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Abstract Maintaining design consistency is a critical issue for macro-level aerospace
development. The inability to maintain design consistency is a major contributor
to cost and schedule overruns. By embedding The Systems Modeling Language
(SysML) within a formal logic, formal methods can be used to maintain consistency
as a design evolves. SysML, provided with a formal semantics, enables engineers
to employ reasoning in the course of a typical model-based development process.
Engineers can make use of formal methods within the context of current engineering
practice and tools without needing to have special formal methods training. As com-
ponent subsystems are introduced to refine a design, their assumptions are checked
against current assumptions. If new assumptions do not introduce inconsistency, they
are added to the model assumptions. If the assumptions render the design inconsis-
tent, they are detected which minimizes potential rework. SysML has a demonstrated
capability for top-to-bottom design refinement for large-scale aerospace systems.
SysML does not have a formal logic-based semantics. The logical formalism within
which SysML is embedded matches the informal semantic of SysML closely. The
approach to integrating formal methods with SysML is illustrated with a typical
macro-level aerospace design task. The design process produces a design solution
which provably satisfies the top level requirements. The example provides evidence
that coupling formal methods with SysML can realistically be applied to solve
aerospace development problems. The approach results from a number of detailed
design trades employing a model-based system development process which used
SysML as the model integration framework.
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1 Introduction

The technical challenge of managing complex aerospace system development is to
keep technical information consistent and to understand the impact of design change.
Formal methods have the potential for determining information consistency and
change impact. Our goal is integration of formal methods with engineering practice in
such a way that all development, analysis, and reasoning are an application of formal
methods. Formal methods become the primary tool for management of system
development. Product development can be radically improved by integrating formal
methods with existing languages and tools. While this goal may seem well beyond
what is feasible, there is a direct path. This work takes a step toward integrating
formal methods into the way aerospace development is done and with tools currently
used.

There is general recognition of an inability to manage the design and analysis
of complex aerospace systems as evidenced by cost and schedule overruns. Often,
the resulting systems do not meet expectations. Many development problems are
traceable to lack of precise verifiable requirements, changing requirements, and to
the inability to establish and maintain design consistency as the design evolves. On
large scale aerospace programs, the inability to keep design and analysis information
consistent is a major cause of development problems. Maintaining consistency
requires determining whether the assumptions used by component models are
consistent with the overall design context.

Even a good development process does not in itself insulate one from some
of the major causes of design error and rework. Many of the really expensive
mistakes occur early in the analysis and design process and are the result of not
capturing assumptions and checking consistency as the design process develops. A
lot of rework and lost time and energy come from not capturing and reconciling
the assumptions of component models within a development effort as these models
are introduced. These errors of omission are particularly prevalent when different
languages and tools are used, even when there are well-defined interfaces between
the tools. Relatively simple mistakes that are not caught early result in hundreds
of millions of dollars and years of schedule slip. Placing a formal foundation under
system development mitigates these very real, costly problems.

Formal Methods [7], the term generally applied to the use of formalized logic-
based reasoning, is used in computer processor design, software, control systems,
and other disciplines [18]. The goal of enabling formal reasoning in design and
analysis for complex physical systems, such as aircraft and automobiles, hardly needs
restating [19]. While formal reasoning is used in many areas of system for design
refinement and verification [34], formal methods are not common for macro level
development of complex systems such as aircraft. Considerable disappointment has
been expressed in its lack of use and payoff in Aerospace developments [25]. As we
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will see, the integration of formal methods in macro level system development can
be realistically used and provide payoff.

Many engineering tasks involve reasoning; for example, determining requirements
consistency and verification of design implementation properties. These reasoning
tasks can potentially be formalized. One of the kinds of reasoning needed consists
of representing assumptions that new component models introduce and checking
that they are consistent with former assumptions. Consistency maintenance has
a very high potential payoff in terms of shorting design cycles and decreasing
rework. Automated reasoning can be used to check consistency of design models, in
particular to check consistency of component models, requirements and consistency
of design refinement. The challenge is to integrate formal methods with the tools and
processes in a way that engineers can and will use for large programs.

Integration and retrofit with existing engineering development tools which are
robust and have widespread use as an attractive approach if such languages and tools
exist. Our experience validates the general premise of the feasibility of Model-Based
System Engineering (MBSE) [12] using SysML [30]. The choice of SysML is based
on the evidence that engineers can use it, that it scales for aerospace development,
and that retrofitting it with a formal foundation is feasible. This is not to say that
SysML is as developed as other languages and tools for specialized areas such as
the development and verification of safety critical software. SysML can be made to
serve as a unifying framework for system development with detailed specifications
exported to other frameworks and the results re-imported. However, SysML does
not have a mechanism to incorporate reasoning. Successful integration of reasoning
with SysML can be done only when the reasoning is in accord with the SysML
informal semantics. As we will see, the informal semantics of SysML accords well
with the semantics of an existing formal logic.

By retrofitting SysML with a formal semantics, as opposed to developing new
formalisms and tools little additional work is required to integrate formal methods
into development beyond what has to be done in any case. Engineers can directly
apply formal reasoning to the system models to develop design solutions. There does
not appear to be any language and tool candidates other than SysML that have the
necessary adoption and record of accomplishment. From our personal experience,
we have validated that SysML satisfies the necessary conditions for this approach
to work. With the approach of retrofitting SysML with a formal semantics engineers
can use formal methods successfully to achieve better designs without special training
and with little extra cost, provided the formal methods are correctly integrated with
the method and tool use.

The scope of the paper is to introduce a usable logic-based formalism for SysML
that engineering practitioners can understand and use within their development
processes. The resulting formalism for SysML can be integrated with automated
reasoning systems to be effective. The first step is to understand what kind of
automated reasoning is needed by working out how the models needed can be
represented in SysML and how reasoning tasks can be formulated within this
formalism. The paper uses a typical macro-level aerospace development task to
show how reasoning is used within an engineering development process. The analysis
establishes conditions for reasoning tools to be integrated development tools. One of
the essential conditions for integrating a reasoning system based on a different formal
system is a semantically well founded mapping between the two formal systems.
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While determination of the choices of specific reasoning engines is not within the
scope of this paper discussion of the kinds of reasoning used is presented. The
embedding of SysML within the logical formalism is so direct that it can be viewed
as a semantic retrofit for SysML.

This paper demonstrates the practical feasibility of integrating formal reasoning
on a broad scale into aerospace system development. The integration by embedding
SysML into a logical formalism enables many practical engineering problems to be
translated into logical problems. Reasoning can then be integrated with widely used
development tools and existing inference engines. In particular, the paper:

– demonstrates how formal methods apply as a general mechanism to keep macro
level designs consistent as development proceeds from start to finish

– shows how formal methods may be used in an integrated, top level system
development rather than only at the subsystem level

– provides end-to-end integration of models within a unified semantic framework
– enables integration of formal methods with the methodologies and tools that

engineers use today
– provides context and methodology for semantic integration of multiple models.

The next step will be to export the SysML models to an inference engine to verify
that the manually done proofs can be automated.

1.1 Organization

The approach to integrating formal methods into system engineering is based on
(1) the effectiveness of SysML as an integrating language framework, (2) the fact
that SysML language constructions and informal semantics correspond closely to
the semantics of a well-known logic, and (3) the logic provides a rich language of
constructions for representing cyber physical knowledge. The organization of this
document reflects this approach.

Section 1 This section introduces the paradigm of encoding an engineering problem
as a logical problem by embedding engineering language within logical language.
An engineering model translates into an axiom set within a logical language. Issues
such as requirements and design consistency translate directly into consistency of
the axiom set that encodes the engineering model. An overview is given of the
principles used to embed SysML with its graphical syntax within the linear textual
syntax of a logical language. The logic used, type theory [8], has been well developed
and studied by mathematicians and logicians. Type theory has served as the basis
for interactive proof systems used particularly in software development. A SysML
model is embedded as an axiom set within a type theory logic. Type theory contains
a language fragment that corresponds to Description Logic [3]. Description Logic
(DL) is the logical foundation for the semantic web language, OWL [31]. Type
theory provides language constructions which can be used to represent embedded
operations and part properties which are used to represent composite structures.
The constructions needed to formalize composite structures are not present in DL.
Simple examples illustrate the potential for automated reasoning is maintaining
design consistency. The section makes comparisons of the type theory formalism
used for SysML with other logic-based formalisms.
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Section 2 This section introduces a characteristic aerospace application and devel-
ops a series of SysML models. The models successively refine each other to produce a
design solution for a requirement. The example is based on a number of engineering
applications with which the authors have been involved. The requirements in the
original examples motivating this use case were stated in probabilistic terms. This
aspect has been simplified to statements of certainty. The macro-level analysis did
not require any analysis of time or concurrency beyond satisfying the time constraints
needed to perform operations. This aspect has also been simplified to remove
statements using concurrency or time. The example illustrates, at least in a simplified
form, the complexity of the kind of analysis and reasoning that that occurs at the
macro level in aerospace development. In this sense the example provides a realistic
use case for the application of formal methods. Using SysML models as the primary
design artifact within a Model-Based Engineering development paradigm motivates
the necessity to capture system component and environment assumptions as part of
the SysML models. The expressivity of the SysML constraint constructions enables
capturing many assumptions. We did find cases where SysML language extensions
would enable additional assumptions to be captured. The advantage of checking
consistency of models as they are developed and integrated motivated the search
for a logic-based formalism that can support the kind of reasoning encountered.

Section 3 This section provides a description of the specific form of type theory
in which SysML is embedded. This type theory logic has been engineered to have
a syntax compatible with SysML where the languages overlap. Conversely, the
graphical syntax of SysML can be used with this logic. The SysML language con-
structions and their informal semantics correlate closely with type theory language
constructions and inference rules. Type theory contains constructions not present in
SysML. For example, type theory contains individuals and class constructions found
in description logic. While these constructions are not present in SysML, they are
candidates for inclusion within SysML.

Section 4 This section embeds the SysML application model developed in Section 2
as an axiom set within the logical formalism. A requirement and its design solution
are formalized. A sketch of the verification proof is given. The proof is contingent
on electro-optical physics laws applied to sensors and on empirically derived laws
regarding human performance. With these laws as assumptions, sufficient conditions
on humans and sensors are given that imply a composition of a human viewing a
sensor and the sensor performance are sufficient to satisfy the requirements. The
structure of the proof clarifies what assumptions are made and what physical tests are
needed for a contractual verification of the requirement solution. For example, the
design solution depends on the validity of electro-optical physics. Physical testing can
presume that these laws are well established. The empirical laws regarding human
ability to identify an object by viewing a display may be subject to more debate, but
having the assumptions explicit enables transparency of assumptions.

Section 5 This section provides an analysis of the effectiveness of the approach,
discussion of the choice of type theory for SysML semantics, some lessons learned
and recommendations. Working out the ISR example gives strong evidence that
the approach to providing a formal semantics for existing engineering languages
and tools can become a practical and useful reality. Formal methods can be easily
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integrated into model-based development processes. Regarding type theory, an
observation has potentially important consequences for integrating with automated
inference engines. Informally statements of requirements, constraints, and derived
conclusions are universally quantified. That is, they must hold for all possible
realizations of the SysML model (axiom set in the logic). However, these statements
can be stated as subtype relationships within the type theory logic. The assumptions
that we have encountered can be represented within type theory either by equational
constraints defined for variables representing class attributes or statements using
DL class constructions. A modification of the DL reasoning engines should be able
to perform the reasoning encountered here. Finally, the use case example suggests
useful extensions for SysML and suggests that a formal semantics should be part of
the official language specification.

1.2 A useful formal semantics (the approach)

A major issue in system development is keeping design and analysis information
consistent as development proceeds. More generally, the inability to analyze the con-
sequences of design decisions early causes the development to proceed down a path
which may eventually have to be rescinded. Maintaining design consistency requires
determining whether the assumptions entailed by a design change are consistent with
the assumptions of the design before the change is made. This problem of consistency
maintenance is well suited for employment of formal methods.

A formal system is a formal language with a formal semantics. An axiom set within
a formal system is a collection of statements within the language of the system which
are assumed to be true. A formal semantics, as used here, consists of a reference
semantics and an inference semantics. The reference semantics specifies how an
axiom set is to be interpreted within a real or virtual domain. The inference semantics
provides rules which can be used to derive conclusions from axioms, i.e., other true
statements. The theory generated from an axiom set is collection of the statements
which can be derived from the axiom set. Any useful formal semantics for SysML
will have to be correct in so far as this is possible, given that SysML does not have a
formal semantics. Otherwise, the semantics is potentially dangerous as it may lead to
false conclusions. A formal system is said to be sound when the statements derived
from an axiom set are true with respect to the reference semantics and is said to be
complete when all statements true in the reference semantics can be derived from
the axiom set. The informal semantics of SysML as specified by an informal notion
of valid interpretation accords well with the formal concept of valid interpretation
of type theory within the reference semantics for theory [26] where soundness and
completeness results hold.

In engineering, a model is a description of an existing system or a specification
for one to be built. In logic, an axiom set describes a class of valid interpretations
(models in the sense of logic). The type theory logic provides a precise notion
of consequence; the consequences of an axiom set are the statements true in all
valid interpretations of the axioms. An axiom set is satisfiable if it has a valid
interpretation. An axiom set may have many or no valid interpretations. If an axiom
set has no valid interpretations, it is said to be unsatisfiable. When an application
is represented by a SysML model the engineering question of consistency of the
model translates into the question of whether the axiom set encoding the model is
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satisfiable, i.e., do the axioms have a valid interpretation (model in the logician’s
sense). In the logic to be used consistency and satisfiability are equivalent as the
logic is complete. Many other engineering problems can be reduced to the question
of satisfaction of the axiom set. The reasoning encountered in model management is
not complex from the logical viewpoint. The fact that manual consistency checking of
large complex models characteristic of aerospace is error prone argues for automated
consistency checking.

Integration of reasoning with SysML development enables determination of
whether design decisions have led to inconsistencies. The benefits of having a formal
semantics go beyond application of inference engines to determine inconsistencies.
A modeling language with a formal semantics enables the construction of models
whose meaning is precise in terms of what is required to implement or recognize an
interpretation of the model (reference semantics). The inference semantics provides
the method for determining what can be concluded about its reference semantic from
the model. A formal semantics mitigates misunderstanding by human or machine
users. A formal semantics will help evolve engineering languages to meet future
expressiveness and integration needs. The current work is primarily restricted to the
static part of SysML. However, some indications are given as to how type theory
constructions can be used for the behavioral part of SysML.

1.2.1 Encoding SysML within a logic

The specific method used to integrate formal methods into macro level system
development is to encode the SysML language within the language of formal logic. A
SysML model which is the molecular unit of SysML is encoded as an axiom set within
the logic. A higher order type theory [8] is used for the SysML encoding. The variant
of type theory logic used is called Abstract Block Diagram (ABD) logic. ABD
logic was introduced in [14] and has been engineered subsequently. ABD logic has
been engineered specifically for application to engineering languages such as SysML.
While SysML uses diagrams to represent models, the diagrams can be encoded as
formulae within the logic. The logic contains language constructions which are not
in SysML but can be added as user defined stereotypes. More detail can be found
in Section 3. By using this encoding and making use of the language extensions in
the logic, all development, analysis, and reasoning in engineering practice can be
potentially an application of formal methods.

SysML uses a graphical syntax with elements for blocks, associations, part proper-
ties, and subclass relationships between classes. A block can contain compartments
with declarations that include value properties, operators, and constraints. In the
encoding of a SysML model as an ABD axiom set a block is encoded as a class
and a binary association from one block to another is encoded as a property with
domain A and range B. The same symbols will be used in SysML and ABD logic. The
ABD axiom set corresponding to Fig. 1 consists of three class symbols, a declaration
p : P(Pump, Tank) and a class inclusion Pump ⊆ MechanicalDevice.

In ABD logic, one can declare a : A. A property p may also have instances. The
instances are pairs of class individuals. A pair is written as < a, b >. If Dom(p) = A
and Range(p) = B and < a, b >: p then a : A and b : B. If a : Pump, the interpre-
tation of a is an instance of the interpretation of Pump. Similarly, the interpretation
tests if a pair of objects satisfies the property instance criteria for a pair of instances.
ABD logic has an abstraction constructor which is used to define subtypes of a given
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Fig. 1 Pump model

type. For example, if we have a Boolean valued operation f (x : X) : Bool, then the
abstraction type

A = {x : f (x) = true} (1)

is a subtype of X and has the property that

∀a. a : A implies f [a/x] = true (2)

where f [a/x] is the result of substituting a for the variable x in f . Conversely, if
p(a) = true then a : {x : f (x) = true}. The abstraction type constructor can be used
to define the DL class constructions. A consequence of the abstraction construction
is that logical operations such as and and or as well as universal and existential
quantifiers can be defined for Boolean typed operators. As a result, the expression

∀x. x : A implies x : B (3)

is a Boolean valued operation and subtype relation A ⊆ B is equivalent to

∀x. x : A implies x : B (4)

In ABD logic, as in set theory, a property p with dom(p) = A and range(p) = B
defines an operation from A to the Power type of B. A property p with dom(p) = A
and range(p) = B is functional if

∀x∀y∀z. x : A and y : B and z : B implies y = z. (5)

In ABD logic, a functional property p with dom(p) = A and range(p) = B defines a
function of its first argument, A. The result of applying the function determined by
p to a is written in “dot” notation as a.p. The term a.p is typed as a.p : B.

The ability to represent composite structures is one of the features of SysML
which enable the representation of complex systems. For example a fuel system
is a composite structure as it has components and interconnections between the
components. Figure 2 is a SysML Internal Block Diagram. The diagram shows
the internal structure of a fuel system model. The fuel system model has three
part properties, itsTank1, itsTank2, and itsPump. In the diagram the rectangles are
labeled by the part property and the range type of the property. For example, in
itsTank1 : Tank the expression itsTank1 is a binary property whose range type is
Tank. The block Pump has two value properties, input and output; and an operation,
transf er to transfer the input to the output value properties.

ABD represents composite structure with declarations which use type construc-
tors. The linear syntax for the SysML model which for which diagram in Fig. 2 is a
partial display uses three type constructors: parts, values, and operations. Each of
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Fig. 2 Fuel system model

these constructions has two type arguments and produces a type as value. These type
constructors are definable within ABD logic. For example, the ABD linear syntax
for the fuel system parts declarations is:

itsTank1 : parts(FuelSystem, Tank)[1]
itsTank2 : parts(FuelSystem, Tank)[1]
itsPump : parts(FuelSystem, Pump)[1]

(6)

In the declaration itsTank1 : Parts(FuelSystem, Tank) itsTank1 is a named binary
property which is an instance of the type, Parts(FuelSystem, Tank). In the model,
Pump contains declarations corresponding to the operations and values compart-
ments in Pump. They are:

input : values(Pump, varFluid)

output : values(Pump, varFluid)

transfer : operations(Pump, (x : Fluid) : Fluid)

(7)

In general, the property instances of the parts constructor are not functional. The
suffix [1] declares the part property itsTank1 to be functional. Both values and
operations are type constructors with two arguments. The type constructors are
functional, i.e., there is a unique second argument for any first argument. The first
argument of values is Pump and the second argument is a variable of type Fluid.
ABD uses the term “attribute” where SysML uses “values”. In ABD, the value of
an attribute is a variable in that it can be substituted for and its value set. This is
consistent with the informal semantics of SysML. SysML value properties can be
set and substituted for which are the characteristics of variables. The first argument
of the type constructor operations is Pump and the second argument is the type of
an operation with one argument. Since the relational is functional it is represented
as a (higher order) functional of the first argument which returns an operation as
value. For an individual p : Pump, a “dot” notation is used to write the application
of transf er to the instance p.

p.transfer(x : Fluid) : Fluid (8)
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The compositions itsTank1.port and itsTank2.port are distinct and are typed as
operator valued variables. Within the ABD logic, the variables can be bound to the
input and output attributes of the pump within FuelSystem. For example, in

FuelSystem[[itsPump.transf er[itsPump.input/x]itsTank1.port] (9)

the argument of the transfer operation the argument x is bound to the input attribute
of pump and the value of transfer is bound to the output attribute. As we will
see later, SysML has a constraint construction that can be used to model such
relationships between the input and output attributes of the pump and contents of
tanks that are connected to the pump.

1.2.2 Translating engineering problems into logic

A SysML model can introduce named properties, operations and types; it can express
type relationships, term equality, and subtype relations. A SysML model is encoded
as an axiom set for an ABD theory by directly using the model declarations and
typing relations as axioms. The named operations and types occurring in the model
are the signature of the ABD theory. The theory of an ABD axiom set (SysML
model) is the consequences of the axioms derivable by the inference rules [14] (cov-
ered in Section 3). ABD type constructions extend SysML type constructions with
product, sum, and operation types, as well as providing description logic (DL) [3]
class constructions. ABD has classes including a universal class, Thing, an empty class
NoThing, and has class constructions for universal and existential class constructions
following DL. In ABD theory classes are types, but not all types are classes. By
converting a SysML model to an ABD theory, model refinement becomes theory
refinement. A SysML model may use SysML constraints and subtype relations to
express assumptions about an application description. Engineering questions about
a model translate into questions about the axiom set that encodes the model. This
encoding enables interfacing SysML with an inference engine which take an axiom
set as input. As we will see by using class constructions not available in SysML,
additional kinds of assumptions can be expressed within the model as subclass
relationships. An inference engine can be used to answer questions about the axiom
sets which translate back to be engineering answers. The answers consist of blocks in
the extended language, added block inclusions and block equivalence with the “null”
block.

1.2.3 Integration with reasoning

For reasoning using the encoding of a SysML model as an axiom set to be useful,
efficient scalable reasoning algorithms must be available. Our analysis of use cases
indicates that many engineering problems can be reduced to consistency problems.
The axioms encoding the models are often within a decidable fragment of ADB the-
ory. The semantic analysis suggests model construction principles which ensure that
the axioms belong to the description logic fragment of ABD. For the DL axiom sets,
efficient deterministic algorithms are available for deciding the logical consistency of
the model. In addition the examples often make use of term simplification for which
there are terminating algorithms to produce irreducible forms for specific kinds of
language terms.
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Three simple examples of managing model development illustrate how models
that represent application descriptions including assumptions can be encoded in
ABD logic and consistency checking used to identify potential design issues. The
examples are simplified so that they can be represented with DL class constructions
and the reasoning can make use of DL reasoners. The ability to define description
logic classes enables a wider range of constraints to be represented by subclass
relationships than is the case in SysML.

Example 1 The way in which the models are typically developed is by adding compo-
nents and making connections between components. When adding a component to
a system and connecting it to, for example, a hydraulic system, the connection may
violate constraints regarding admissible connections to the hydraulic system. The
violation of a constraint may not be apparent from simply making the connection
to a component of the hydraulic system. Using DL constructions constraints may
be expressed within the model and the consistency of the connection constraints
checked when changes are made. Figure 3 is a diagrammatic representation of a
SysML Block Definition Diagram (BDD) that contains five blocks, each of which
is a system component. The Source block has a constraint that specifies the sum of
all connections must be less than the maximum of 3. The connections of Source are
not just the direct connections from Source to A, B, and C, but any path connections
formed by composition of connection properties. A constraint that the model may
have at most 3 path connections which originate from source and terminate at some
other block can be expressed with

Source ⊆≤ 3p.Thing (10)

where the property p is the union of all properties with Source as domain which
are constructed from the connection properties in the signature of the model. This

Fig. 3 Max connections
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property can be defined within the logic. With the new connection from NC in the
diagram, one has:

Source ⊆= 4p.Thing (11)

However, since ≤ 3p.Thing
⋂ = 4p.Thing = Nothing, Source would be equal to

NoThing which means the design is not satisfiable. To determine that a new
connection makes the model unsatisfiable requires that an algorithm be used to
compute the number of connections. This part of the inference is not done by the
DL reasoner, but would likely be computed externally. This example gives a hint of
how reasoning may require additional computation to proceed with the reasoning.

Example 2 Issues often occur when integrating a component model into a composite
model. For example, a model of a pump may have been developed for use as a
component of a specific kind of assembly. When it is used in the assembly that it
was developed for it is always connected to a specific kind of valve. However, the
pump model may be incorporated into other kinds of assemblies where the original
assumption is not needed and may be inconsistent with the new usage. The pump
model in Fig. 4 contains the subclass relation Pump ⊆ ∀conn.B where conn is a
property that represent pump connections. This subclass relationship represents the
assumption that the pump can only be connected to components of type B. However,
if we attempt to connect Pump to a component A where A and B are disjoint, the
connection violates the original model. To use the pump model, the assumption must
be modified as this assumption is incompatible with

Pump ⊆ ∀conn.A (12)

as A and B are disjoint.

Example 3 Assumptions and requirements are often given in the form of pre-
conditions imply post-conditions. For example, if a sensor satisfies stability of motion
conditions respect to its environment then the sensor’s pointing operator can achieve
a specified accuracy. Such a statement may occur as either an assumption or a
conclusion to be verified. As an assumption, it could be part of a specification for an
existing sensor which is assumed to have been verified for sensors of the appropriate
type. The statement about the sensor refers to its operating context. The operating

Fig. 4 Pump model
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context will have its own assumptions. The stability of the sensor in its operating
context can be represented as a type

SensorStability = {< s, e >: s : Sensor, e : Environment, and stability(s, e) = true}.
(13)

stability is an operator with type (Sensor,Environment):Bool. The pointing accuracy
can be represented as a type

PointingAccuracy =
{< s, e >: s : Sensor, e : Environment, and accuracy(s.pointingOp(e) = true}.

(14)

In Fig. 5, Sensor contains a component operation declaration

pointingOp : Operations(Sensor, (X) : Y). (15)

For an individual s of type Sensor, the result of applying pointingOp to s is written
as s.pointingOp. The statement can be expressed as:

SensorStability ⊆ PointingAccuracy (16)

This subclass inclusion gives conditions for the operation to achieve a specific
pointing accuracy. For example, one would have to check whether the stability
conditions are satisfied when the sensor is mounted on a moving air vehicle under
the constraints which have been determined about its motion.

When designing an implementation for an operation, a common technique is to
consider known implementable designs and solve for preconditions which will imply
that the operation will satisfy required post conditions. The validity of such a solution
will depend on whether the preconditions are consistent with the existing system
assumptions. If the composite design assumptions are satisfiable, then in the logical
encoding the question is whether the original assumptions and precondition are still
satisfiable. The additional assumptions are added to the aggregate of assumption
about the system and the operating context. If the conjunction of the assumptions
cannot be satisfied then the proposed design change will not be valid.

Fig. 5 Sensor block

Author's personal copy



H. Graves, Y. Bijan

The kinds of inference that occur in applications as illustrated by the examples are
not difficult, simply the size and complexity of the theories argue for using reasoning
engines as the need for an inference may be missed on manual inspection.

1.3 Comparison with related work

While a logical formalism may have some of the necessary expressiveness, most are
deficient in the full spectrum or do not have the breath to serve for macro level
system development. Most applications of formal methods within aerospace focus on
specific issues such as concurrency analysis [20], design refinement to produce correct
executable code [35] or analysis of system reliability (AltaRica) [33]. There appear
to be few attempts to integrate the expressiveness of SysML into a logical formalism
[32]. Many automated inference procedures are potentially useful for engineering
provided they are incorporated into a logical formalism. An inference procedure in
itself is not a logical formalism. For example, many inference procedures are special
cases of constraint solving inference procedures [21]. Constraint solving can be used
in some cases to verify the correctness properties of an operation specified using
pre-post conditions, or show that preconditions for the operation cannot be satisfied.
However, constraint solving is an inference procedure not a logical formalism.

1.3.1 Theory based formalisms

The formalisms most directly comparable to ABD logic are ones in which
specifications as well as descriptions (models in the SysML sense) are represented
as an axiom set or the theory generated by an axiom set within a logical formalism.
Theory refinement while developed for software is a general paradigm and works
equally well for system development. The only difference is that not only the
system but its operating context get refined as development progresses. Specification
formalisms that are theory based can be compared by kind of signature used, by
restrictions made on axioms, and by the kinds of inference is used. For example,
SpecWare, as does ABD, uses signatures that include product and function types [2].
In that sense it compares directly with the ABD type theory approach. It is unclear
what type constructions are used and what axioms and inference rules are used for
the type constructions. For example, it is not clear whether SpecWare has the class
constructions for Description Logic and other constructions that are widely used in
system modeling. While any specific constructions could be added if they are not
already there, providing semantics for constructions is on the order of complexity
of developing axioms for set theory. With the expressiveness of SysML extended by
ABD logic, functional requirements can be captured as axioms so there is no need to
introduce any extra formalism for requirements beyond the constructions discussed
here; the gap between requirements and design specifications does not exist [22].

Blocks correspond to classes in many system and software engineering languages
such as UML [29], as well as other knowledge representation and conceptual
modeling languages such as OWL [31]. Binary associations correspond to properties
in these languages. The diagram in Fig. 1 with three blocks, Pump, Tank, and
MechanicalDevice, the association conn connecting Pump to Tank and the subclass
relation between Pump and MechanicalDevice expresses that

Pump ⊆ MechanicalDevice, (17)
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i.e., any pump is a mechanical device. A common interpretation of the arrow labeled
conn is that any pump which is connected to something is connected to a tank and
conversely any tank connected to something is connected to a pump. In a conceptual
modeling or knowledge representation language such as OWL, this diagram is
encoded as an axiom set with essentially the same axioms. The reference semantics of
a conceptual modeling language is generally specified in terms of valid interpretation
of the axiom set within set theory. The classes in the pump model correspond to sets
and the subclass relationship corresponds to set inclusion. The inference semantic of
the language is given within first order logic where a block corresponds to a unary
predicate and an association is encoded as a binary predicate. In the encoding a
subclass relationship

A ⊆ C (18)
corresponds to

∀x.A^(x) implies B^(x) (19)

where A^ and B^ are the unary predicates corresponding to the classes A and B.
Description Logic (DL) [3] provides a logic based formalism using constructions

for individuals, classes (types), and properties. In ABD logic, the type constructions
have axioms derived from the elementary axiomatization for a topos [24]. The DL
class constructions are definable in ABD logic. For example, both representations
of the subclass relation above are representable within ABD logic. The importance
of DL for ABD logic is that the DL class constructions enable a wide class of
assumptions to be expressed as subclass axioms. There are efficient decision al-
gorithms which may be used for the DL fragment of ABD logic. The semantics
of the constructions in ABD logic are given by ABD inference rules rather than
through model theory. UML class diagrams have been encoded as axiom sets within
the Description Logic (DL), ALCQI a sublogic of SHOIQ. The DL encoding for
UML and its results carry over to SysML. In SysML, blocks are a stereotype of
class and SysML uses associations, as does UML. In this encoding, UML classes
are encoded as concepts and UML associations are encoded as roles; to encode
the additional information contained in class diagrams, other assertions are needed.
The result is that an encoding of a UML class diagram is as an axiom set. The
encoding provides a formal semantics for class diagrams which conforms to their
informal semantics; the encoding is further validated by comparison of first order
logic (FOL) axiomatizations of the UML constructions with the FOL representation
of description logic. A consequence of the encoding for integration with reasoning
is that a class diagram (class model) corresponds to a knowledge base within a DL
[7]. The results of DL consistency checking and derived classes and class inclusions
can be reinterpreted within SysML. The DL encoding of SysML is equivalent to the
ABD encoding. However, ABD encodes SysML model constructions such as blocks
with compartments which are not covered by the DL the class diagram encoding.

Another point of comparison is state machines. A state machine is an abstraction
of a computation machine which uses data stores and rules or operations to transform
the date stores. A machine is initialized with data in the stores and executes by
updating the stores. A snapshot of the machine performing a computation is referred
to as a state of the computation. Formalizations of a state machine generally use
variables for data stores, and state transformation rules or operations which operate
on the variables [28]. Semantics is generally defined in terms of valuations which
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map variables to their values or rules for transforming the data stores. Formalizations
differ in terms of the constructions for concurrent operations and in semantic rules
for the operations. ABD as a type theory logic can represent embedded variables,
operations, and behavior in terms of state charts. Type theory has the advantage
that variables have types and are first class terms, with assignment (substitution)
as a first class operation on variables. Thus a formalism that contains variables and
transformation rules is grounded soundly in logic. ABD defines a valid interpretation
for axioms in terms of valuations on the (state) variables to functions defined on a
time domain. In this approach, the state of a machine is an evaluation of the state
variables for a time instance which eliminates the need to define an abstract state
as a theory or interpretation between theories [2]. In cases where a language is
used to describe a state machine, the formalism for the state machines is sometimes
referred to as the semantic of the machine [33]. However, it seems more appropriate
to describe the semantics of a state machine in terms of a logical language in which it
is expressed. From this perspective the language is simply a notation for the state
machine and the kind of machine can be compared to the machines that can be
described in ABD logic. Concurrency has yet to be addressed in ABD logic.

1.3.2 Translations from SysML to other formalisms

System description and engineering languages that use classes and properties such
as SysML are often mapped into logic based language where classes correspond
to unary predicates [4]. Such translations can be viewed as making steps toward
establishing a formal semantics for SysML. However, the informal semantics of
SysML is often not completely captured or preserved when encoded in logic-based
languages. Examples include the generation of a B-Specification from a UML class
[22] and the generation of a Z-Specification from a UML class [11]. The encoding of
the structural part of SysML into DL is described in [14].

A common motivation for encoding SysML/UML into a target formalism is to
take advantage of verification procedures for the target formalism. However, when
reasoning is integrated through such translations, there need to be arguments for
the semantic justification of the translation. Without providing SysML with an
accepted semantic foundation, there is no real basis for justifying the correctness of
a translation. Many translations simply provide a syntactic translation of languages,
often based on translations between meta-models. One risks the possibility of un-
sound reasoning. However, any translation of SysML into another logical formalism
provides some basis for comparison between the ABD type theoretic formalism and
the representation of SysML/UML in other formalisms.

One example of using translation for inference is the translation of UML
augmented with OCL annotations to Constraint Programming [9]. The resulting
specification is translated into a constraint satisfaction problem. The language
combination provides considerably expressiveness and integrates with automated
inference systems. However, from analysis of examples it is unclear that this language
combination provides any more expressiveness than the SysML/ABD approach.
Neither SysML nor OCL have a formal semantics and so the translation into a
constraint solving paradigm only has an informal justification. Unlike SysML, OCL
was not designed for human legibility and there is insufficient evidence that this
combination in its present form can be adopted as a general approach to aerospace
development.
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2 ISR use case

This section introduces an Intelligence, Surveillance and Reconnaissance (ISR) de-
sign trade study application, illustrates how the application can be represented within
SysML as a composite model, i.e., a model that incorporates submodels. The models
contain representations of their assumptions. The explicit capture of assumptions
enables the possibility of formal design verification. In this sense, the application
provides a use case for formalizing SysML. This example wil be formalized in
Section 4.

The engineering task is to determine the feasibility of providing an ISR capability
to an existing air vehicle platform by adding a sensor system. From an initial domain
model of the system under design and its operating context, capability analysis is
used to determine the constraints on an air vehicle operating context, including
the target and the physical environment, under which the ISR capability is to be
exercised. Both the operating context and the air system are further decomposed
into components. The result of the capability analysis is a requirements specification
for a top level air system operation for target identification assuming prior detection.
The air vehicle motion constraints, detection constraints, and target assumptions
form the premises for the target identification operation. Development refines
the domain model with its constraints to establish the feasibility of meeting the
identification requirements while maintaining theory consistency. Feasibility consists
of assessing whether the target identification requirements have potential design
solutions, i.e., an implementable operation can be defined in terms of operations of
components of the air system. Much of the work to produce a design specification
is to provide sufficient detail that an instance can actually be physically realized.
The end result is an air system design specification that consists of a description
of components with their specifications which are used to define the identification
operation.

The air system is required to identify vehicles and humans as the air vehicle loiters
over an area of interest. In the concept of operations, the air vehicle uses radar to
detect and approximately geolocate a target and an Electro-Optical (EO)/Infrared
(IR) Sensors to create an image of the target. Actual target identification is per-
formed by an operator crew on the air vehicle as they view a sensor display. The
primary engineering task is to determine the allocated EO/IR sensor requirements
and to determine if available sensor solutions can be found to meet the requirements.
The air vehicle is assumed to be an existing air vehicle accompanied with detailed
specification information and validated test results. The identification starts after the
initial approximate location for the target has been determined by the air vehicle’s
radar system. A more detailed presentation of this example would allow for the
derivation that the radar can provide geolocation with sufficient accuracy for the
EO/IR system to use as an input for identification. Figure 6 illustrates the operation
of the air system in its mission environment. The air vehicle flies in a racetrack
pattern over the area of interest. The image on the diagram is an operator display
of EO/IR image generated by a sensor on an air vehicle flying over the terrain at the
distances prescribed in the top level specification.

A top level statement for the capability is given as input to the design process. The
capability statement is that the air vehicle system shall have the capability to identify
targets, as defined within a threat database, with a cross section of at least 1 m,
moving less than 5 mph, from a slant range of at least 5 mi, in clear weather conditions
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Fig. 6 Concept of operations
for the ISR capability

as defined by a weather reference handbook, within ten minutes of initial detection,
in an area of interest (AOI) no larger than 100 m by 50 m, with the air vehicle flying at
less than 250 knots, with at least 95% probability. The requirement which drives the
design trade study is a functional requirement for an air system to have an operation
for target identification which provides positive identification when the air system is
operating under the conditions to be specified in the Mission Model. A major part of
the ISR application task is devoted to making the target identification requirement
sufficiently precise so that one can proceed to the design decomposition task. In the
end, the statement of the requirement is sufficiently precise that a design solution
can be tested with an actual air system in an actual operating context.

A simplification made is to eliminate requirements stated in probabilistic terms,
e.g., that correct target identification is only made 95% of the time. We will use point
estimates in the detection conditions rather than probabilistic ones. Probabilistic
conditions can be treated formally exactly the same as point estimates. What changes
is how test in a concrete domain is performed. Trials and probabilistic methods will
be required in testing. Also, the dynamic aspects of the problem are replaced with
static conditions whose values do not change over time.

The SysML diagrams that represent the ISR application are part of a single
composite SysML. Typically, no single diagram contains the entire model. The
resulting model was constructed by a design refinement process. During this process
multiple refinements were explored to reach the final model. Figure 7 is a SysML
Block Definition Diagram (BDD) which is part of a simplified SysML model of
an air system and its operating context. This model is typically developed in the
requirements analysis phase of a program. It is a formalization of the information
indicated by picture in Fig. 6. The Block Definition Diagram shows the structure
of the mission domain. The domain includes the air system, target, and physical
environment. The boxes are blocks and the closed diamond arrows represent di-
rected compositions, which are referred to as part properties. The whole cannot exist
without the parts. Thus, the air vehicle is not a complete system without the sensor
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Fig. 7 Mission Model

and the display. The domain is incomplete without the air system, target, and physical
environment. DomainConstraints is a constraint block that contains the constraints
on the mission domain including one for determining if the system is capable of
successfully identifying targets. It will be used to check the feasibility of a new sensor
to function on the air vehicle and provide the necessary capability given the target
characteristics. At the beginning of development the block is a place holder for the
constraint to be developed from the domain analysis.

The ISR example design task is to determine the feasibility of providing an ISR
capability by adding a sensor system to an existing air vehicle platform. The section
will formalize the conditions for target identification requirement and sketch the
proof that an operation can be constructed which satisfies the requirement. The
primary explicit assumptions for the target identification are aircraft motion and po-
sition, and target conditions. For this discussion, we assume that the target has been
detected. The three air system components which play a major role in satisfying the
requirement are the EO/IR sensor, the display, and the sensor system operator. The
component operations which provide the implementation have their own operating
constraints. The model which represents the requirement and the design solution are
represented within SysML. Additional assumptions will be represented in text and
incorporated into the logical formalization.

The design task proceeds by elaborating the Mission Model. This model (see
Fig. 7) is used to analyze the desired capability. The domain models used here are
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the result of performing several pilots which allowed us to understand how to make
the models generic. The models also reflect our evolving understanding of how to
use SysML and its tools. The diagrams used to illustrate stages of development
are actually views of the final resulting model where information is hidden. The
elaboration and refinement is based on analysis and execution of simulations of the
models. From the logical formalism view point, a simulation is a virtual realization
of the Mission Model. Model refinement is continuous throughout the development
process. Backtracking occurs when the developers realize that they have modeled
the domain incorrectly. Backtracking also occurs when analysis of design decisions
indicates that the decisions were not good ones. Domain modeling is highly reusable;
physics does not change and if the models are built generically, then they can be
specialized for many design tasks.

The first task is to analyze the target identification capability. The result of this
analysis contains the functional specification for the target identification function in
the form of a SysML parametric diagram. The specification characterizes the con-
ditions under which identification takes place and characterizes what identification
means in this context. The functional specification for the air system identification
function leads to specifications for the subsystems and allocation of requirements to
subsystem operations. The final refinement contains the air vehicle which represents
the air vehicle design.

2.1 Setup

The air system is required to identify vehicles and humans as the air vehicle loiters
over an area of interest. In the conceptual design, an EO/IR sensor is used to capture
an image of the target. Actual target identification is performed by an operator crew
on the air vehicle. The air system provides images on an operator display to allow
the operator to identify targets. The primary engineering task is to determine the
allocated EO/IR sensor requirements and to determine if available sensor solutions
can be found. The air vehicle is assumed to be an existing air vehicle accompanied
with detailed specification information and validated test results. The identification
result required is stated as the probability of successful identification for targets
which meet the criteria must be greater than 95%.

Table 1 Air vehicle motion and position characteristics

Name Condition Type Description

Position 4,572 ≤ altitude ≤ 10,668 m position Air vehicle location includes
longitude in degrees, altitude in
meters, and latitude in degrees.

Speed ≤128.6 m/s Air vehicle speed.
Direction 0 degrees Direction air vehicle is traveling

in 0 degrees is north.
pitchRate ≤5 degPerS Rate for the air vehicle motion

in the pitch direction.
yawRate ≤5 degPerS Rate for the air vehicle motion

in the yaw direction.
rollRate ≤5 degPerS Rate for the air vehicle motion

in the roll direction.
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Table 2 Target characteristics

Name Condition Type Description

Size ≥ 1 meters Target cross section in meters.
Location θ , ρ, α position Target location includes longitude in degrees,

altitude in degrees, and latitude in degrees.
Speed 0 m/s Speed of target.
Direction 0 degrees Direction target is moving in. 0 degrees is north.

2.1.1 Interaction constraints

The air system identification capability is to be exercised under constraints on an air
vehicle operating in its operating context which includes the target and the physical
environment. The initial assumptions about these constraints are given in Tables 1,
2, 3 and 4. The conditions in the table are representative for this type of problem.
The tables describe air vehicle position and motion, target characteristics, derived
distance from the target, and the operating environment characteristics.

2.1.2 Air vehicle motion

The dynamic constraints on the ability of the air vehicle to detect and identify a target
depends on the distance from the air vehicle to the target and the on air vehicle
motion. We assume, based on empirical evidence, that the range of motion of the
air vehicle is less than β degrees per second when it is flying in moderately turbulent
air conditions. In Fig. 8, the values for flight commands and wind represent external
influences on the motion of the air vehicle. The rateOf Motion is the result of the
interaction between the external environment and the air vehicle. Pilot commands
and wind turbulence cause the air vehicle to pitch, roll and yaw. The values of the
system and operating context (in red boxes) are connected to constraint parameters
(squares on the border of the constraint property) in the constraint property (box
with rounded corners) via binding connectors (blue lines). Figure 8 represents how
motion of the air vehicle depends on both the pilot and on the weather conditions.
The rate of motion of the air vehicle depends on pilot commands to fly the air vehicle
and on the force of wind blowing against the air vehicle. Flight commands and wind
are bound to the constraint property, avMotion, as inputs. The rateOf Motion is
bound as an output. Typical air vehicle motion was determined empirically from
data collected on the air vehicle being modified. We fitted a function of sine waves
to approximate the pitch, roll and yaw of the air vehicle under various conditions.

Table 3 Physical environment

Name Condition Type Description

Wind ≤ γ , 0 m/s and degrees Speed and direction of the wind blowing against
the air vehicle. North is 0 degrees.

Terrain 0 bool Terrain can affect what the sensor can view. Hills can
get in the way of the field of view and needs to be
accounted for. 0 means terrain is not an impediment
to viewing the target, 1 means it is.
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Table 4 Distance constraints

Name Condition Type Description

slantRangeEq ≥ 8047 meters slantRange = f(av.Position, tar.Location)

2.1.3 Target identif ication conditions

The air vehicle motion constraints, detection constraints, and target assumptions
form the premises for the target identification operation to be used for tar-
get identification. The diagrams use a probability of success greater than 95%.
For simplicity in the formalization discussion we eliminate the probability state-
ment and rephrase the requirement in terms of a Boolean identification. The
TargetIdenti f icationCondition contains the assumptions made about identification
and the criteria the system must meet in order to perform identification successfully
while operating within the conditions of the assumptions. The target detection and
identification is to take place when the target has specific characteristics of size (cross
section) and the slant range from the air vehicle is within a specified distance. For this
example, we assume that the target is not moving. Figure 9 shows the assumptions
and constraints about the air vehicle, the target being detected, and interactions for
target detection which is a prerequisite of identification. The diagram describes the
detection results required as a function of air vehicle attributes (values) and target
attributes. It does not represent the constraints under which the air vehicle operates.
The diagram shows the distance between the target and air vehicle, slantRange, is a
function of the location of the air vehicle and target. The probability of detecting the
target is a function of the slantRange, size of the target, resolution of the sensor and
the number of pixels an operator needs to make the determination.

The identification constraints define a region as the set of k-tuples which satisfy
the constraints. Informally, a realization of the air system target identification
operation is a domain which includes the variables which occur in the mission

Fig. 8 Air vehicle motion
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Fig. 9 Target detection conditions

model and which satisfy the motion, detection constraints and target constraints. The
identification constraints define a region in k-dimensional number space. The region
is the set of k-tuples which satisfy the constraints.

2.2 Design analysis

The mission model is used to establish the feasibility of meeting the identification
requirement. Feasibility consists of assessing whether the target identification
specification of the air system has potential design solutions, i.e., the design solution
space is non-empty. Many conditions beyond the requirement constraints determine
the feasibility of the air system’s target identification capability. For feasibility
analysis, we ascertain the impact of air vehicle motion on the stability of the IR sensor
mounted on the air vehicle. This requires verifying that antecedent requirements for
sensor stability are satisfied on the air system under operating conditions. If these
requirements are satisfied by a sensor with a given specification, then the sensor
image can be stabilized. Additional variables and constraints are introduced for the
effect that air vehicle motion has on the sensor stability. Other conditions, beyond
the requirements constraints, determine the outcome of the air system identification
function. These include the mission scenario, i.e., behavior of air vehicle, other
entities in the environment, and assumptions about the air vehicle platform. The
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mission model is used to analyze operations of the air vehicle flying over the terrain
in order determine potential solutions and the assumptions for which the solutions
are valid, given assumptions about the terrain, constraints on the vehicle, and sensor
characteristics. Identification of a target begins once an operator has successfully
detected a target. It is difficult for operators to make a definitive identification of
targets if the image of the target is bouncing erratically on the display. Therefore, it
is necessary to analyze the stability of the sensor mounted on a moving air vehicle.
Sensor characteristics such as the field of view, focal length, sensing array, and pixels
size are related. It is possible to trade off some of these characteristics against the
others while still meeting the overall requirements for identification. An analysis
of these characteristics and their relationships is needed in order to determine the
design space of feasible sets of values.

2.2.1 Sensor analysis

The target identification operation requires an EO/IR sensor whose rate of motion
is capable of keeping images stable enough for identification while the air vehicle
is subjected to environmental operating conditions. The sensor stability of motion
is a function of the stability of air vehicle motion, as well as target distance. This
analysis is used in the following way. The stability of the air vehicle motion is assumed
from known characteristics of this particular kind of air vehicle. Recall that we
are investigating adding a new sensor to an existing kind of air vehicle. We also
assume a specific maximum instability, MAX, is needed for an operator to identify
a target within a field of view. The functional relationship allows us to compute
the sensor stability of motion which can be used to check against specifications of
known sensors. Figure 10 shows parameters (value properties) for the air vehicle and
sensor, as well as the assumptions about the physical environment and target that one
must consider in order to determine if the sensor is capable of keeping images stable
enough for detection and identification of targets. The position of the air vehicle with
respect to the target and motion of aircraft in turbulence and rate of sensor motion
play a role in the stability of the sensor. Sensor stability is impacted by the air vehicle
motion.

We use a constraint property stability to represent the sensor stability conditions
and a constraint property avMotion for the motion of the air vehicle. Pilot commands
and wind pushing against the air vehicle are input parameters to avMotion. The
outputs are the rate of motion for the pitch, roll and yaw of the air vehicle. The sensor
must keep up with the motion of the air vehicle in order to keep the target in the field
of view and stable enough for the operator to detect or identify the target. The EO/IR
senor value property, rateOf Motion, represents the rate of motion for the sensor and
acceleration. The rateOf Motion must be sufficiently high to deal with the impacts
of motion of the air vehicle on the sensor. The output of the stability constraint
property is a boolean that represents whether or not the sensor can provide a stable
enough image. The constraint property, inFoV, determines whether or not the target
is in the field of view of the sensor. The equation for inFOV was exported to a
simulation tool and values for the air vehicle position, target location and target size
are assumed. The value for inFOV was forced to be true in the simulation. The
pointing angle of the sensor in the azimuth and elevation directions was allowed to
change in the simulation to values that were required for the inFOV to be true. The
motion of the air vehicle was approximated by an equation made of a combination of
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Fig. 10 Sensor stability

sine waves that reasonably matched the collected data for the air vehicle. The speed
of the air vehicle was set in the simulation tool to a nominal operating value. The
target speed was set to 0 for this example. A constraint for stability was set to be less
than MAX MOT ION which was determined by experimentation with operators to
determine how much motion on the display could be tolerated by the operator trying
to identify a target. The simulation was then programmed to keep the sensor pointed
at the target at all times. The pointing angle of the sensor was programmed to change
in response to the motion of the aircraft. The simulation tool recorded the rate of
motion for the sensor slew and acceleration required to keep the sensor pointed
at the target while the air vehicle moved. Any sensor that has the required rate of
motion and acceleration can be used on the air vehicle being modified.

2.2.2 Operator analysis

Assumptions about operator performance introduce new assumptions which are
incorporated into the mission model. These assumptions are about the ability of
operators on the air vehicle to be able to identify the target by looking at the sensor
display screen.

The minimum number of pixels the operator needs for successful identification of
a target is determined statistically from running experiments, with displays that had
an assumed size and resolution. Analysis is performed to determine the minimum
number of pixels that the target needs to cover on a display in order for the operator
to have a 95% probability of successfully identifying the target. The results of the
analysis are inputs for the required idPixel count. The equations were exported
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manually into an optimization tool. Assumptions about the environment, such as
target size for targets the customer wants to identify, target location and air vehicle
location were set inside the optimization tool and goals such as the 95% probability
were set. The optimization tool can then solve for pixels needed. The number of
pixels can then be used later when determining the sensor characteristics required to
provide the number of pixels.

During the course of design, the identification function, f, is decomposed into
sub functions implemented by subsystems. In general, one would not like to have to
introduce any new assumptions at the top level which are needed for the component
property verification. In the air system, the requirements for sensor stability did not
pose any additional top level constraints as the sensor constraints were satisfied by
the top level constraints and the sensor specification. On the other hand, if new
assumptions imposed by the potential design solutions are necessary, then they
need to be added to the top level assumptions together with any evidence that
they can be satisfied in the operational context. This situation was the case for the
assumptions regarding an operator’s ability to identify a target on a display with a
specific resolution. Figure 11 displays the Identification constraints. The slant range
equation and probability equation were exported into an optimization tool manually.
Assumed values of the location and speed of the air vehicle, the location and size of
the target were set as inputs. The assumed values were based on customer need. The
minimum number of pixels on the target for a 95% probability of success was set
as a constraint. The values of focal length and other sensor characteristics can be

Fig. 11 Identification conditions parametric diagram
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evaluated to determine if the sensor resolution can meet all off the constraints and
assumptions.

2.2.3 Derived specification for display

The target identification requirement is for the air system. However, as we have
noted, the delivered system is an air vehicle without the crew. Therefore, our
design task is to derive a requirement for the air vehicle with given assumptions
regarding operator identification performance. This can be used to prove the air
system target identification requirement. The derived air vehicle requirement will
be on an operation which displays the sensor video.

2.3 Design construction

Any air vehicle that can meet the constraints can successfully meet the formal
specification for target identification for any target that meets the specified assump-
tions. The design task is to construct an operation for the air vehicle, definable

Fig. 12 The final decomposition diagram
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in terms of component operations. The burden is to show that such a function
which satisfies the specification exists. A composition of operations which meet the
requirements is defined and a sketch of its verification is given in Section 4. Much
of the work to produce a design specification is to provide sufficient detail that an
instance can actually be physically realized.

Figure 12 shows the decomposition of the system and the constraints on the system
for the identification function. Each of the components has attributes that represent
the characteristics of the subsystems determined in the previous models. Operations
have been allocated to the component that will be responsible for performing
the necessary functions. The model has been used to establish that EO/IR sensor
mounted on the air vehicle has the characteristics needed for target identification.
The operator has an attribute for the minimum number of pixels needed for target
identification; the sensor has attributes for the field of view and resolution. The target
has attributes for its size and location. The constraint block contains the relationships
that must be considered in determining the value of the attributes. An air system
design, as the term is use here, is a decomposition (parts) tree for an air vehicle block,
with connections defined between components, and where each component has value
properties (variables) and operations. The air vehicle specifies that an air vehicle
implementation has two components, the display and EOIR sensor. The display has
a specified size.

We have performed sufficient analysis of the air system operation in its mission
context that we have a precise formalizable statement of the requirements. We have
also performed sufficient design analysis that we can formalize a design solution in
terms of an operator viewing a display of the sensor results. These statements will be
formalized in Section 4 after we have given more detail on the ABD logic.

3 Formalizing SysML

This section presents more detail on ABD Logic and on how SysML is embedded in
the logic. Abstract Block Diagram (ABD) logic [17] is a variant of type theory. ABD
logic is more expressive than SysML but in the overlap they correspond sufficiently
closely that ABD logic can be viewed as a formal semantics retrofit for SysML. ABD
extends SysML, as we have noted by having description logic class constructions
and by having individuals. ABD logic also has a concept of operator evaluation
which is not explicitly present in SysML. Operator evaluation is used in the proofs of
correctness of the target identification operation defined within SysML. ABD has a
linear syntax and a graphical syntax modeled on SysML. Not all of the linear syntax
has a corresponding graphical syntax. While the graphic syntax of SysML carries
over to ABD Logic the presentation will use a linear textual syntax. ABD logic has
operation and type constructions for sum, product, function, and power type. While
ABD logic is a type theory, it can to all intents and purposes be viewed as a set
theory in that familiar set constructions are available as type constructions. Familiar
function constructions are available as operator constructions. In ABD logic classes
and properties are types. ABD logic has a primitive binary predicate for typing terms,
logical equality, as well as a substitution predicate. ABD logic has type class and
property equality. Type inequality is definable within the logic. The typing relation
is written in infix notation, e.g., a : A. The symbol “=” is used for equality between
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terms and types. Inference rules are given for the term constructions (see Table 5).
ABD logic is equational in that all inferences reduce to proving a term equality,
i.e., t1 = t2 provided that the terms have been verified to have the same type. The
inference rules provide the semantics for the term constructions. General type theory
results [23] imply that ABD theories are sound and complete.

3.1 An ABD axiom set

An ABD axiom is a binary relation between terms constructed from the primitive
predicates, typeOf and equality. Several defined predicates are used, such as sub-
type. The terms are classified into operations and types. A declaration is an axiom
that uses the binary typeOf relation to introduce a symbol and types the symbol. The
second argument provides the type of the symbol. The type argument of a declaration
consists of a type construction defined in Table 5. For example, the two declarations
C : Type and a : C declare C to be a type and a is declared to be an instance of C. A
collection of declarations specify an ABD language. The atomic operators and types
that occur in the declarations are the signature of a language. The type symbols of
the signature are called the sorts. The type and operator terms of the language are
constructed from the signature using the term constructions with their typing rules
in Table 5. A term construction t is well formed only it follows from the typing rules
that t : X for some type X. It is well-known that there is no algorithm to decide if
an arbitrary program terminates. Of course one can prove that individual programs
terminate. For an operator defined without constructions, such as recursion, typing is
decidable. For the version of ABD logic used here, operator term typing is decidable
and can be used as part of syntax checking. An axiom set is recursively defined by
the declarations which introduce symbols and by equalities or defined relations which
may only use terms which are in the language of the declarations. The ABD theory
of an axiom set are the relationships derived from the axioms using the inference
rules in Table 5 and derived inference rules. The relationships may only use terms
definable in the language of the axiom set and for which a typing relation has been
established.

Table 5 gives syntax and axioms for basic operator and type term constructions.
The table is incomplete as we only include the term constructions that are used in
the ISR example. The table does not include sum types or the full typed lambda
calculus constructions and rules. In applications one often extends an ABD theory
with external functions which may or may not be computable. Some of the term
constructions and corresponding rules are definable in terms of other ones. DL class
constructions are definable; some of these definitions are given below.

3.1.1 Inference rules

The semantics of an ABD axiom set is given by inference rules for the term
constructions, the relations and by derivation rules. The derivation rules are used
to construct new inference rules from previously constructed rules. Each rule is
depicted as a fraction; the inputs to the rule are listed in the numerator, and the
output in the denominator. The denominator is a relation and the numerator is a
sequence of relations separated by commas. The relations in the numerator are called
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Table 5 Syntax

Name Syntax Typing rules Equality rules

Type of t:X t is an operator term
and X is a type term

Equality t1 = t2 Equality is only permissible The term equality rules are used
when t1 and t2 have the to simplify and rewrite terms.
same type. Term equivalence is an

equivalence relation. A
term may be substituted
for an equal term.

Product (X1, . . . , Xn), Rounded brackets are One = ()
type One used for the Cartesian

product construction.
Variable x: var:X
Substitution [t/x] t:X, x:Var X x[t/x] = t = t[x/x]

—————-
[t/x]:X

Tuple < t1, . . . , tn > < t1, . . . , tn > t:(X1,. . . ,Xn),
:(X1,. . . ,Xn) x1:var X1,. . . ,xn:var Xn

——————–
t = [t/x1,. . . ,t/xn]
x :var
(X1,. . . ,Xn), x1:var X1,. . . ,xn:var Xn
——————–
x = < x1 . . . .xn >

Function (X):Y f:Y x :var X
type ————– —————–

f(X):Y f = f[x/x]
Number N A generic number type

that includes the natural
numbers and is equipped
with arithmetic
operations

Operation f(x1:X1,. . . , f(x1:X1,. . . ,xn:Xn) f() = f
declaration xn:Xn) —————- f(x1:X1,. . . ,xn:Xn) =

f(X1,. . . ,Xn): f(y1:X1,. . . ,xy:Xn)
Y

Composition f(g) g(X):Y, f(Y):Z f(x1:X1,. . . ,xn:Xn):Y, t1:X1, . . . ,tn:Xn
———————– ————————
f(g)(X):Z f(t1,. . . ,tn) = f[t1/xn,. . . ,tn/xn]
f(x1:X1,. . . ,xn:Xn):Y, f:(X1,. . . ,Xn)
t1:X1, . . . ,tn:Xn ————————–
——————- f =
f(t1,. . . ,tn)(X1, . . . ,Xn):Y < f/x1, . . . , f/xn >

Identity id(X) id(x1:X1,. . . ,xn:Xn) = < x1, . . . , xn >

operator var:X = (x:X):X
id(X) = < x1, . . . , xn >

Truth type Bool = P(), true true:Bool
Abstraction X{p} p(X):Bool p(incl{p}) = true

type ——————-
incl{p}(X{p}):X X{p}, Monic{f}
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Table 5 (continued)

Name Syntax Typing rules Equality rules

Characteristic Char{t} Monic(f), f(X):Y f = incl{char{f}}
operation ——————— char{incl{p}} = p

char{f}(Y):Bool
Membership a:X{p(x)} a:X, p(a) = true

——————– ————
p(a) = true a:X{p}

Power Pow(X) ε(Pow(X),X):Bool p(X, Y):Bool p = ε(id,p*)
type ε ——————

p* p*(X):Pow(Y)
Relation rˆ r(X):Pow(Y) p*ˆ = p

conversion ————— rˆ* = r
rˆ(X,Y):Bool

Equality eq eq(X,Y):Bool eq(id,id) = true
operation eq(t1,t2) = true

——————–
t1 = t2

Logical and ∧ p(X):Bool, q(X):Bool (p ∧ q) = char{X{eq(p,q)}}
—————————–
(p ∧ q)(X):Bool

Implication p implies q p(X):Bool, q(X):Bool (p implies q) = char{X{eq(p,p ∧ q)}}
definition —————————–

(p implies q)(X):Bool
Universally ∀x.p p(X,Y):Bool ∀ x.p = char{{p*}}

quantified ——————
formula ∀x.p(X):Bool
definition

Intersection X
⋂

Y p(X):Bool, q(X):Bool X{p}
⋂

X{q} = X{ p ∧ q}
definition —————————-

X{p}
⋂

Xq : Type
Subtype X ⊆ Y p(X):Bool, q(X):Bool X{p}

⋂
X{q} = X{p}

relation —————————-
definition X{p} ⊆ X{q}

Enumeration {a1,. . . ,an} ai: X b: {a}
type ——————– ————

{a,. . . ,an}⊆ X b = a
Class Class(X) p:Pow(Thing) Class(Thing)

——————–
Class(Thing{p})

the premises and the denominator is called the conclusion. Substitution of terms by
equal terms within a relation is used by the inference rules in term construction.
The term equality rules are used to simplify and rewrite terms. Substitution of
values for variables and term simplification provides the foundation for the concept
of “evaluating” a term. The theory of an axiom set is the collection relationships
derivable from the axioms using the inference rules.

The derivation rules are written in a linear form

P1, . . . , Pn → Q (20)
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The Pi and Q are formula. In general, the Pi can be rules. An axiom Q can be writ-
ten as

→ Q (21)

A derivation is constructed using one of the rules:

P → Q, Q → R

− − − − − − −−
P → R

(22)

and

→ P, P → Q

− − − − −−
→ Q

(23)

The last derivation rule is used to eliminate premises.

3.1.2 Operations

ABD operations are comparable to SysML operations. In SysML, an operation
such as the pointing operation on a sensor is defined as belonging to the sensor.
However, operations may be declared globally. The mechanism for representing
ownership of an operation is discussed in the paragraph on composite structure.
The semantics is given by equational rules for variable substitution and functional
application. Functional application, also called composition, is defined in terms of
term substitution and satisfies the expected properties. The rules for operations are
standard from computer science and logic. A declaration such as

f (x : X) : Y (24)

introduces f and a variable x. The type X is called the argument type and Y the value
type. An operator with no arguments f () : Y is an individual and is equated with
f : Y. For the declaration f (x : X) : Y, the type of f is, f (X) : Y. A variable can be
declared with x : var X where Var X is equated with the function type (X) : X. An
operation can be defined in terms of previously introduced operations. For example,
using the number type and arithmetic operations, an operation f can be defined as:

f = x + 1 (25)

The constructions include n-ary operations and n-ary product types. If ai :
A1, . . . , an : An, the notation < a1, . . . , an > is used for an n-ary tuple. The type
is given as < a1, . . . , an >: (A1, . . . An) where (A1, . . . An) is the n-ary product.

One consequence of the rules for product types and tuples that is used frequently
is that variables are projection operators. For example, if

x = id(X1, X2) (26)

then

x =< x1, x2 > (27)
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and

x1, x2 : var(X1, X2). (28)

3.1.3 Power type and formulae

The expressiveness of type theory depends on having a power type [26] construction.
The power type construction enables the definition of subtypes and provides a
correspondence between a subtype and its “characteristic” Boolean typed operator.
For a sequence of types X1, . . . , Xn the constructor Pow(X1, . . . , Xn) is a type
called the power type. The truth value type, Bool is identified with Pow(). The
type Bool has two truth value individuals true and f alse. An operation term p with
p(x1 : X1, . . . , xn : Xn) : Bool is called a formula. An instance t of an n-ary power
type defines an n-ary formula. For

t : Pow(x1 : X1, . . . , xn : Xn) (29)

The term char{t} has type

char{t}(x1 : X1, . . . , xn : Xn) : Bool (30)

with

char{t}(a1 : X1, . . . , an : Xn) = true iff < a1 : X1, . . . , an : Xn >: t. (31)

Note that an instance t of a power type Pow(X) may be the type of an instance of X.
A formula p(x1 : X1, . . . , xn : Xn) : Bool can be used to define a type

{< x1, . . . , xn >: p(x1, . . . , xn) = true} (32)

called an abstraction type. The abstraction type characterizes the operation terms
that satisfy the formula. That is:

< a1, . . . , an >: {< x1, . . . , xn >: p(x1, . . . , xn) = true}
if f p([a1/x1, . . . , an/xn]) = true.

(33)

and

{< x1, . . . , xn >: char{t}(x1, . . . , xn) = true} = t (34)

A subtype relation may be defined between abstraction types using the inclusion
relation. Equivalently, the relation may be defined for the instances of a power type,
Pow(X) for a type X. For t1, t2 : Pow(X), the definition

t1 ≤ t2 ; if f ; char{t1}(incl(t2)) = true (35)

satisfies the properties expected for a subtype relation.
ABD logic has a number type, N. With the type N we can define types such as {x :

x : N and x > 1} as well as types with cardinality restrictions on subtypes of a power
type. One has a : {x : x : N and x > 1} iff a > 1. Also, one can define {x : |p(x)| = k}
where p(x) : Pow(Y) is a subset of a power type and |p(x)| is the cardinality of the
type.

Author's personal copy



H. Graves, Y. Bijan

3.1.4 Classes and properties

A declaration of the form A : Class declares A to be a class. ABD has a top class
Thing, and a bottom class NoThing. NoThing is a subclass of any class and any
class is a subclass of Thing. In ABD logic, there is a natural correspondence between
classes and unary Boolean operations, and properties with Boolean operations with
two class arguments. In particular, if p : P(A, B), then pair < a, b > may be declared
to be an instance of p with < a, b >: p. If p : Pow(A, B) and < a, b >: p, then the
inference rules imply a : A and b : B. For C : Class the subtype construction provides
an operator c^ : (Thing) : Bool with

c^(a) = true iff a : C = true (36)

This correspondence enables the identification of a class with a unary Boolean
typed operator. A binary property in ABD logic has a domain and a range type. A
property with domain A and range B is a subtype of the product type of two types.
A declaration p : Pow(A, B) declares p to be a property with a domain and a range
types A and B. A property p : Pow(A, B) determines an operation p(A) : Pow(B)

whose range type is a power type. This construction determines a correspondence
between binary properties and binary Boolean typed operators. We write a.p for the
relational composition. For any a : A, a.p = y : p^(a, y) = true.

DL class constructions can be defined within ABD logic; their semantics is defined
by derived inference rules. For example, ABD has the class constructions ∀p.C
and ∃p.C where p : Pow(A, B) and C is a class. For p : Pow(A, B) the DL class
construction

Max3p = {x : |{y : p^(x, y) = true}| < 4} (37)

has the property that any individual x with x : Max3p has the property that the
cardinality of {y : p^(x, y)} is less than 4, i,e., x can participate in at most 3 instances
of the property p. More generally we have

∃p.C = {x : ∣
∣{y : p∧(x, y) = true and C∧(y)}∣∣}

∀p.B = {x : p∧(x, y) imply B∧(y)} (38)

A consequence of the power and abstraction type constructions is that in ABD
class and property axioms are equivalent to axioms stating that their characteristic
formulas (Boolean operations) which they correspond to are equal to true.

3.1.5 Composite structure

A block may have an internal structure which can be shown within compartments of a
block in a diagram. Corresponding to a SysML block which has compartments, ABD
has a form of declaration which uses type constructors including Parts, Attributes,
Operations, and StateCharts. These constructors have two type arguments and a type
value. Examples are illustrated with Fig. 7, the top level SysML Block Definition
Diagram for the ISR model. A composite structure declaration has the form

name : CompositeConstruction(X, Y) (39)

where X and Y are types. The constructed type is a subtype of the power type,
Pow(X, Y). Recall that Pow(X, Y) is the type of properties with domain X and
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range Y. A named instance of one of the composite types is a property. The
composite structure instances are all functional properties with the exception of the
parts constructor which is not in general functional. For the parts constructor, the
suffix [1] declares that a part property instances are functional. For a functional
property, there is a unique second argument for any first argument. The composition
of two functional properties is functional. For example if:

p1 : Parts(A, B)[1]
p2 : Parts(B, C)[1] (40)

then the composition p1.p2 written in a left-to-right order is a functional property
with

p1.p2 : Pow(A, C). (41)

Different composite constructions place constraints on the form of the second
argument type. For example, for an operations declaration such as

pointingOp : Operations(Sensor, (X) : Y) (42)

The second argument of the operations construction is a function type. The operation
pointingOp is a functional relation. Again, the dot notation s.pointingOp is used
to denote the application of pointingOp to s for s : Sensor. In both SysML and
ABD, the value of an attribute (SysML value property) is a variable which can be
substituted for and its value set.

3.1.6 Constraints

A SysML constraint declaration is another composite construction. A constraint
construction enables defining equations in a finite number of variables and binding
the variables to value properties (also variables) in the context of the constraint
definition. The top level ISR mission domain model, Fig. 7 shows the constraints
blocks of MissionDomain. The constraint blocks have constraint properties which
are the equations. The SysML parametric diagram is used to bind variables in
a constraint property to value properties of blocks. Figure 8 shows a parametric
diagram with a constraint property, avMotion that represents how motion of the
air vehicle depends on both the pilot and on the weather conditions. The rate of
motion depends on pilot commands to fly the air vehicle and on the force of wind
blowing against the air vehicle. The avMotion equation has as variables: f ltCmds,
wind, and motion. The small boxes displayed on the edges of the constraint property
are called constraint parameters. Lines connect the constraint parameters to the
value properties of the blocks. The value properties and the constraint parameters
are variables and the lines connecting them are binding connectors.

The corresponding constraint can be declared in ABD logic with:

avMotion : Constraints(MissionDomain,

Equation(itsOperator1. f lightCommands/ f ltCmds,

itsPhysicalEnvironment.wind/wind,

itsAirVehicle.rateof Motion/motion) =
[ f unction( f ltCmds, wind)/motion]

(43)
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In this declaration, value properties of itsOperator1 and the physical environment
are bound to variables in the equations. The binding of the SysML parameters in the
constraint is represented by substitution of value properties for argument variables
of the equation. This equation is functional the first three arguments.

The constraint construction provides a mechanism for importing reusable assump-
tions such as physics models and can be used to enforce relationships between
subsystem value properties and value properties within a subsystem. Figure 11
shows a parametric diagram that contains three constraint properties. The three
constraints are functional; the diagram represents a composition minidProb with
identi f icationProbability with slantRange. The variables in slantRange are bound
to itsAirVehicle.position and itsTarget.location which are value properties. For the
mission domain we have:

slantRange : Constraints(MissionDomain,

Equation([itsAirVehicle.position/avLoc, itsTarget.location/tLoc]) =
[ f n1(avLoc, tLoc)/slantRange]

(44)

The variables of the parametric diagram (parameters) are bound to the value
properties of part properties of MissionDomain. With the substitutions into
identi f icationProbability we have:

identi f icationProbability : Constraints(MissionDomain,

Equation([
itsSlantRange.slantRange/slantRange,

itsAirVehicle.speed/avSpd,

itsTarget.size/tSize,

itsOperatoridPixels/ idPix,

itsEOI RSensor.resolution/res,

itsPhysicalEnvironment.atmosp/atmo,

itsPhysicalEnvironment.terrain/ter,

probability,

]) =
f unction(tSize, slantrange, avSpd, atmo, ter, res, idPix)/probability

(45)

Finally, MinidProb checks if the probability result meets the minimum probability
requirements and sets the result to itsMissionDomain.minidenti f icationMet value
property.

3.1.7 States

While reasoning about dynamic behavior is beyond the scope of this paper, we
indicate how behavior can be represented within ABD and its impact on the
interpretations of a theory that contains dynamic behavior. A state machine with
behavior may be axiomatized by adding a type Time to an ABD theory. For discrete
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sequential time, Time has a successor operation written as “+1”. The values of a state
machine attribute change as a function of time while their structure remains constant.
To represent such state machines, their embedded variables are declared with a time
argument. For example, a location attribute of an air vehicle changes value over time
as it flies. We make extensive use of simulations of state machines in an operational
context to determine how the systems respond. The simulations are designed to be
valid interpretations of theories extended with time.

For example, a class, Switch, can be defined as a sequential state machine with the
declarations:

display : Attributes(Switch, (Time)Var(X)) (46)

The values of the time indexed variable display varies with respect to time, i.e., for
a : Switch the embedded variable

a.x(t) : var(X) (47)

is a function of time whose values are variables of type X.

mystate : hasStateChart : (Switch, var(State))

State = (Time){off, on}
mytransistion : hasOp(State, ((display : X, s : State))(display : X, s : State))

mytransition =
(i f display(t) = off then display(t + 1) = on,

else display(t + 1) = off )(s(t + 1) := off )

(48)

The state of a : Sensor at time t, is the value of the embedded variables a. < s, x >

(t). The states satisfies the relations imposed by the guards and the state changes
corresponding to the actions. The states of a. < s, x > (t + 1), for i greater equal
zero are a sequence starting with an initial state < s, x > (t0). A valid interpretation
of the theory that contains mySwitch maps the variables to functions from the
interpretation of time to the interpretation (Time)X.

3.2 Semantic correlation of ABD logic with SysML

SysML has a rich, if incomplete type system. SysML has blocks, properties, and
operations. Blocks may have compartments with components such as parts, value
properties, operations, constraints, and state charts. Some of the SysML language
constructions are representable in description logic or more generally first order
logic. However, SysML operations and composite structures are not representable
within first order logic and require higher order operations, such as ABD logic
provides. The ABD representation of a SysML model as an axiom set corresponds
well with informal notions of interpretations of models. Informally, a realization of
a SysML model such as the ISR model is a correspondence of the signature of the
model to subtypes of a domain which satisfies the equations and subtype relations of
the model. The signature of a model includes a collection of atomic types, properties,
and operations and the composite constructions. By power and abstraction type
constructions and the internal formula language (Boolean typed operations), the
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inference semantics of the constructions used in embedding of SysML into ABD
logic is defined in terms of inference rules in Table 5 and the derived inference
rules. The reference semantics is the model theory of ABD logic. As ABD logic
is sound and complete, either the reference or the the inference semantics can
be used for correlation with informal SysML semantics. This greatly simplifies the
discussion. where the SysML semantics have been represented axiomatically in first
order logic or represented with respect to reference semantics common the semantics
are equivalent. Some specific notes follow.

In SysML, operators may be declared globally or in a composite construction.
An operator may have multiple arguments. A declaration for an operation may
give a definition in terms of composition and other function operations in the
form of an equality of the name in the declaration with a body. Operators may
have variables and operations of substitution are permitted, at least in parametric
diagrams. Parametric diagrams allow the substitution of constraint property equation
variables to value properties of part properties. No explicit semantics is given for
operations. Implicitly the semantics is taken to be that of function calculi found in
software languages and in logical formalizations of function calculus.

The semantics of SysML blocks and properties was discussed in Section 1.3.
Recall that ABD classes are subtypes of the type Thing. The ABD semantics for
blocks, properties, and subtype relation are equivalent to the direct first order logic
representation which has been suggested as the semantics for SysML. The ABD logic
semantics is also equivalent to the description logic semantics.

Composite structure declarations were discussed in the current Section as were
constraints. The informal semantics of a SysML model with composite structure can
be illustrated with an example. The declarations

p1 : Part(A, B)[1]
p2 : Part(A, C)[1]
loc : Values(B, X)

loc : Values(C, X)

(49)

define a composite model. This model can be realized as a subtype of the product
type

M = {a : a : A and a.p1.loc : X and a.p2 : C} (50)

where a, a.p1.loc, and a.p1.loc are variables. An interpretation of the axiom set is
a tuple in M which satisfies any constraint equations that may be given in these
variables. This model theoretic semantics coincides with the informal notion of a
realization of the SysML model.

4 Formalization of ISR

This section describes the embedding of the SysML ISR model as an axiom set in
ABD logic. ISR model components are expressed in the linear ABD syntax. The
air system target identification requirement is expressed as a formula within ABD
logic and a proof is sketched that a target identification operation defined within the
model satisfies the requirements formula. The operation is defined as a composition
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of a human operator on the aircraft making an identification decision from the sensor
display. The proof depends on additional assumptions regarding the ability of an
operator to identify a target from a display with a specific resolution. The sensor is
assumed to provide an image with a specified resolution at a given distance from the
target. Assumptions are also made regarding the motion of the aircraft. The final
axiom set contains these additional assumptions. A few changes to the model have
been made in the ABD encoding based on the analysis of requirements formalization
and design verification. These changes could be reincorporated into the SysML
model.

Informally, the statement that the air system target identification operation is
satisfied must be true in any instance of the mission domain. Similarly the statement
the air system operation itsAirSystem.identi fyTarget satisfies its requirements is to
be true in any instance of the mission domain. This means that the statements are
quantified over all instances of a mission domain. As we will see by examining
the declarations of the ISR model and using the ABD logic constructions we can
represent MissionDomain as an abstraction subtype of a type X. MissionDomain
has the form

{m : m =< m1, . . . mn > and p(m) = true} (51)

where X is a product type and p is a formula (Boolean valued operation). This
eliminates the need for explicit quantification and simplifies proofs.

4.1 Mission domain axioms

SysML uses a Block Definition Diagram (BDD) to describe the top level ISR
model. The ABD axiom set encoding the ISR application consists of declarations
corresponding to the graphical syntax corresponding to Fig. 7 and other diagrams
which are referenced from this diagram. The structure of MissionDomain is defined
by the declarations in the ISR model. The part declarations form of a tree of
declarations which include

itsAirSystem : Parts(MissionDomain, AirSystem)[1];
itsAirVehicle : Parts(AirSystem, AirVehicle)[1]

itstarget : Parts(MissionDomain, Target)[1];
itsEnvironment : Parts(MissionDomain, Environment)[1]

itsOperator1 : Parts(AirSystem, Operator)[1]
itsOperator2 : Parts(AirSystem, Operator)[1]

itsSensor : Parts(AirSystem, EOI RSensor)[1]
itsDisplay : Parts(AirVehicle, Display)[1]

itsEOI RSensor : Parts(AirVehicle, EOI RSensor)[1]
view : Operations(Operator, I D)

(52)
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The value property declarations define operations whose range types are variables.
Informally, these variables are the state variables of the model. For example,

identi f icationResult : Attributes(AirSystem, var(I D))

location : Values(AirVehicle, var(Loc));
location : Values(Target, var(Loc))

(53)

are operations. The operation is typed

itsAirSystem.itsAirVehicle.location(MissionDomain) : Loc (54)

To define the ABD type that represents MissionDomain note that each of these
operations is unique. For all of the variable value operations occurring in the ISR
declarations, let xi : Xi be a variable with its corresponding type and let

Domain = (x1 : X1, . . . , xn : Xn) (55)

be the product type (X1, . . . , Xn) Let

allConstraints(x1 : X1, . . . , xn : Xn) : Bool (56)

be the conjunction of all constraints with the substitutions made. Then
MissionDomain is the subtype of Domain defined as:

MissionDomain = {< x1, . . . , xn >: allConstraints(x1, . . . , xn) = true}. (57)

The axioms and statement to be proved will be represented as subtype relations
defined in terms of MissionDomain.

4.2 Air system requirements

The air system target identification requirement states that the air system can
correctly identify a target provided conditions regarding the distance to the target
and air vehicle motion are met. The requirement does not mention any operation
to be used for identification. The target has a location attribute and the air system
has as attribute used to store the value of an identification operation when one is
defined, and a constraint to check that suitable conditions are met; its arguments are
distances, locations, speeds, etc. The mission domain has a Boolean attribute for the
result of the conditional test that the air system attribute has the correct value when
the suitable conditions are met. Given the representation of MissionDomain as

{< x1, . . . , xn >: allConstraints(x1, . . . , xn) = true} (58)

The formalized requirements will be the subtype of MissionDomain consisting of
those tuples which satisfy the further constraint identi f icationCapable. We introduce
the name MissionDomain {identi f icationCapable} for this type.
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Figure 11 shows a parametric diagram that represents the requirement for the air
vehicle to be able to identify a target when constraints are met. The constraint can
be declared in ABD logic with:

identi f icationCapable : Constraints(MissionDomain,

Equation(identi f icationFeasible,

[itsAirVehicle.position/avLocation],
[itsAirVehicle.itsSensor.resolution/res],

[itsTarget.size/tSize],
[itsTarget.location.tLocation)]) =

i f ( f unction(avLocation, res, tSize, tLocation)) < k

thenidenti f icationFeasible = True

elseidenti f icationFeasible = False)

(59)

The parametric diagram can be modified slightly to serve as a formal requirement
for target identification. The constraint property tests whether Identi f icationFeasible
is true and compares the results of the Air System idResult attribute with the target
identification attribute. The modified version is:

identi f icationCapable : Constraints(MissionDomain,

Equation(idFeasible, avLocation, res, tSize, tLocation) =
i f Identi f icationFeasible(avLocation, tLocation, tSize, res)

eq true then

[identi f icationResult/ idr] == [itsAirsystem.sensedid eq true

(60)

The requirements subtype has the form

MissionDomain{identi f icationCapable} =
{< x1, . . . ,

itsAirvehicle.location,

itsTarget.size,

itsTarget.location,

itsSensor.resolution,

. . . , xn >:
( f unction(itsAirvehicle.location,

itsTarget.size,

itsTarget.location,

itsSensor.resolution,

) < k = true}

(61)
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Note that f unction only uses some of the components of < x1, . . . , xn >. Further note
that we are assuming the requirements are consistent, but have not proved it. For
the requirements to be consistent the type MissionDomain {identificationCapable}
must not equal NoThing. However, on real programs requirements are often
inconsistent.

4.3 The air system targeting operation

This subsection defines the target identification operation and the type of those
tuples where applying the operation gives the correct value. The arguments available
for the air system target identification operation are the environment attributes such
as Environment.wind and attributes which represent atmospheric conditions. The air
system and its subsystems determine its location, airspeed, and any other attributes
needed by its subsystems to navigate the air vehicle and direct the sensors. The pilot
operator is assumed to keep the rate of motion of the aircraft within the bounds
required for the sensor to perform successfully, provided this is within the range of
motion permissible by the air vehicle. The operator views the sensor display to make
the actual identification. Assumptions about operator the ability of the operator to
identify a target provided the sensor resolution is sufficient are part of the model.

The air system target identification operation is declared with:

identi fyTarget : Operations(AirSystem, (en : Env) : I D (62)

The operation is defined as a result of the design analysis. The operation is a
composition of first using the sensor to produce a video image which is displayed and
viewed by the air system operators which make the identification from the image.
The only input that the sensor system has is the environment. The declarations are:

showSensorVideo : Operations(Display, (env : Environment) : VideoStream)

view : Operations : (Operator, (Display) : I D)

(63)

Finally, the identification operation of the air system is defined as

identi fyTarget(AirSystem) =
itsOperator.view(itsDisplay.showSensorVideo(itsSensor([AirSystem.env/e]))).

(64)

To verify that itsAirSystem.identi fyTarget satisfies the target identification
condition means that we have to show that whenever the constraints in
identi f icationCapable are satisfied then

itsAirSystem.itsOperator.view(itsDisplay.showSensorVideo

(itsSensor(itsEnvironment))) = itsTarget.id
(65)
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The states in MissionDomain for which the targeting operation is correct can be
written as:

MissionDomain{eq(itsAirSystem.itsOperator.view(itsDisplay.showSensorVideo

(itsSensor(itsEnvironment))), itsTarget.id) = true}.
(66)

We abbreviate this to MissionDomain{Identi f icationCorrect}. The type Mission-
Domain{identi f icationCorrect} is defined using the result of evaluating the target
identification operation.

4.4 Verifying the air system targeting operation

The verification will have the form MissionDomain{identi f icationCapable} ⊆
MissionDomain{identi f icationCorrect} which means that the correct identification
results whenever the preconditions are met. The objective now is to verify the
correctness of the result that the target identification operation applied to arguments
meet the identification preconditions. The air system’s target identification operation
is the composition of the operator on the air vehicle viewing the sensor display which
displays the result of the sensor’s target identification operation. The conclusion
depends on a number of assumptions which are expressed in the model but whose
justification is outside the mission model.

The target identification operation is composed of an operator on the air vehicle
viewing the sensor display. The image display that the operator uses to identify
the target depends on the sensor image and on degradation of video feed, Screen
resolution, refresh rate, and Screen size. We assume that if the sensor display is
sufficiently stable and other distance and size conditions are met then an operator
viewing the display can make the correct identification. This assumption can be
represented as:

MissionDomain{stability&distanceCondition} ⊆
MissionDomain{identi f icationCorrect} (67)

With this assumption what has to be shown is that the sensor satisfies the stability
and distance conditions when the identi f icationCapable conditions are satisfied.

4.4.1 Operator identif ication assumptions

The operator assumptions give conditions on a sensor display image for which
an operator can make a correct identification. The assumptions are derived from
empirical studies of how operators perform. The conditions are defined in terms
of functions defined on the display. The motion on a sensor display which can be
tolerated by the operator trying to identify a target is less than MAXMOTION.
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MAXMOTION was determined by experimentation with operators. The functions
which give sufficient conditions are:

itsOperator : Parts(OperatorDomain, Operator)[1];
itsDisplay : Parts(OperatorDomain, Display)[1]
itsSpec : constraint(OperatorDomain, Equation(

imageStability(display) < MAX MOT ION,

imageResolution(display) < MINRESOLUT ION

display.pixels > MIN PI X ELS)

(68)

These declarations define a subtype of MissionDomain

ImageGood = {m : mvar : MissionDomain,

itsSpec(m) = true} (69)

The assumption that we make about operators can be expressed as:

ImageGood ⊆ MissionDomain{Identi f icationCorrect} (70)

If we can show that

MissionDomain{identi f icationCapable} ⊆ MissionDomain{Identi f icationCorrect}
(71)

Then the target identification condition has been verified.

4.5 Sensor assumptions

The design solution for the air system targeting operation is contingent on finding
a sensor which under the mission domain assumptions has the property that its
display produces video images from which an operator can correctly identify the
target as indicated above. The specification for the sensor is based on electro-
magnetic laws of physics applied in their engineering form. For the sensor they are
expressed as a constraint. In the form applied to air systems they are represented
by Fig. 10. imageStability&resolution is given as a function of the field of view of
the sensor, which is itself a function of the air vehicle and target locations as well as
environmental conditions. The air vehicle motion is also an argument. The air vehicle
motion is a function of the flight commands and the wind in the environment.

imageStability&resolution(inFOV(avloc, tloc, sensor.pA, sensor. f ov),

avMotion( f ltcmd, wind) < k
(72)

We assume that avMotion( f ltcmd, wind) is less than some constant for which the
value of the imageStability&resolution function has an acceptable value.
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The composite declarations for EOI RSensor include:

resolution : Values{Sensor, varN}
rateOf motion : Values{Sensor, varrate}

f ieldOfview : Values{Sensor, vardegrees}
pointingAngle : Values{Sensor, vardegree}

displaySenseI R : Operations{Sensor, e : Environment) : Video}

(73)

The sensor specification can be written in the form

sensorspec : Constraints(MissionDomain,

Equation(imageStability&resolution(inFOV(avloc, tloc, sensor.pA, sensor. f ov),

avMotion( f ltcmd, wind)), MAX MOT ION)

(74)

If we write the sensor specification as a subtype of MissionDomain we have:

SensorSpec = {m : m : MissionDomainandsensorspec(m) = true} (75)

Then the assumption regarding SensorSpec is that:

SensorSpec ⊆ ImageGood. (76)

Putting the inclusions together and recognizing that the final result is contingent on
the operator assumptions and the sensor assumptions we have:

MissionDomain{Identi f icationFeasible} ∩ SensorSpec ∩
ImageGood ⊆ MissionDomain{Identi f icationCorrect} (77)

Thus we have shown that MissionDomain{identificationCapable} ⊆ MissionDo-
main{identificationCorrect} by showing that all of the antecedent conditions for
identification are a subtype of the requirement type.

What needs to be done more carefully is to sort out the physics laws and formulate
them as reusable models which can be imported into any application. In this case
we used the empirically derived law for operators and the application of electro-
magnetic laws to sensors. Note that a generic model for the operator will contain a
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representation of the operator context. The variables in the model which represent
the general context will have to be matched (unification) with the variables of the
application model; in this case the air system operating in its context.

5 Conclusion

This paper demonstrates the validity of the claim that formal methods can be used
in macro level system engineering to solve everyday tasks. By embedding a SysML
model within an ABD axiom set, the informal SysML semantics is in accord with
the formal ABD semantics. Common engineering questions regarding a model are
equivalent to questions regarding an axiom set. Maintaining model consistency
during development is one of the many uses axiom set consistency checking. The
ABD logic is amenable to automated inference to check problems equivalent to
axiom set consistency. The SysML to ABD embedding has a very high potential
payoff in terms of shorting design cycles and decreasing rework.

5.1 Lessons learned

The first thing learned by working out examples such as the ISR application is
that SysML has the expressiveness to represent aerospace applications. It was
initially surprising that SysML constraint constructions could be used to express
domain constraints and functional requirements. Once one understood the SysML
language constructions it was clear that they have direct logical representation. The
process of refining capability analysis into requirements and refining requirements
into designs does not present any insurmountable technical objectives, provided
the domain model is refined in parallel to the system under design. Execution of
concurrent behavior via simulation plays a major role in understanding possible
system interaction with its operating environment in the upper levels of system
analysis and design. In our experience with the ISR application, concurrency was
not the most pressing issue in the first several refinement iterations. From early
capability analysis through preliminary design there are time and accuracy budgets.
However, the analysis and reasoning can be represented with static assertions. For
more detailed analysis and design one of course needs concurrency analysis. While
the reasoning for the initial analysis and design does not involve a lot of concurrency,
almost all of the component models in our examples have executable state charts.
They play a major role in constructing simulations, which are the primary avenue
to understand what a capability means and the emergent behavior as the system
interacts with its physical environment. The results of the assumptions are translated
back into static conditions.

A SysML model translates so naturally into an axiom set in a type theory logic
that one can simply view a model as an axiom set. Viewing a SysML model as an
axiom set enables using meta-logical methods to analyze models. For example, to
determine if a model has the correct level of detail for an application translates
into the question of whether the intended interpretations correspond to the logical
valid interpretations. A model is sufficiently detailed when its interpretations are
exactly what is intended. One may want a very general model with many valid
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interpretations exactly so that it can be used in multiple contexts. There are
many meta-matematical techniques which might assist in methodology for model
development.

Representing assumptions as part of a model enables many engineering problems
to be translated into logical problems of axiom set consistency. Axiom consistency
lends itself to automated inference. The ISR example model assumptions were
primarily of two kinds; SysML constraints which are equations between value prop-
erties and part property and interconnection assumptions can be expressed using
extended DL class constructions of ABD logic. Both these kinds of assumptions lend
themselves to automated inference for consistency checking. Many of the problems
can be represented in decidable fragments of ABD logic.

5.2 Integration into engineering practice

As SysML is retrofitted with a formal semantics, the results of inference can be
presented back to the users in the context of their development tools, typically as
the statement that some class is void. The integration of inference engines directly
with SysML means that users are not required to learn and use some separate
logical language in order to employ reasoning tools. For example, users are not
required to translate a SysML model into a B-Spec or an OWL model, perform
inference in an external environment, and translate the result into the SysML
context. The usefulness of the SysML semantic retrofit is hardly limited when the
inference engines operate directly on the SysML models and results can be directly
presented to users in their tool environment. After adoption of an MBSE model
refinement paradigm no additional paradigm change is needed to adopt a formal
theory refinement approach to system development. In our experience, an MBSE
design refinement approach does not take more time to set up than more traditional
produce development approaches, provided one uses good modeling principles such
as refining both the system and its operating environment. We have executed
applications in parallel with their execution performed using more traditional non-
model based approaches. The MBSE approach wins. The work done in the MBSE
approach will have to be done sooner or later; the later the work is done the
more costly it is and more rework is required. Even if only a single project is
done the cost is less. When multiple projects are done, much of the modeling work
can be reused, if it is done correctly. As SysML becomes formalized, no additional
work will be required for deployment for model refinement to become theory
refinement. The SysML formalization retrofit does not add appreciable development
overhead as there is no need to learn a new language or set up separate systems and
translations between them.

5.3 Type theory as formalism choice

Type theory, also sometimes called higher order intuitionist theory, is any of several
formal logical systems [5, 23, 27]. Type theory is used as a basis for many program-
ming languages and theorem proving systems [10] and has been used as a foundation
formalism alternative to set theory for mathematics and computer science [27].
Type theories underlie many interactive theorems proving and proof construction
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systems [18]. Type theory contains type constructions for product, sum, function
(operation) types, and abstraction types, and even an internal logic of formulas as
the theories have a truth value type. Type theory has higher order term constructions
associations of parts, variables, operator. Type theory has the potential to accom-
modate dynamics in a simple way with the inclusion of a time type as a subtype of
One, the terminal type. Type theories have an inference semantics given by inference
rules and a reference semantics given by a notion of valid interpretation (model
in the sense of logic). The approach of using type theory has been outlined is a
series of papers by the authors [13–15]. SysML and ABD theory corresponds so
closely that ABDs can be viewed as a formal semantics retrofit for SysML. While
the SysML type system is not fully closed under all of the standard type theory
constructions, ABD logic is closed under the type constructions present in type
theory [6]. The type theory constructions and their axioms are closely modeled on
topos theory and have been implemented as an interactive theorem proving system
[16] called Algos. The theory generated from an axiom set with the inference rules
is sound and complete with respect to models defined by a topos [6]. A topos looks
for modeling intents and purposes like set theory and so makes a good venue to
talk about interpretations and model theory. Lawvere [24] proposed using topos
theory as an alternative to set theory as a foundation for mathematics. Each topos
is associated with a type theory and each type theory is defines a topos. A topos
can be constructed from a type theory by identifying terms which are provably
equal.

Section 3 demonstrated that SysML language constructions and their informal
semantics match type theory language constructions and inference rules closely.
Many of formalisms encountered for aerospace systems have a general similarity in
that they typically use concepts such as individuals, properties, and operations; they
have some form of type system, whether it is called types, classes, or sets. Generally
variables and assignment statements are used. The choices for formalizing SysML are
to translate SysML models into one or more logical formalisms, or to provide SysML
with a direct formal semantics either in the form of inference rules or in the form
of a model-theoretic semantics. Both the direct and the translation formalization
approaches have the issue whether the formal semantics accords with the informal
semantics of the modeling language. Of course the issue is not always clear cut. The
informal semantics may be incomplete, inconsistent, or simply not accord with what
is found in formal systems. All of these formalization approaches can be used to
critique the informal semantics of SysML and suggest improvements.

The full expressiveness of type theory provides the additional advantage that it has
an internal logic which consists of the Boolean valued operations. These operator
terms represent a full first order logic with quantification. For example, a subtype
axiom may be expressed as

∀x.x : B implies x : A (78)

an inference rule (where A and B are variables in the metalogic). Further, this rule
is provably equivalent to

A ⊆ B. (79)

The latter form is much more amenable for theorem proving.
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5.4 SysML limitations

Our approach builds on the demonstrated effectiveness of SysML to represent large
scale aerospace systems and model their operational contexts. Our experience leads
us to believe that the effectiveness of SysML in product development depends on
SysML having language constructions that are well suited for modeling aerospace
systems. Engineers can and do use SysML to develop complex aerospace systems.
There is good tool support. We illustrated how a typical macro-level aerospace design
problem can be represented as a composite SysML model. SysML, with its constraint
language features provides expressiveness to represent assumptions in the form of
equations. For engineers to make use of formal methods, we have chosen to retrofit
SysML with a type theoretic formal foundation. The alternative is to develop or
adopt a logical formalism and find or develop tools and get them used on a broad
scale. While one could consider integrating multiple formalisms without a unifying
language and bridging with transformations between formalisms, this requires a lot
of work and provides a lot of opportunity for errors. Retrofitting SysML is more
likely to be more successful than choosing a formal logical system lacking wide spread
robust tool support. SysML and type theory (abstract) syntax and semantics are
sufficiently close that they can be integrated and the result has a very high potential
payoff in terms of shorting design cycles and decreasing rework.

SysML language is known to fall short in representing continuous time mod-
els (e.g. dynamics) but also when it comes to concurrency in general. As noted,
aerospace systems are usually hybrid reactive systems. Behavioral constructions can
be added to ABD theory as additional axioms. The use of topos theory reference
semantics provides a sound foundation for modeling dynamic systems. Many func-
tion spaces defined on some base space such as Euclidian space-time are toposes and
some can be axiomatized by elementary (first order) axioms. Their distinguishing
feature is the Boolean type is no longer a two element set but a more general kind of
algebra. At present, the authors do not yet have enough experience with verification
of dynamic properties in the SysML context and so we are not yet able to make a
good choice in this regard.

A formal semantics along the lines of ABD logic should be part of the formal
specification of SysML. Specific extensions to SysML that would be practically
useful based on the ISR use case are: to (1) include a complete set of DL class
constructions, add individuals, and (2) provide a mechanism to bind operation
arguments to attribute values and bind the value of an operation to an attribute.
SysML could easily adopt the Description Logic class constructions. A simplification,
or expansion, of the parametric binding capability could make it easier to express pre
and post conditions on operations. More generally it would make sense to add the full
collection of ABD language constructions with their inference rule semantics to the
formal specification of SysML. One would of course have to add time, concurrency,
and a more explicit concept of execution.
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