
	 	

Emerging Usability Patterns in the
Application of Modeling Libraries

Judy	 Che	

Ford	 Motor	 Company	
jche@ford.com	

	
David	 Lempia	
Rockwell	 Collins	

dllempia@rockwellcollins.com	
	

George	 Allen	 Sawyer	
BAE	 Systems	 Inc	

george.a.sawyer@baesystems.com	
	

Bjorn	 Cole	
Jet	 Propulsion	 Laboratory	
Bjorn.Cole@gmail.com	

	
Ron	 Lyells	

Honeywell	 Inc.	 Aerospace	 Group	
Ron.Lyells@honeywell.com	

	
Craig	 Schimmel	

Honeywell	 Inc.	 Aerospace	 Group	
Craig.Schimmel@honeywell.com	

	
Scott	 Workinger	

Workinger	 Consulting	
ScottWorkinger@gmail.com	

	
Abstract. This paper summarizes the conclusions of the MBSE Usability Group for 2012.

Five perspectives are offered with each perspective grounded by an exemplar from the
authors’ practice using Model Based Systems Engineering Environments. These exemplars
range from very detailed step-by-step descriptions with identification of fine-grained usability
issues to system of systems simulations developed by geographically dispersed operations in
a global company. Discussion of each exemplar within the Usability Group led to significant
lessons learned for the team. This paper summarized the chief lessons learned during this
process. Today, the process continues. In the words of Ron Lyells, “Usability is an emergent
quality.”

1.0 Introduction
In 2011, participants at the INCOSE International Workshop identified potential use cases

for MBSE based modeling efforts. When the group voted on the priority of the various use
cases, the use of modeling libraries was designated as most important. This natural emphasis
arises from two considerations: 1) placing an object from a library is often the first step in
building a model and 2) libraries are the natural residing place for a wealth of information
related to modeling efforts. In a very real sense, libraries are the repositories of
knowledge-rich artifacts and key insights from prior modeling efforts. The model
components themselves naturally have associated: 1) names, 2) types, 3) classification
semantics, 4) internal structure, 5) a set of problems that they can be used to solve, 6)
historical examples of application, 7) a description of how they solve the problem, 8)
tailoring information, 9) graphical representation, and 10) associated components and 11)
architectural patterns, and 12) best of class algorithms. George Sawyer develops some of
these themes with his description of modeling templates in Section 2.4. Organizations with a
wealth of experience in modeling have the potential to develop rich modeling libraries that
embody their technical knowledge assets. Tool vendors have significant incentives to
support this activity. Language designers who want to put power at the fingertips of

	 	

modelers have a significant opportunity to support the systems engineering modeling
community by addressing the representation of these assets. Systems engineering leaders
who wish to streamline project activities need to understand the power of this approach. For
instance Sawyer (See Section 2.4.) cites an example of a project that cut integration time in
half by careful modeling of interfaces prior to the integration effort. Standard tools, language
capabilities, and modeling practices are limited in their ability to support this richness. The
role of the MBSE Usability group is to address usability issues in MBSE environments;
however, it rapidly became clear as we focused upon the substance of usability issues that
many of the practical usability problems that arise using an MBSE environment are
associated with basic functionality. For instance, most of the use cases identified at the 2011
INCOSE International Workshop assumed integration and collaboration functions that are not
routinely available in today’s MBSE environments. We have addressed some of these issues
in this paper.

Lempia (See Figure 1.) suggests 3 actors and 5 use cases associated with library usage
and offers a detailed exemplar demonstrating creation of a simple product model. A key
insight is that the roles of these actors are only partially defined, particularly when we
consider the informal aspects of collaboration. Formal roles are only ‘the tip of the iceberg’
when we consider the evolution of model components and the development of major
technical innovations.

	
Figure 1: Library Usage Example - Actors and Use Cases

Simulation is a common theme in the exemplars described in this paper. While the

development of SysML has accelerated the growth of modeling practice, SysML in its current
form mainly supports descriptive models. Yet much of the potential power in an MBSE
environment comes from the ability to predict system dynamic behavior. Several of the
exemplars in this paper address the practical challenges of creating MBSE simulation
environments. There are practical advantages to studying such pioneering efforts; however, it
is also clear that these examples merely hint at the spectrum of opportunities in MBSE
practice.

2.0 Exemplars of Modeling Library Applications
We begin the examination of Library exemplars with a fine-grained examination of

placing components from a library. There is much to be learned from studying ‘the humble
mouse click.’

2.1 Building a Fine-Grained Simulation Model – David Lempia

This section of the paper focuses on one of these five use cases, the Create Product Model
use case. The Product Modeler creates a product model, a behavior or structure model of the

Product Modeler

Create Library
Element

Create product model

Update a product model
with library element fixes Library Modeler Modeling

Env ironment
Support

Publish a set of common
library elements

Update modeling tool
with library elements

	 	

product, to meet a modeling objective. The modeling
objective includes both the understanding of what the model
needs to do and an understanding of the expected results. To
illustrate this use case, a very simple example of a testing
model for a low-pass filter is developed. The objective of this
example model is to verify that the rise time of the low-pass
is consistent with the time constant. The example model is
built using a SysML Activity Diagram. The process of
creating the product model is described in the use case shown
in Figure 2. (In the text below, each Usability Challenge is
designated, UC #.)

The pre-condition for this use case is a list of library
elements that is available and ready to use. The actions for
this use case are listed below:

1. Capture what the model needs to do
(Requirements, use case, and/or test) – The product
modelers require the ability to change the value of
Tau for the Low pass filter. The tester must verify that Tau can be changed.

2. Find library element - The Step Function, low pass, and Time History Plot library
elements are found in the list of library elements. The library elements are
implemented as SysML activities. The activities specify the behaviors needed to
execute the model.
a. UC 1 – It is hard to find, identify, and understand the usage of library elements in

a model. Tools must minimize the time it takes to find and understand what the
library element is and how to use it. Understanding comes from both an example
and a description that includes the environmental constraints, the library element
requirements, and the realized tests.

3. Add library element - Create an
instance of the library element in the
editor. In this example, a step
function action is placed in the
editor. It becomes a call action. The
step function has one output and no
inputs. The pin placement is visible
and is located in the same place as
the parameter on the library element
activity. The icon draws a picture of
a step function and scales the picture
to mirror the default value of 1 for
the step input and 1 for the step size.
(See Figure3.)
a. UC 2 – It takes a number of steps

to re-size the action and to place
the pins around the perimeter of
the element. Tool vendors need to
minimize the number of steps
needed to re-size and adjust the
location of the pins. As an example of how to do this, some vendors have used a
template layout to position the pins and to size the action.

b. UC 3 – Some vendors provide no graphical way to indicate which pin is an input

Figure 4: Tailor the Library Element

Figure 3: Add Library Element

Figure 2: Create Product
Model Use Case

Capture what the model
needs to do (Requirements,

use case, and/or test)

Add library element

Test the model

Find library element

Tailor the library element

Create new product model

Select a requirement, use
case and/or test to

implement

:Product Modeler

[Found]

[Complete]

	 	

and which pin is an output.
c. UC 4 – There is no language support for developing custom icons.

4. Tailor	 the	 library	 element	 –	 Select	 the	 variant	 of	 a	 library	 element	 to	 express	
the	 characteristics	 needed	 for	 the	 model.	 Tailoring	 customizes	 form	 and	 function	
of	 a	 library	 element	 for	 a	 specific	 use	 in	 the	 product	 model.	 In	 this	 example	 we	
tailor	 the	 function	 by	 setting	 the	
step	 insertion	 time	 at	 1	 second	 and	
the	 step	 size	 at	 a	 value	 of	 1.	 	
a. UC 5 - It is difficult to look at a

diagram containing a library
element and see the items that can
be tailored on a library element
and to see the value chosen for
tailoring.

b. UC 6 – It is easy to introduce errors in a model when pins are connected together
with an object flow. This is because the pins connected together with the object
flow may have incompatible types.

5. Test the model – Verifying the rise
time of the low-pass filter involves
executing the model, looking at the
time-history plot, and measuring the
rise time.
a. UC 7 – It is difficult to execute

models. Sometimes executing
models involves creating classes,
placing the activities below the
class, and writing software. This
should be easy to setup and
understand.

b. UC 8 – It is difficult to visualize the results of an executable model. Capabilities
such as the ability to single step, watch the value of a pin, and plot the
time-history of a pin help understand the dynamics of a simulation and aid in
testing.

Each of the remaining use cases un-cover additional usability issues. This is a subject for
a future paper. These additional use cases are summarized, below.

Update a product model with library element fixes - Library elements will change over
time. Changes may be driven by events such as feature enhancements, dependencies, or bug
fixes. The product modeler needs a way to update the product model with changes.

a. UC 9 – It is difficult to identify the dependencies associated with a change.
Dependencies may include new model elements that need to be loaded into the
model because of an update and assumptions for the model environment.

Publish a set of common library elements - Common library elements only have value
in an organization if they can be found and maintained over time. The Library Modeler
publishes common library elements and notifies the product team (product support and
product modelers).

a. UC 10 – It is difficult to package and share multiple elements. Aspects include
requirements, the design, the implementation, the tests, and the test results.

b. UC 11 – It is difficult to document the help on a library element.
Create library element - Creating library elements starts with creating a product model.

Some of the model elements used to create a product model are usable across multiple

Figure 5: Error Proof

Figure 6: Plot Simulation Results

	 	

products in a product line, across all models in an enterprise or across all models in a
modeling discipline. The Library Modeler considers the requirements of the user group and
updates the library element, documents the library element, and tests the element to show that
it meets the requirements.

Update modeling tool with library elements - Finally, the Modeling Environment
Support person updates the modeling tool when new or changed library elements are
available. If desired, the product team also needs a way to update the existing models to use
the new and improved library elements.

a. UC 12 - It is difficult to configuration manage multiple versions of a library
element in a model. Managing includes capabilities such as selecting only one
version of a library element for use in a model, upgrading to a new version of
a library element, and differencing one version of a library element with
another.

Creating product models from library elements is the most important use case selected by
the MBSE Usability Group. This paper details the use case steps needed to build and manage
a model from library elements and outlines the activities in other use cases. These use cases
revealed a number of necessary features. For example, there needs to be a way to tailor
library elements, to capture environmental dependencies, to capture dependencies on other
model elements, and to package numerous artifacts together (requirements, tests, test results,
etc.). These features need to be supported by the tools, the tool environments, and the
underlying modeling languages.

2.2 Libraries and Domain-Specific Modeling – Bjorn Cole
Building upon the insights from usage in a single domain, we consider the challenges of

incorporating many specialized domains into a single modeling environment.

For descriptive modeling frameworks such as SysML, there is an interesting quandary
raised by those more familiar with traditional programming libraries. The traditional libraries
are executable – they confer desired functionality directly to a new codebase. SysML models
are not executable by themselves, but rather provide a regular structure for further
computation. Thus, one can easily ask: if the language is not an executable one, what is the
value in libraries?

The answer to this is that while SysML itself is not executable, it does provide a platform
for steadily refining semantic definitions until other programs can execute them via
“instructions” captured or constrained by the model. The general SysML structure provides a
great deal of guidance for execution. For example, the behavioral constructs have many
semantics for general execution according to a state machine, Petri net, or message-passing
set of semantics. [Jankevicius 2011] OMG provides standards for further refinement to aid
execution [Open Modeling Group 2011]. The classification system provides guidance on
using object-oriented concepts to run instances of generic classes through these behaviors,
and SysML Parametrics expand this into solving static equations [Bajaj 2011]. So, if this
comes “out of the box” so to speak, why are we further enhancing the language with
libraries?

This is the core of the issue. While SysML provides a generic set of semantics, various
engineering domains have very specific semantics that need to be respected. An excellent
example is considering the use of a power bus or a junction in hydraulics. In basic SysML, a
modeler would typically draw on an Internal Block Diagram (IBD) a series of components
surrounding a part called “bus” with connectors linked to it. The power bus or hydraulic
junction’s purpose is to deliver all attached components to the same potential, whether it be
voltage or pressure, for well-understood distribution. Analysis tools can then be assured a

	 	

uniform description of this engineering element and be instructed in the proper way of
incorporating that model datum into the execution of the algorithm. The key point here is
“uniform description.” The advanced members of a given institution can discuss and argue
about the appropriate or most elegant SysML elements to use for encoding a given semantic
and then render the decision into a library.

With the “best of class algorithms” notion discussed, it is time to turn to the more generic
purposes of a library. Providing an easy-to-access repository of modeling knowledge is of
course of high value when one considers a real modeling team. A real modeling team on a
project is likely, even by project intention [Bayer 2012], to have a wide variety of skill levels
in its members. There will be an important subset of this team that does not have deep
SysML modeling knowledge, but brings domain or general expertise to be encoded into the
model.

There have been calls and even a proposed implementation [Friedenthal 2011] of a
so-called “SysML Lite” to help new modelers get a foothold in the language. This is
understandable, since SysML has many dozens of concepts that a modeler can use, and at
least two dozen of them are necessary to cover a system in both its structural and behavioral
aspects. However, SysML Lite is generated by more or less reducing the depth of modeling
across all aspects of the language. This may or may not conform well to the needs of
organizations that heavily emphasize behavioral representations or structural ones and need
the more specialized types of full SysML.

There are several core concepts in each domain that are brought together to build
functional systems. These concepts can be mapped to the concepts within SysML since it is a
system-oriented language, and often in a straight-forward way. The first stages of
constructing the library are about formulating these mappings. Once complete, the engineers
can be assured that when they add a “propellant tank” or a “valve” to their model, it will be
compatible with the modeling framework.

Further, libraries support orienting new modelers to the object-oriented framework of
SysML. The Meta-Object Facility is built on a core of elements, element classification,
relationships, and inheritance. Elements and relationships are easily understood. The more
novel concepts are classification and inheritance of elements. A library will typically support
these naturally. Using this library will walk a user through selecting the type and then
selecting a specific part. Inheritance among classifications is also natural. For example, an
engineer should be able to use a generic tank, or a tank with a specific material, or a tank with
a specific material and propellant management device.

This also highlights an important usage aspect of system modeling in general. Systems
engineering practice requires the breakdown of complicated machines into smaller pieces.
Preferably, this breakdown enables the smaller pieces to be contained comfortably within an
engineering specialty with trained engineers that are practiced at handling similar
development problems. This means that at some point in model-based practice, the domain
engineers will have to make some inputs at the boundaries of the system model (and that the
system modelers have sufficient cross-training to project some of their work into domain
models). Adding domain-specific libraries is not simply about helping new modelers into the
enterprise; they provide a way to capture knowledge projected into the system model.

A problem in discussing domain-specific icons is that the machine-readable part of the
UML / SysML specification currently does not include the graphical elements of diagrams.
At least one authoring tool currently has a customization capability that allows for
experimenting with custom diagramming. MagicDraw has served as the experimental
platform at JPL for working with domain-specific libraries. It has done so without a standard
so far, but it has provided the chance to work out use cases and inputs from potential users
regarding look and feel.

	 	

In Figure 7, the MagicDraw tool is shown to emphasize the relevant parts of the library.
First is the custom icon itself, which is the most visible. The toolbar of concepts for the
custom diagram serves two purposes. It provides access to the custom icons, but also serves
to apply a Stereotype matching the component type directly to this part. The next step is not
yet automated, but is relatively straightforward. The element has been stereotyped, but not
yet classified. In the Containment Tree, a set of SysML Blocks (eligible to be Classifiers) is
housed to have properties for a specific component. In this example, the library has been a
source for directly applying domain-specific iconography, loading the type (and its associated
properties like mass and cost) into the new model, and restricting semantics of SysML as
appropriate for the kind of thing being placed on the diagram via its stereotype.

Figure 7: Customized propulsion schematic in MagicDraw
A standard is currently being developed to help improve the specification of custom

diagrams. It is an OMG product called Diagram Definition (also called Diagram Definition
and Interchange) [OMG 2007]. Hopefully this standard will mature quickly, and interested
readers at OMG member organizations are encouraged to investigate the status of this
standard and contribute via knowledgeable representatives. The development of this standard
will also likely have the benefit of supporting not just libraries of custom diagrams, but
libraries of diagrams of standard elements available in all authoring tools.

2.3 MBSE Libraries for Automotive Engineering – Judy Che
We	 build	 upon	 the	 detailed	 insights	 into	 collaboration	 between	 specialists	 by	 examining	 an	
example	 of	 practical	 architecture	 that	 integrates	 specialized	 domain	 contributions.	 	
	

The complexity of designing today’s sophisticated vehicles requires a model-based
development process supported by a set of robust vehicle system models. The goal is to use
vehicle system models earlier in the design process to develop and trade-off vehicle level
attributes such as:

	 	

• Fuel economy
• Performance
• Drivability
• Cabin comfort
• Safety
The	 vehicle	 system	 models	 described	 here	 include	 representations	 of	 both	 hardware	

and	 controls	 elements	 and	 are	 intended	 to	 simulate	 the	 functional	 behaviors	 of	 complex	
mechatronic	 systems.	 	 These	 vehicle	 system	 models	 can	 be	 built	 up	 by	 assembling	 a	 set	
of	 domain	 or	 component	 models	 using	 a	 Vehicle	 Modeling	 Architecture	 (VMA)	 as	 shown	
in	 Figure	 8.	 	 This	 architecture	 and	 typical	 applications	 have	 been	 described	 in	 previous	
publications	 [Belton	 2003].	 	 	

Figure 8: Vehicle Model Architecture
The	 VMA	 provides	 a	 well-‐defined	 high-‐level	 modular	 structure	 for	 dynamic	 vehicle	

modeling	 with	 key	 vehicle	 subsystems	 represented	 as	 distinct	 elements.	 	 Subsystem	
connections	 are	 specified	 through	 well-‐defined	 interfaces.	 	 While	 the	 structure	 and	
interfaces	 are	 fixed,	 model	 content	 is	 not.	 The	 vehicle	 model	 architecture	 provides	 a	
way	 to	 manage	 model	 requirements	 for	 each	 component	 for	 simulation	 use	 cases	 such	
as	 vehicle	 performance	 or	 fuel	 economy	 analysis.	 	 	
Our	 goal	 is	 to	 establish	 a	 well-‐defined	 process	 by	 which	 Subject	 Matter	 Experts	 (SME’s)	
in	 each	 domain	 create	 and	 verify	 models	 for	 their	 domain	 such	 as	 engine,	 transmission,	
etc.	 	 These	 domain	 models	 can	 then	 be	 integrated	 to	 build	 up	 a	 set	 of	 vehicle	 system	
models	 as	 seen	 in	 Figure	 9.	 These	 sets	 of	 domain	 models	 can	 be	 managed	 through	 a	 set	
of	 re-‐usable	 model	 libraries	 of	 component	 models	 with	 varying	 levels	 of	 fidelity.	 	 In	
many	 cases,	 parameter	 data	 sets	 can	 be	 managed	 separately	 from	 the	 models	 so	 that	 a	
single	 engine	 model	 can	 be	 made	 to	 represent	 a	 1.5L	 or	 a	 2.0L	 engine	 with	 a	 simple	 data	
set	 change.	 	 In	 order	 to	 support	 such	 a	 model-‐based	 vehicle	 model	 creation	 process,	
tools	 and	 utilities	 are	 needed	 to	 help	 specify,	 assess	 compatibility,	 edit,	 save	 and	 apply	
model	 variant	 and	 data	 set	 choices.	 	 These	 steps	 include:	
• Specify a set of model domain choices (both hardware and controls) for a particular

analysis such as fuel economy or performance simulation as shown in Figure 10.
• Specify data sets for each domain model – i.e. 1.5L or 2.0L engine maps
• Assess model choice compatibility – i.e. between plant and controls models

o Use meta-data or other mechanism to associate “compatible” plant & control models

	

	 	

Figure 9: Building Vehicle System Models by Assembling Domain Models

o Verify interfaces line up for hooking up models
 Signal definition (e.g. Engine Brake Torque vs. Indicated Torque)
 Units (Nm or Ft-lbs)
 Data types (real, integer, etc.)

• Allow edit and save of domain model choices and corresponding data sets
• Provide automated way to build up vehicle model from domain model choices by

auto-wiring signals (e.g. Simulink) or physical connections (e.g. Dymola flanges)
• Ensure appropriate versions of models and data sets are selected
Some	 previous	 work	 in	 using	 SysML	 to	 support	 Multidisciplinary	 vehicle	 system	
modeling	 can	 be	 found	 in	 [Branscomb	 2013].	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

TransmissionEngine DrivelineElectrical Chassis

Parameterized System Models from each Domain

Domain models
Developed in
dedicated
Domain Areas

Released to Central
Project areas for
integration

Multiple
Projects/Vehicle
System Models

Set of model integration
requirements

Package
Desc

ELE
PLNT

ELE
CTRL

AUX
PLNT

AUX
CTRL

PWP
PLNT

PWP
CTRL

TRN
PLNT

TRN
CTRL

CHA
PLNT

CHA
CTRL

Analysis A Low Low Null Null Med Med Med Med Low Low

Analysis B Low Low Null Null Low Low Med Med High High

Analysis C Low Low Med Med Med Med Med Med Low Low

Analysis D Low Low Null Null Med Med High High High High

Model Coordination Matrix

Analysis A [Fuel Economy]1

Analysis B [Performance]2

Analysis D [Drivability]

3 Analysis C [Climate Control]

4

Figure 10: Model Coordination Matrix for Different Analyses
	

	 	

2.4 Library Templates to Support Learning and Modeling Efficiency

 – George Sawyer
From	 an	 examination	 of	 architecture	 for	 an	 integrated	 modeling	 environment,	 we	 proceed	
to	 look	 at	 mechanisms	 for	 lowering	 the	 barriers	 to	 using	 such	 a	 complex	 environment	 by	
relying	 upon	 infrastructure	 that	 communicates	 the	 rich	 context	 of	 modeling	 practice.	

2.4.1 Historical Context
BAE Systems has experienced limited success in applying Model-Based Systems

Engineering (MBSE) languages, tools and methodologies over the past decade. Several
projects have seen very positive results particularly in allowing systems integration to
proceed at a more rapid and reliable pace than with similar programs. In one specific
program, the final systems integration was completed in just over three months as opposed to
the six months originally planned. Despite this and other positive experiences, there has been
both organizational and technical opposition to MBSE adoption in most business areas.
Overcoming the technical challenges of adopting MBSE was seen as a prerequisite to
increased organizational acceptance – one of the primary technical objectives was the
development of a robust model template to use as a basis for “jump-starting” MBSE
development efforts and allowing adopting projects to make “early gains” that would
positively influence their decision to continue forward with the approach. Specifically, the
template was aimed at addressing the chief technical difficulties in adopting model
development as identified by the SysML RFI [Bone and Cloutier, 2010]:

1. Having to simultaneously learn a language, methodology and tool to be effective
2. Lack of relevant, realistically complex examples with supporting narrative
3. Lack of proven best practices for successful application across domains
4. Difficulty in understanding and applying specific language areas (e.g. ports)

2.4.2 Elements of a Useful Model Template
Recognizing the above problems, we realized that modelers needed a better starting point

for their models than was currently available. They needed something they could take with
them from their training that would allow them to make rapid progress with their model
development and keep their model development efforts going on a path to realize benefit to
their projects. The following objectives for a useful model template were identified as
follows:

1. Provide an integrated definition of the development methodology
2. Provide an extensible and adaptable structure for the overall model
3. Provide a non-domain-specific infrastructure for developers to build upon
4. Provide relevant examples of model items and diagrams illustrating correct usage
5. Provide embedded directions for extending the model template to a specific solution
6. Provide for robust integration of model elements with other development tools

2.4.3 Integrating Methodology Support
Within BAE Systems, the company-patented Functional Object Decomposition (FOD)

methodology is one of the primary ones used however there are a number of widely
recognized alternatives as identified by Jeff Estefan [Estefan, 2009]. Regardless of the
development methodology (or methodologies) used by an organization, there is benefit to be

	 	

gained in making it an integral part of a model template. The following figures show how the
methodology description itself can be incorporated as part of a SysML profile. The way in
which the methodology description is incorporated takes a page from the development of
UPDM in which Mathew Hause identifies the importance of “walking the talk” when it
comes to model development [Hause 2010]. This is not done just for convenience but to
demonstrate the utility of the language in defining the methodology of “how to use it”.

2.4.4 Provide a Flexible and Extensible Model Structure.
Getting the model structure right is one of the key considerations that will “make or

break” a model as a useful tool in developing a new (or adapted) system. The model needs to
be structured to support a number of critical and seemingly conflicting objectives, such as:

1. Providing an efficient and intuitive means for accessing model information
2. Maintaining consistency with the development methodology
2. Supporting simultaneous, non-conflicting use by multiple developers
3. Integrating with add-on capabilities such as document generation scripts
4. Implementing reuse through import and export of system, subsystems and modules

2.4.5 Providing Modeling Infrastructure to Build Upon
The development of infrastructure is typically very resource intensive, therefore we

started by initially developing lower-level modeling libraries that would potentially be useful
to system developers regardless of domain. The first effort involved developing a

Figure 11. Example Pattern for System Use Cases

comprehensive set of dimensions, units and value types for supporting model constraints

System User

Time

Start Up
System

System Functional
Capability

Periodic System
Function

Interpretted as:
Sys tem User uses System to Perform Sys tem Functional Capability or
Sys tem User causes Sys tem to perform System Functional Capability

Provides an example system
use case init iated by a user

Provides a template for use cases and associated description diagrams:
- Example Sys tem Functional Capability Activity Diagram - Black Box
- Example Sys tem Functional Capability Sequence Diagram - Black Box

. ..

Provides an example system
use case performed periodically

System

	 	

and parametrics. Some modeling tools come with a set of International System of Units (SI)
however our standard tool at the time did not. The library of units we developed, including
both SI and “English” units, provided users with a common, pre-defined set of types and also
laid the groundwork for additional generic infrastructure components such as the pre-defined
system environments blocks and the generic shapes library.

2.4.6 Providing Relevant Examples and Directions for Extension
The SysML RFI results serve as a resounding confirmation of the general observations

from teaching MBSE across several organizations: that applying the modeling constructs to
real-world problems can be exceptionally difficult [Bone and Cloutier, 2010]. This is the
rationale for embedding both generic model constructs as well as more concrete examples
within the model template.

The generic examples provide a “copy and paste” pattern for system developers to follow

which result in more consistency and correctness of language usage. Additionally, the more
complex examples serve to guide the development of the system-specific constructs from the
basic patterns. Figure 11 provides an example of the type of guidance that is embedded in the
model template.

2.4.8 Improving Integration with Other Development Tools
To support the integration with the requirements management tool, the model template

includes a number of additions to the basic SysML profile. First, it includes the suggested
additions to requirements as identified in appendix C of the SysML standard [OMG 2007].
This permits the stereotyping of requirements by their applicable category and dovetails with
the FOD methodology in defining a standard means for identifying satisfaction of each
requirement based on their type. The template also contains a set of stereotypes and
associated tag types that map to the company-standard set of attributes use for supporting
requirements management. By doing this, developers can synchronize all relevant
requirements information between the SysML and requirements management tool and
perform edits (if authorized) in either tool. Similar integrations have been developed for
numerical analysis, configuration management and test automation support tools.

Figure 12. How the Model Template Addresses MBSE Adoption Challenges

Embedded Methodology Definition

Extensible Model Structure

Model Type Component Libraries

Embedded Usage Guidance Examples

Embedded Directions for Extension

Integration With Non-SysMLTools

Template Elements

MBSE Adoption Challenges

	 	

2.4.9 Summary on Using Model Templates
In summary, model templates directly address some of the more serious challenges

presented by the adoption of MBSE. With experience in using these templates on multiple
projects and guidance from the recent SysML RFI, the usefulness of the templates has
continued to improve over the past few years. As the following table shows, the current
iteration of our model templates provides a level of resolution for each of the primary
challenges identified in the RFI. It also addresses the one additional challenge area of
infrastructure that we’ve identified as an additional concern. Our expectation is that the
template will continue to improve in response to feedback from projects employing it.

2.5 Practical Application of a Geographically Dispersed Modeling
and Simulation Environment – Craig Schimmel & Ron Lyells

At	 the	 highest	 level,	 we	 look	 at	 effective	 and	 efficient	 architecture	 for	 implementing	 a	
modeling	 environment	 in	 a	 large	 system	 of	 systems.	

2.5.1 Context
The Problem: The use of simulation is not a new concept and is widely used. The

INCOSE Handbook discusses the use of simulation in several system engineering venues;
during concept generation, developing performance requirements, and during study of
interactions between system elements, and between systems in a system of systems problem
space. However, there are issues of scale. Specifically, for organizations like Honeywell,
who are combining product portfolio’s to build complex systems of systems, how does one
effectively leverage simulations that have been independently developed in different
geographic locations and in different simulation environments?

The Opportunity: Borrowing from the gaming world; use of simulation environments
for exploring concept of operations issues with the customer and then using that same
simulation environment to support training of those same customers has proven to be a
powerful capability that is especially useful for customers.

A Matter of Persistence: Web based gaming environments provide a persistent
environment where gamers can come and go, participating as desired. Using this as
inspiration, consider two scenarios where system developers and users come and go for the
purposes of exploring concept of operations issues and quantifying needs, system
prototyping, and training.

The Persistent Constructive based Simulation Environment: Simulated entities join a
persistent environment for purposes of engineering evaluation or ConOps development. The
simulations that make up the environment can be swapped dynamically in order to focus on
specific evaluation needs. For instance, high fidelity simulations can replace baseline
low/medium fidelity in order to explore specific operational or functional detailed aspects of
the system.

Such an environment would require the ability to host a large enough set of simulations to
satisfy the evaluation needs – albeit with a properly scaled level of fidelity and scope to
match the objectives of the evaluation. Such a system would allow alternative concepts to be
evaluated in a known, consistent environment. The environment could have the ability to
adapt and react dynamically (learn).

The Persistent Live Training Environment: In this scenario, distributed individuals join
a persistent environment and train together. The simulation world may exist continuously and
trainees can join at any time. Multiple instances of the training environment can exist in
parallel. This environment requires the ability to host a simulated world and provide access

	 	

for players to join and leave. The world that each player sees must be synchronized and
consistent among players. The world must provide sufficient detail to achieve an immersive
effect so the trainee acts and learns as if operating in the real world. Such a system can host
simulation on on a local scale (from a single laptop to a few workstations) to a much larger
scale, operating remotely via the cloud, allowing trainees anywhere to participate in
collaborative training. Tactics, techniques and procedures can be updated by the customer as
needed.

2.5.2 What Would A Persistent Simulation Environment Look Like?
An example of the kind of persistent simulation environment described in the scenarios

above is depicted in the concept of operation diagram in Figure 13. The REAL (Reactive
Environment for Active Learning) framework has been developed by Honeywell’s
SMARTLAB organization to leverage its own simulation capabilities that are globally
distributed.

Figure 13. Operational Scenario Using REAL Framework

Key elements of the environment include:
1. The Simulation Set is a meta-data database identifying REAL Framework

compatible simulations. It allows the system-of-system modeler to identify the
simulations to be combined into a simulation environment and operational conditions.

2. The Tool Set is set of common tools and libraries (including COTS components) that
aid the creation of REAL Framework simulations and provide readymade, frequently
used capabilities. Eg. Simulation control, visualization, data capture and metrics.

3. The Simulation Execution is the selected set of system of systems simulations and
tools, combined with the run-time middleware into a complete simulation
environment useful to the end user.

4. The Middleware is the flexible mechanism of system model integration that ties all

REAL Framework Operational Scenario

End User
Post-analysis system modification needs

System of Systems
Modeler

Database of
REAL Framework
Models

System of Systems
Simulation Execution
Environment

Metrics

Control

Model
Compliance, Insert

Select,
Combine

Execute

Inform

Additional Model Needs

Compose simulation
system from compatible
simulations & models

Model Meta-Data

Interact

	 	

of the other elements together. A model needs only be integrated to the middleware
once, yet the system modeler has the ability to change the apparent model behavior
and reuse the model in any other simulation environment.

But you say, “Simulation environments and standards are already defined… What’s
the problem?” The problem is that it takes a lot of work to adapt a simulation from one
framework to another. (e.g HLA to DIS) The other problem is that environments like HLA
are complex in themselves; developed to support very diverse simulation problems. So, the
very breadth and capability come with a usability complexity that drives the learning curve
for a modeler to levels that program timelines or organizational resources cannot support
effectively. Because it takes so much work, many don't try to leverage potentially available
simulations. Groups sometimes will invest the time to create their own new simulations, build
a work around, or ignore simulation as a means altogether. An internal study within one of
Honeywell’s advanced modeling and simulation organizations, where HLA, DIS, and
Honeywell-developed distributed simulation protocols are used, revealed that only about 40%
of the simulation applications actually contained interfaces where data was shared. Of those,
75% used custom messages over sockets and just sent data.

2.5.3 A Theory For A Workable Countermeasure:
If one can build a wrapper

around existing simulations that
removes the simulation
environment attributes and
complexity from the simulation,
then one can focus on the
management of data that is
consumed and produced by a
given simulation, thereby
simplifying the simulation
interface and improving the
usability and availability of a
given simulation. This
theoretical “wrapper” is shown
as the SimAPI in Figure 14.

In this notional example
using HLA, the wrapper would
provide a significant reduction
in needed interface complexity
for those simulation problems
that do not require the full suite
of simulation capability that
HLA affords.

The Model - A Modified Framework Architecture Is Required: Figure 15 shows a
simulation architecture created by Honeywell that utilizes a “SIM API” interface that
effectively allows the removal of simulation interface complexity from the simulation itself
The SIM API frees the simulation developer to focus solely on the simulation model and the
simulation integrator to focus on the data needed for the simulations to interact. The SIM
API is based upon a simulation interface specification that also allows simulations designed
with it to be easily reused between simulation architecture environments (e.g. DIS vs HLA).

Legacy simulations need to be updated to meet SIM API specification. This is not a labor
intensive effort.

Simulation Interface Capability vs. Complexity

Simulation Capabilities

In
te

rfa
ce

 C
om

pl
ex

ity

Data
 Messages

Sim
Control

Time
Stamps

OO Data
Exchange

Pub/
Sub

Ownership
Transfer

Multi-
Time
Mgmt

SimAPI HLA Wrapper HLA

Attribute
Divest

Figure 14. Simulation Interface Capability vs.
Complexity

	 	

Figure 15. REAL Framework Run Time Architecture
Once done the model transfer effort is reduced from several weeks to less than a day. This

reduction in effort is possible because interfacing with existing HLA or DIS standards usually
requires the simulation developer to modify or transform data between the internal simulation
representation and a representation defined by the standard. The SIM API allows the
developer to use any representation, minimizing the translation effort within the individual
simulation. Instead, the simulation integrator (system of systems modeler) defines the
transformation between the simulation data and the standard in use, which is applied
automatically within the SIM API.

2.5.4 The Method - Development Objectives For The SIM API:
The team, that developed the SIM API interface specification, focused upon making the

simulation developer and integrator as effective as possible. Effectiveness here being defined
as giving the simulation team the ability to realize results from its simulation activity as
quickly as possible. Some of the objectives considered include:

• Make it convenient to use:
o The SIM API should be similar in effort to low cost ad-hoc approaches, such

as a simple socket based interface.
o Allow the simulation to use its own data representation rather than an

externally imposed representation.
• Make it ‘write once’ for the simulation modeler

o Many simulations are available in organizations without the interest or
resources to integrate a variety of interfaces

o Give the system of systems modeler the ability to change the underlying
distribution technology (changing FOMS, HLA->DIS, etc) without flowing
changes back into the simulations.

• Keep the data formats concise
o Let the simulation modeler define the data in simulation terms,
o Recognize that any simulations have limited data needs,

REAL Framework Run Time Architecture

Simulation B

SIM API

Metrics and
Data Logging

SIM API

Simulation A

SIM API

RF Middleware (HLA) (FOMs)

Web Service

SIM API

Remote
Interaction

Direct
Simulation

REAL Framework

Simulation Environment Specific

HLA1516 was chosen as the baseline middleware due to
its simulation focus and commercial tool support.
However, other middleware (DIS, TENA, …) can be used
with no change to the simulations.

COTS
Tools

	 	

o Let the SoS modeler perform the data connection and translation.

2.5.5 Current progress and Conclusions:
The REAL Framework environment has been developed and is currently dispersed to

several locations across the globe in support of aerospace avionics related human factors
studies in simulated airspace conditions. The simulation environment itself is working as
intended with the expected reduction in simulation integration times being realized. There are
no anticipated technical obstacles to further deployment and usage. However, there are
cultural and awareness issues that need to be dealt for each engagement or deployment. These
issues and concerns usually arise from uncertainty within the developer and stakeholder
community as to the cost / benefit of engaging in systems of systems simulation effort when
they have not been through the experience. The approach discussed here provides a way to
quickly show progress and ease of use for those new to simulation or new to using simulation
for exploring system concept of operations or training provisions.
Definitions:	

DIS – Distributed Interactive Simulation: A standard networking protocol for exchanging
information between various simulation applications. Reference IEEE 1278.1.

HLA – High Level Architecture: An architecture framework to support distributed
modeling and simulation. Reference IEEE 1516.1

REAL: Reactive Environment for Active Learning
SMART: Simulation and Modeling for Acquisition, Requirements and Training
SMARTlab: Honeywell Advanced Technology modeling and simulation lab, which

applies the SMART process for the entire product lifecycle

3.0 Conclusions and Lessons Learned
This paper has summarized five exemplars of usage for modeling libraries based upon the

practical experience of the authors in varying contexts. To some degree this is an eclectic
mix of experiences; however, there were common themes:

Experience with MBSE environments suggests that the modeling libraries of the future
will contain knowledge-rich objects. Modeling objects will contain and be associated with
many types of information, including architectural and design patterns, tutorial examples,
context of applicability, and integration data. A significant segment of the modeling
community wants to go beyond basic descriptions of designs. They want to predict system
behavior using overall system models that are integrated with specialized, discipline-specific
models. This creates several challenges:

• Most	 integrated	 MBSE	 simulation	 environments	 rely	 upon	 significant	
customization	 effort.	 	 General	 APIs	 for	 model	 interfaces	 tend	 to	 be	 complex.	 	
However,	 as	 Lyells	 describes	 in	 Section	 2.5,	 above,	 there	 have	 been	 successful	
large-‐scale	 implementations	 that	 reduce	 complexity	 by	 using	 specialized	 APIs	
such	 as	 the	 SIM	 API	 shown	 in	 Figure	 15.	 	 Such	 middleware	 can	 significantly	
reduce	 the	 workload	 for	 individual	 modelers	 who	 need	 to	 create	 a	 system	 level	
simulation.	 	 We	 perceive	 such	 efforts	 as	 one	 necessary	 aspect	 of	 modeling	
environments	 that	 are	 scalable	 to	 large	 projects.	 	

• As	 Cole	 observes	 in	 Section	 2.2,	 in	 an	 integrated	 modeling	 and	 simulation	
environment,	 discipline	 specific	 models	 need	 to	 “project	 meaning”	 into	 the	
system	 simulation	 and	 vice	 versa.	 	 This	 semantic	 interoperability	 is	 one	 key	 to	
integrated	 functioning.	 	 There	 are	 significant	 efforts	 in	 progress	 to	 address	 these	
issues.	 	 See,	 for	 instance,	 the	 work	 of	 Henson	 Graves	 as	 part	 of	 the	 INCOSE	 Model	
Based	 Systems	 Initiative.	

	 	

• There	 is	 a	 delicate	 balance	 between	 standardization	 and	 experimentation.	 	 We	
believe	 that	 standards	 work	 is	 particularly	 valuable	 when	 it	 addresses	 interfaces	
and	 interoperability	 challenges.	 	 An	 example	 of	 the	 power	 of	 this	 approach	 is	 the	
growth	 of	 the	 Internet	 as	 supported	 by	 the	 existence	 of	 TCP/IP.	 	 However,	 we	 see	
the	 current	 period	 as	 a	 time	 of	 many	 experiments	 by	 many	 individuals	 and	
organizations.	 	 Attempts	 at	 standardization	 should	 honor	 this	 process	 and	
attempt	 to	 support	 it	 using	 a	 ‘design	 for	 emergence’	 philosophy.	 	 If	 we	 are	
successful	 with	 striking	 the	 right	 balance,	 we	 could	 see	 a	 growth	 in	 system	
modeling	 that	 rivals	 the	 growth	 of	 the	 Internet.	 	 	

• Discipline-‐specific	 models	 imply	 specialized	 views,	 where	 each	 view	 exposes	 the	
objects,	 features	 and	 attributes	 that	 support	 a	 specialized	 set	 of	 modeling	 tasks	
and	 are	 represented	 using	 the	 symbology	 of	 the	 domain.	 	 Such	 capabilities	 are	
not	 well-‐supported	 at	 present.	 Some	 tools	 offer	 capabilities	 to	 create	 customized	
graphics	 and	 there	 is	 a	 preliminary	 OMG	 effort	 to	 create	 a	 diagramming	
standard.	 	 We	 see	 this	 as	 a	 positive	 trend.	 	 The	 nature	 of	 the	 tasks	 supported	
dominates	 the	 creation	 and	 usage	 of	 specialized	 views.	 	 A	 point	 that	 Lyells	 makes	
strongly	 is	 that	 we	 need	 to	 be	 clear	 whether	 a	 task	 is	 directed	 toward	
communicating	 with	 humans	 or	 communicating	 with	 machines.	 	 Eventually,	 it	 is	
expected	 that	 modeling	 environments	 will	 offer	 ubiquitous	 end	 user	
programming	 capabilities,	 as	 straightforward	 to	 use	 as	 spreadsheets;	 however,	
this	 is	 a	 challenge	 that	 will	 require	 significant	 development	 effort.	

• MBSE	 environments	 that	 incorporate	 multiple	 specialized	 modeling	 domains	
tend	 to	 use	 layered	 architectures.	 	 (See,	 for	 example,	 the	 architectural	 features	
displayed	 in	 the	 diagrams	 offered	 by	 Che	 (Section	 2.3)	 and	 Lyells	 (Section	 2.5).)	 	
We	 expect	 these	 modeling	 environments	 to	 evolve	 toward	 Service	 Oriented	
Architectures	 with	 “plug	 and	 play”	 capabilities	 for	 adding	 discipline-‐specific	
modeling	 capabilities.	 	 	 The	 experience	 of	 working	 in	 such	 an	 environment	 will	
be	 one	 of	 interacting	 with	 a	 large,	 collaboratively	 developed	 model	 with	 many	
specialized	 views	 that	 support	 the	 efforts	 of	 many	 experts.	

Overall, we see the beginning of a trend to vastly extend the scope of information in
MBSE libraries. For language designers, this implies a need for significant extension of
current representation capabilities. For tool designers, it means a significant extension of tool
capabilities. For users, it implies a great expansion in modeling capabilities and a period of
time where it is likely where usability will be severely impacted by increasing complexity
while tool and language developers struggle to accrue the insights that they need to create
simpler modeling environments.

Lempia, in Section 2.1, offered a perspective on the actors and use cases that arise when
human beings interact with libraries. However, the way that humans interact with libraries
goes beyond these formal interactions. We expect that the informal interactions will be at
least as important as the formal interactions. These informal interactions include modelers
borrowing from the work of colleagues and multiple creative interactions that generalize the
scope of model components and other knowledge artifacts. We expect such roles and
patterns of interactions to continue to evolve.

4.0 The Path Forward
The five perspectives in this paper, based upon five sets of experience with industrial

strength modeling activities suggest that the systems modeling community is in a period of
rapid experimentation and creative activity. The MBSE Usability Group within the INCOSE
Model Based Systems Engineering initiative will continue to support this effort in the

	 	

following ways:
• Work	 on	 the	 library	 usability	 will	 continue	 in	 the	 coming	 year.	 	 We	 have	 only	

begun	 to	 address	 the	 challenges	 in	 this	 area.	 	 We	 welcome	 participation	 from	 the	
larger	 modeling	 community,	 including	 modelers,	 tool	 vendors	 and	 language	
developers.	

• Work	 on	 other	 use	 cases,	 such	 as	 those	 identified	 in	 the	 2011	 INCOSE	
International	 Workshop	 will	 be	 addressed	 in	 the	 coming	 year.	 	 A	 specific	 focus	 in	
2013	 will	 be	 another	 high	 value	 use	 case	 focusing	 upon	 the	 development	 of	
model	 structure	 and	 making	 assertions	 about	 particular	 model	 structures.	

As Steve Jobs observed, “Creativity comes from connections.” In this time of rapid
experimentation, it is important that individuals and organizations that are experimenting
with modeling infrastructure share their insights, so that all of us can benefit from creative
interaction. As we build modeling artifacts and interact creatively with our colleagues, each
new development becomes a communication on the path of a shared spiral of meaning.
Today, many of these processes are occurring using pre-Internet models of interaction, such
as sharing papers at yearly seminars. Although such traditional approaches are valuable, we
need to move forward with this process of dialog, discussion, and development at Internet
speed. We need a business model that supports this accelerated evolution.

5.0 References
Bajaj,	 M.,	 Zwemer,	 D.,	 Peak,	 R.,	 Phung,	 A.,	 Scott,	 A.,	 Wilson,	 M.,	 “Satellites	 to	 Supply	

Chains,	 Energy	 to	 Finance	 —	 SLIM	 for	 Model-‐Based	 Systems	 Engineering	 Part	 1:	
Motivation	 and	 Concept	 of	 SLIM.”	 	 INCOSE	 International	 Symposium,	 20-‐23	 June	
2011.	 Denver,	 CO.	

Bayer,	 T.J.;	 Seung	 Chung;	 Cole,	 B.;	 Cooke,	 B.;	 Dekens,	 F.;	 Delp,	 C.;	 Gontijo,	 I.;	 Lewis,	 K.;	
Moshir,	 M.;	 Rasmussen,	 R.;	 Wagner,	 D.;	 ,	 “Model	 Based	 Systems	 Engineering	 on	
the	 Europa	 mission	 concept	 study,”	 Aerospace	 Conference,	 2012	 IEEE	 ,	 3-‐10	
March	 2012.	

Belton,	 C.,	 Bennett,	 P.,	 Burchill,	 P.,	 Copp,	 D.,	 Darnton,	 N.,	 Butts,	 K.,	 Che,	 J.,	 Hieb,	 B.,	
Jennings,	 M.,	 Mortimer,	 T.,	 "A	 Vehicle	 Model	 Architecture	 for	 Vehicle	 System	
Control	 Design,"	 03AE-‐176,	 2003	 International	 Congress	 of	 the	 Society	 of	
Automotive	 Engineering.	

Bone,	 Mary	 and	 Robert	 Cloutier	 2010.	 “The	 Current	 State	 of	 Model	 Based	 Systems	
Engineering:	 Results	 from	 the	 OMG	 SysML	 Request	 for	 Information	 2009.”	 Paper	
presented	 at	 the	 8th	 Conference	 on	 Systems	 Engineering	 Research,	 Hoboken,	
New	 Jersey,	 17-‐19	 March	 2010.	 	

Branscomb,	 J.M.,	 Paredis,	 C.J.,	 Che,	 J.,	 Jennings,	 M.J.,	 “Supporting	 Multidisciplinary	 Vehicle	
Analysis	 Using	 a	 Vehicle	 Reference	 Architecture	 Model	 in	 SysML,”	 Conference	 on	
Systems	 Engineering	 Research	 (CSER’13),	 Atlanta,	 GA,	 March	 19-‐22,	 2013.	

Estefan,	 Jeff	 A.	 2008.	 “Survey	 of	 Model	 Based	 Systems	 Engineering	 Methodologies	
(MBSE).”	 INCOSE	 Technical	 Paper	 INCOSE-‐TD-‐2007-‐003-‐01,	 June	 10,	 2008.	 	

Friedenthal,	 S.,	 Moore,	 A.,	 Steiner,	 R.,	 2011.	 A	 Practical	 Guide	 to	 SysML,	 2nd	 ed.,	
Burlington,	 MA	 (US):	 Morgan	 Kaufman.	

Hause,	 Matthew	 2010.	 “An	 Overview	 of	 UPDM,	 a	 Unified	 Profile	 for	 DODAF	 	 and	
MODAF.”	 Paper	 presented	 at	 the	 20th	 Annual	 International	 Council	 on	 Systems	
Engineering	 (INCOSE)	 International	 Symposium,	 Chicago,	 Illinois,	 USA,	 12-‐16	
July	 2010.	 	

	 	

Jankevicius	 N.	 2011.	 “Executable	 UML	 with	 MagicDraw:	 Cameo	 Simulation	 Toolkit.”	
Presentation	 to	 the	 Open	 Modeling	 Group	 Technology	 Committee.	
http://www.omg.org/news/meetings/tc/agendas/va/xUML_pdf/Jankevicius.pdf.	

Open	 Modeling	 Group.	 2011.	 FUML.	 Semantics	 of	 a	 Foundational	 Subset	 for	 Executable	
UML	 Models	 (fUML),	 v1.0..	

___.	 2011.	 DD.	 Diagram	 Definition	 (DD).	 	
OMG	 Systems	 Modeling	 Language	 (OMG	 SysML™),	 V1.0,	 2007b,	 OMG	 Document	 Number:	

formal/2007-‐09-‐01,	 URL:	 http://www.omg.org/spec/SysML/1.0/PDF,	 Accessed	
November,	 2007	

Biographies
Judy Che currently works in the Vehicle System Analysis and MBSE department at Ford
Research & Advanced Engineering. She specializes in methodologies for simulating

vehicle level attributes using full vehicle system models. She joined Ford Motor Company in
1999 after receiving her doctorate from University of Michigan in Mechanical Engineering.

Bjorn Cole, Ph.D. is a systems engineer at the Jet Propulsion Laboratory. He has
expertise in Systems Modeling, Systems Engineering, Strategic Technology Planning,
Advanced Analytics, and SysML.

David Lempia is a Principal Systems Engineer in the Engineering Infrastructure
Development & Lean organization of Rockwell Collins and has over 20 years of experience
in systems development. He received his M.S. in electrical engineering from the University
of North Dakota in 1987 and his M.S. in Business Administration from the University of
Iowa in 2007.

Ron Lyells has been a member of INCOSE for over 6 years. Currently employed by
Honeywell’s Aerospace Group, Ron is part of a team responsible for improving product
development effectiveness across the Aerospace organization. Ron is specifically responsible
for developing and promoting a common product development enterprise model to help
support integration of all the aerospace product lines. In addition he has also been responsible
for developing and promoting a common system engineering design method across the
Aerospace organization. Ron has worked in the Aerospace industry 34 years in various
leadership positions involved in product development lifecycle stages ranging from proposal
to production support. He holds a B.S degree in electrical engineering from Arizona State
University.

George Sawyer is a Principle Systems Engineer for BAE Systems, a world-wide defense,
aerospace and technical services company. George is one of the company's leading
practitioners of Model-Based Engineering and works with a number of divisions to support
their adoption of this technology. He is actively involved in using MBSE in the development
of rotary and fixed-wing self-protection systems.

Craig Schimmel is a staff engineer working at the Honeywell SMARTLAB facility in
Albuquerque. Craig has been involved in numerous modeling and simulation efforts,
generally in support of operational analysis with various customers within the U.S.
aerospace community.

Scott Workinger, Ph.D., has 35 years experience leading people who create innovative,
practical solutions to business problems and field working systems in a broad spectrum of
industries. His research at Stanford focused upon usability issues pertaining to the integration
of design models and engineering processes. He serves on the Board of Directors for the
Silicon Valley Chapter of INCOSE. Since its founding in 2010, Scott has served the MBSE
Usability Group as their leader. Today he has an international consulting practice teaching
systems engineering, test engineering, architecture, and critical thinking skills. Scott has a
passion for empowering his students.

