	  the	  work	  of	  Henson	  Graves	  as	  part	  of	  the	  INCOSE	  Model	  
Based	  Systems	  Initiative.	  



 

	   	  

• There	  is	  a	  delicate	  balance	  between	  standardization	  and	  experimentation.	  	  We	  
believe	  that	  standards	  work	  is	  particularly	  valuable	  when	  it	  addresses	  interfaces	  
and	  interoperability	  challenges.	  	  An	  example	  of	  the	  power	  of	  this	  approach	  is	  the	  
growth	  of	  the	  Internet	  as	  supported	  by	  the	  existence	  of	  TCP/IP.	  	  However,	  we	  see	  
the	  current	  period	  as	  a	  time	  of	  many	  experiments	  by	  many	  individuals	  and	  
organizations.	  	  Attempts	  at	  standardization	  should	  honor	  this	  process	  and	  
attempt	  to	  support	  it	  using	  a	  ‘design	  for	  emergence’	  philosophy.	  	  If	  we	  are	  
successful	  with	  striking	  the	  right	  balance,	  we	  could	  see	  a	  growth	  in	  system	  
modeling	  that	  rivals	  the	  growth	  of	  the	  Internet.	  	  	  

• Discipline-‐specific	  models	  imply	  specialized	  views,	  where	  each	  view	  exposes	  the	  
objects,	  features	  and	  attributes	  that	  support	  a	  specialized	  set	  of	  modeling	  tasks	  
and	  are	  represented	  using	  the	  symbology	  of	  the	  domain.	  	  Such	  capabilities	  are	  
not	  well-‐supported	  at	  present.	  Some	  tools	  offer	  capabilities	  to	  create	  customized	  
graphics	  and	  there	  is	  a	  preliminary	  OMG	  effort	  to	  create	  a	  diagramming	  
standard.	  	  We	  see	  this	  as	  a	  positive	  trend.	  	  The	  nature	  of	  the	  tasks	  supported	  
dominates	  the	  creation	  and	  usage	  of	  specialized	  views.	  	  A	  point	  that	  Lyells	  makes	  
strongly	  is	  that	  we	  need	  to	  be	  clear	  whether	  a	  task	  is	  directed	  toward	  
communicating	  with	  humans	  or	  communicating	  with	  machines.	  	  Eventually,	  it	  is	  
expected	  that	  modeling	  environments	  will	  offer	  ubiquitous	  end	  user	  
programming	  capabilities,	  as	  straightforward	  to	  use	  as	  spreadsheets;	  however,	  
this	  is	  a	  challenge	  that	  will	  require	  significant	  development	  effort.	  

• MBSE	  environments	  that	  incorporate	  multiple	  specialized	  modeling	  domains	  
tend	  to	  use	  layered	  architectures.	  	  (See,	  for	  example,	  the	  architectural	  features	  
displayed	  in	  the	  diagrams	  offered	  by	  Che	  (Section	  2.3)	  and	  Lyells	  (Section	  2.5).)	  	  
We	  expect	  these	  modeling	  environments	  to	  evolve	  toward	  Service	  Oriented	  
Architectures	  with	  “plug	  and	  play”	  capabilities	  for	  adding	  discipline-‐specific	  
modeling	  capabilities.	  	  	  The	  experience	  of	  working	  in	  such	  an	  environment	  will	  
be	  one	  of	  interacting	  with	  a	  large,	  collaboratively	  developed	  model	  with	  many	  
specialized	  views	  that	  support	  the	  efforts	  of	  many	  experts.	  

Overall, we see the beginning of a trend to vastly extend the scope of information in 
MBSE libraries.  For language designers, this implies a need for significant extension of 
current representation capabilities.  For tool designers, it means a significant extension of tool 
capabilities.  For users, it implies a great expansion in modeling capabilities and a period of 
time where it is likely where usability will be severely impacted by increasing complexity 
while tool and language developers struggle to accrue the insights that they need to create 
simpler modeling environments. 

Lempia, in Section 2.1, offered a perspective on the actors and use cases that arise when 
human beings interact with libraries.  However, the way that humans interact with libraries 
goes beyond these formal interactions.  We expect that the informal interactions will be at 
least as important as the formal interactions.  These informal interactions include modelers 
borrowing from the work of colleagues and multiple creative interactions that generalize the 
scope of model components and other knowledge artifacts.  We expect such roles and 
patterns of interactions to continue to evolve. 

4.0 The Path Forward 
The five perspectives in this paper, based upon five sets of experience with industrial 

strength modeling activities suggest that the systems modeling community is in a period of 
rapid experimentation and creative activity.  The MBSE Usability Group within the INCOSE 
Model Based Systems Engineering initiative will continue to support this effort in the 



 

	   	  

following ways: 
• Work	  on	  the	  library	  usability	  will	  continue	  in	  the	  coming	  year.	  	  We	  have	  only	  

begun	  to	  address	  the	  challenges	  in	  this	  area.	  	  We	  welcome	  participation	  from	  the	  
larger	  modeling	  community,	  including	  modelers,	  tool	  vendors	  and	  language	  
developers.	  

• Work	  on	  other	  use	  cases,	  such	  as	  those	  identified	  in	  the	  2011	  INCOSE	  
International	  Workshop	  will	  be	  addressed	  in	  the	  coming	  year.	  	  A	  specific	  focus	  in	  
2013	  will	  be	  another	  high	  value	  use	  case	  focusing	  upon	  the	  development	  of	  
model	  structure	  and	  making	  assertions	  about	  particular	  model	  structures.	  

As Steve Jobs observed, “Creativity comes from connections.”  In this time of rapid 
experimentation, it is important that individuals and organizations that are experimenting 
with modeling infrastructure share their insights, so that all of us can benefit from creative 
interaction.  As we build modeling artifacts and interact creatively with our colleagues, each 
new development becomes a communication on the path of a shared spiral of meaning.  
Today, many of these processes are occurring using pre-Internet models of interaction, such 
as sharing papers at yearly seminars.  Although such traditional approaches are valuable, we 
need to move forward with this process of dialog, discussion, and development at Internet 
speed.  We need a business model that supports this accelerated evolution.    
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