Electronic Notes in Theoretical Computer Science 25 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume25.html 10 pages

Formal Methods in Practice

Wolfgang Polak

Consultant
Sunnyvale, USA
wp@pocs.com

Abstract

Technology transfer from academic research to industrial practice is hampered by
social, political and economic problems more that by technical issues. This paper
describes one instance of successful technology transfer based on a special-purpose
language and associated translation tool tailored to the customer’s needs. The
key lesson to be learned from this example is that mathematical formalisms must
be transparent to the user. Formalisms can be effectively employed if they are
represented by tools that fit into existing work processes.

It is suggested that the model of special-purpose, domain-specific languages and
their translators are an important vehicle to transition advanced technology to
practice. This approach enables domain experts to solve problems using familiar
terminology. It enables engineers of all disciplines to utilize computers without
becoming software engineers. In doing so we not only mitigate the chronic shortage
of qualified software personnel but also simplify the problem of requirements analysis
and specification.

1 The Problem

The ultimate purpose of software engineering and computer science is to pro-
duce better, cheaper software. In this context software refers to a running
system. The production of high-level source code is a possible but not nec-
essary intermediate step. Better encompasses all qualitative aspects such as
correctness, efficiency and so on. Cheaper refers to the overall cost of a software
system including production, deployment, and maintenance.

Theoretical problems such as models for component composition, better
theorem proving technology, formalized requirements analysis and the like,
are important elements of a solution. The question is how best to make them
practical.

Software engineers, desperate for automation, often create ad-hoc solutions
without any formal basis. For example, the need to structure and organize
complex software systems has lead to the creation and success of UML. Putting

(©2000 Published by Elsevier Science B. V.



PoLAK

such tools on a rigorous formal basis is an important first step.

There is an impressive list of projects that use formal methods [1]. Yet most
of the examples required extensive hand-holding by researchers and do not
represent successful theory in wide-spread use. Examples of formal methods
in common use are more modest and include grammars, supported by parser
generators, and finite state machines [7].

Why does computer science not have a larger impact on software engineer-
ing practices? First, there is a big communication gap between theoreticians
and practitioners. For the theoretician programs are mathematical objects
that never fail if we can just get their specification right and verify the code.
For the practitioner formal methods use obscure notation, deal with toys ex-
amples, and will never scale. Software engineers are faced with daunting man-
agement, version control, and similar problems and must constantly make
engineering tradeoffs to meet tight deadlines and market windows — computer
scientists know little of that. Computer scientists create wonderful theories,
concepts and abstractions — software engineers understand little of that. Tran-
sitioning science to engineering is not just a technical problem but is mainly
an educational, social, managerial problem.

Educational: Software engineers could make use of many theoretical results
if they knew how to do so. But we don’t speak the same language. The
presentation of research results is geared toward peer review not towards
technology transition.

Social: Software engineers are reluctant to take outside advice. After all they
manage to build complex systems. Who likes to be told that some of his
expertise can be replaced by a program?

Managerial: Processes and procedures for software construction have evolved
over many years and are firmly entrenched in organizations. Any change
will be perceived as risky and is likely rejected.

This paper describes an example of successful technology transfer based
on an intelligent translator for a domain-specific specification language and
lessons learned in the process. The formal systems used in this project are
rather modest. The point here is that translators for very high-level languages
provide an effective vehicle for making complex, formally-based tools accessi-
ble to the engineering community. Indeed, special-purpose languages suggest
a new paradigm of software development by empowering engineers in other
disciplines to describe (aka program) solutions to their computational and
control problems.



PoLAK

2 An Example Of Technology Transfer

2.1 The Problems of Technology Transfer

For several years the author was involved in a research project at a major
aerospace corporation. The project studied techniques for program synthesis,
automatic code generation, very high-level languages, graphical design tools
and similar topics. The goal was to simplify specification of software systems
and to make code synthesis practical by working in a restricted domain.

As in most industrial research laboratories there was the pressure to show
practical relevance of the work. To that end, the project developed a num-
ber of prototype tools that were considered practical and useful by academic
standards (e.g.[3,2,8,4,5]).

But academic standards are not good enough to be accepted by those
responsible for real products. Several attempts to transition some of the lab’s
technology to product divisions were met with universal rejection. There were
several reasons for this rejection, most of them non-technical in nature.

¢ Academics tend to develop tools in the abstract, i.e., they solve an intel-
lectually interesting problem without regard to actual applications. When
scientists talk about concepts such as “completeness of decision procedures”
of “expressiveness of languages,” their value will not be apparent to deci-
sion makers. Technology must be sold by describing the concrete problems
being solved, how much time is saved, and how quality is improved. The
technology is irrelevant, it is its impact that matters.

* People in charge of software projects are extremely concerned about sched-
ule risk. Even if a new tool promises great time savings, it will be rejected
if there is even minimal risk that it might negatively impact the schedule.
Large potential time savings are often not realistic due to a steep learning
curve.

e Researchers tend to build tools in isolation without consideration of the en-
vironment and the work process of software production. Tools that require
changes in an established software development process are difficult to sell.

e An important reason for rejection is the perceived and often real lack of
maintenance and support for systems that come out of research labs.

* One frequent objection to the use of machine generated code was readabil-
ity. From the academic point of view, machine generated Ada code is no
different than compiler generated assembly code. But the programmer in
the field will be skeptical of the new technology and will want to inspect
and understand the code. As a consequence significant effort was spent on
generating human readable, commented code.

3



PoLAK

2.2 A Breakthrough

In early 1995, the company was preparing a proposal for a new NASA satellite
program. To justify a low project cost an experiment was proposed that would
demonstrate and measure the cost reduction possible through automatic code
generation.

We were given an existing satellite software system that was operational
in a simulator environment. The task was to generate from specifications one
key module to achieve a different functionality. The generated code was to be
tested and validated in the existing simulation.

After many failed attempts to introduce our technology into the product
divisions we had finally generated some visibility and interest. There were a
few major problems though. None of the lab’s researchers had any experience
with the satellite domain; we did not even understand the new requirements.
We had no domain-specific specification language and no idea what one should
look like. And we were only given four weeks to complete the experiment. The
task was close to impossible. A cynic might think that we were deliberately
setup for failure. More likely, the problem was of our own making since we
had created misconceptions and wrong expectations in our earlier attempts to
“sell” our technology.

After some fight, we convinced management to allocate a full-time aerospace
engineer to the project. He was our domain expert and brought the specifi-
cation language. As it turned out, aerospace engineers specify and test their
control laws in MatLab!. These MatLab specifications with some additional
information became the input to our new tool.

Using extensive parsing, pretty printing, and tree manipulation tools that
the project had developed over the years, we managed to build a prototype
system that generated usable code — at least for one example. The experiment
was successful and the data gathered was used in the proposal. Ironically,
the proposal was not successful: its cost did not fit within the parameters
considered reasonable by NASA and it was rejected as unrealistically cheap.

3 Swuccessful Automatic Code Generation

Even though the satellite proposal was not successful, the experiment was and
it demonstrated the utility of our approach and gave the lab some credibility.
The aerospace engineer that participated in the experiment became a very
strong advocate for the technology. By necessity (e.g., lack of time), we had
created a solution that was simple and fit into the existing development process
with minimal impact. As a result the initial crude prototype was further
developed into a usable system, the Flight Code Generator (FCG), that is now
actively used on several programs. The current version of the system employs

I MatLab and all other product and company names mentioned in this document are used
for identification purposes only, and may be trademarks of their respective owners.

4



PoLAK

Momentuni
Wheels Thrusters Asﬁ"l;;s

Realtime Executive

Commands Device ce oo Device
Telemetry Driver Driver

Fig. 1. Satellite software architecture with multiple functional modules that are
connected to the realtime executive through standard interfaces.

dataflow analysis, various code optimization techniques, type inference, and
analysis of finite state machines.

FCG is successful because it (i) is specialized to a narrow domain, (ii)
generates code that fits into an existing architecture, and (iii) fits into an
established development process. The following is a brief description of these
technical aspects of FCG.

3.1 Building Satellite Control Systems

Figure 1 shows a reusable software architecture for satellite control systems.
The realtime executive provides an infrastructure that is independent of the
particular system requirements and can be reused across multiple spacecraft.
It connects spacecraft specific device drivers and functional modules. These
modules perform such functions as rotating solar arrays, moving momentum
wheels, determine position based on various sensors and so on. The code of
each module is executed sequentially at an appropriate clock rate. For each
clock cycle the module performs the appropriate computation which includes
reading ground commands and sending telemetry information. Modules com-
municate by shared variables which require no synchronization if the reader
and writer modules run at the same clock rate.

During the design process aerospace engineers (AE) develop the control
laws for each functional module. Typically a single engineer works on a mod-
ule. The control laws are coded and evaluated in MatLab to determine proper
behavior. The result of these tests are plots that show various responses to
control inputs.



PoLAK

Requirements
AE
AE
MatLab
Control Laws Simulation
AE
Design Document
/ SE
SE C
Ground omponent
inlfl(? Ada Code Test
% w
System Software
Integration Documentation

Fig. 2. Aerospace (AE) and software (SE) engineers cooperate to develop functional
modules

Figure 2 show the development process for an individual module. A soft-
ware engineer (SE) takes the design document produced by the aerospace en-
gineer and develops appropriate Ada code. This code is unit-tested and later
integrated into the system. Separate software documentation is produced for
the hand-written Ada code. The design document is also used as a basis for
developing ground software that needs to interpret telemetry information and
generate commands.

3.2 Tool Support

It is apparent that the process of Figure 2 is inefficient and error prone. But it
leaves plenty of room for automation and the experiment described in section
2.2 would not have possibly succeeded without the reusable architecture and
the process being in place.

First, the process suggests a natural specification language: MatLab. While
the MatLab source contains all necessary equations and formulas as well as
test code to produce various plots, it does not contain information about the
kind of telemetry to send, the commands and their parameters that are to be
received, and how to respond to a particular command. Thus the specification
language was defined as an extension to MatLab that includes the following
additions:

e Optional type information can be added to determine precision of data and

6



PoLAK

to select specific Ada types (e.g. the support infrastructure contains a 4-
element float vector type as well as a quaternion type which are structurally
equal but have different associated operations).

» Telemetry is specified by listing those variables whose values are to be in-
cluded in the telemetry stream.

e Commands are defined by a name and possible parameters.

» A hierarchical finite state machine (essentially a textual version of state
charts [6]) specifies the actions to be taken in response to a clock tick or a
command.

* Special comments were added that can be included in generated Ada code
and documentation.

In addition, it was necessary to mark certain inputs (e.g., test code that
generates plots) so that it can be excluded from processing by FCG. All ex-
tensions were added to MatLab using special comment characters such that a
source file of the extended language can still be processed by MatLab. The re-
sulting language is ugly by any measure. But that problem was far outweighed
by the benefits of having a single representation of the design. Engineers found
surprising ways to make their specifications readable.

FCG is a batch tool written in Common Lisp that takes specifications
written in the extended MatLab language and generates the following outputs
(controlled by command line options)

(i) Database records that describe telemetry and command information nec-
essary for building ground software.

(ii) An Ada package that conforms to interfaces and conventions of the reusable
architecture. While the code is commented and human readable it is
ready for system integration and does not require human modifications.

(iii) A test environment that allows interactive or scripted unit testing of
the generated Ada code. The test environment contains an interpreter
that allows inspection and modification of all variables, calls to defined
procedure, and the simulation of clock ticks and the arrival of commands.
It also allows the generation of plots that can be compared with those
generated by MatLab.

(iv) Documentation of both the design and implementation of the module.
This information is based on the specifications, embedded comments,
and decisions made by the Ada code generator

The new tool substantially simplifies the development process with only
minimal additional work (see Figure 3). The aerospace engineer has to provide
additional specifications in the MatLab source and is now performing unit
tests of the generated Ada code. Any necessary code change is made in the
MatLab source. Even with this additional work, the AE’s job is simplified since
the documentation requirements are reduced and the communication with



PoLAK

Requirements
AE
AE
MatLab
Control Laws Simulation

w
Y

FCG »| Component
Test
Y Design and
Ground Ada Code Software
Info Documentation
s
System
Integration

Fig. 3. FCG fits into the existing development process and eliminated virtually all
manual handling of the Ada code for functional components.

the software engineer is eliminated. The SEs are left focus on infrastructure
development and system integration.

3.3 A Recipe For Success

FCG is now used on three satellite systems. On one program FCG is being
used both for the control and the payload software and almost half of the
software is automatically generated. While this is significant, the system is
not universally accepted throughout the corporation. Two problems dominate:
The system lacks user support and maintenance. Many software designers
refuse to work within the confines of a reusable architecture and insist on
starting with a clean slate.

Why was FCG successful when much more elaborate earlier prototypes
failed? Luck was an important part. The challenge experiment created the
necessary visibility and convinced management and engineers of the value of
the technology. Without the strong support of advocates from within the
product division, insertion of new technology would not have been possible.
Input from the user community is important. An internal advocate is ideal.
Users that feel in control are very supportive. Interestingly, all support came
from aerospace engineers whose jobs become more difficult with FCG. All
resistance came from software engineers whose jobs were simplified by the
tool.



PoLAK

Documentation is as important as code. Using a single source to generate
code as well as documentation and other artifacts ensures consistency and
simplifies maintenance. Being able to generate custom database records and
documentation was a major selling point.

A critical reason for success is minimizing risk. In the FCG approach it
is always possible to revert to the old ways if problems should arise. Several
features of the system helped to minimize risk:

(i) The learning curve for the tool was very shallow. Initial use (e.g. unit
testing) is possible using straight MatLab code.

(ii) The generated code is human-readable. If necessary, the code can be
maintained by hand.

(iii) The tool fits into an existing development process. l.e., while some of
the steps of the existing process are automated, none of the manual steps
need to change in a significant way.

(iv) The system adapts to an existing architecture and its interfaces. No
software changes are needed to accommodate machine generated code.

3.4 Commercial Tools

There are several commercial systems that generate code. But business rea-
sons dictate that these systems are rather general purpose. Developing sys-
tems that generate custom code for a narrow domain is not commercially
viable unless we can greatly simplify the construction and configuration of
such system.

Integrated Systems offers MatrixX, a system for graphically specifying con-
trol systems and for generating code from such specifications. The product
is much more mature and feature-rich than FCG but suffers from the lack of
customization of the target code. The generated code cannot easily be inte-
grated into a given satellite architecture. MatrixX was actively considered but
was perceived as much higher risk and more disruptive than FCG.

National Instruments’ LabVIEW and BridgeVIEW are products for graph-
ically designing data acquisition and signal processing applications.

Other examples of successful automatic code generators include parser
generators and attribute grammar systems as well as numerous generators
for graphic user interfaces.

4 Final Thoughts

Formal methods are a means, not an end. To become useful and accepted,
computer science theory must be packaged and become invisible. Tool builders
need to understand both the formalism and their end-users. Domain-specific
tools provide a promising vehicle to deliver theory to practitioners.

Ever higher levels of specification provide increased opportunities for for-

9



PoLAK

mal methods. Specifications based on constraints can use theorem provers to
generate suitable code. Most domains tend to have design rules that can be
checked using deductive or model-checking techniques. Domain-specific lan-
guages appear to be an effective delivery vehicle for formal methods. This, in
turn, should reduce the cost and improve the quality of software.

While the FCG experience provides only one data point, the existence
of commercial tools (e.g. those cited above) is evidence that suggests that
automatic code generation is accepted by practitioners. Domain engineers
like to be in control rather than having to depend on software engineers.

Today software engineers are expected to play experts in all areas from
human-computer interfaces to fluid dynamics to fly-by-wire systems. Soft-
ware engineers cannot play all these roles and if they do, poor software is
a necessity. Instead, software engineers should be tool builders. They are
uniquely qualified to make computers accessible to other disciplines and to
empower engineers in other fields to express their designs.

Maybe domain-specific tools will eventually lead to a new software de-
velopment, paradigm, one where software technology empowers everyone to
become a programmer in her field.

We have already seen how spreadsheet programs have made almost every
computer user into a programmer. Obviously, not everyone is successful in
programming their spreadsheets. But for disciplines where spreadsheets are
in common use, their programming has already become part of the standard
curriculum. In the long term, engineers in many disciplines will become pro-
grammers: domain specific programming will become part of the curriculum
and standard practice in their discipline. Given the increasing proliferation of
software, this development seems inevitable.

There is a good chance that such a development will also alleviate some
of the problems of requirements analysis and capture. Requirements are often
the interface between practitioners is different disciplines that speak different
languages use different defaults and different common assumptions. If the
requirements analyst and the programmer are experts in the same discipline
there is much less change of miscommunication.

Acknowledgement

Eleanor Rieffel and James Baker provided valuable comments on earlier drafts
of this paper. Discussions at the Monterey Workshop were very helpful and
affected my thoughts on technology transition.

References

[1] Edmund M. Clarke, Jeanette M. Wing, and et. al. Formal methods: State
of the art and future directions. ACM Computing Surveys, 28(4es):626—643,

10



PoLAK

December 1996.

[2] Henson Graves. Interactive design in LEAP. In Proc. 91 AAAI workshop on
Automating Software Design, 1991.

[3] Henson Graves. Lockheed environment for automatic programming. [EEE
Ezxpert, 7(6):15-25, December 1992.

[4] Henson Graves, Joe Louie, and Tracy Mullen. A code synthesis experiment.
In 7th Knowledge-Based Software Engineering Conference (KBSE-92). IEEE
Computer Society Press, September 1992.

[5] Henson Graves and Wolfgang Polak. Common intermediate design language.
In Hawaii International Conference on System Sciences, January 1992.

[6] D. Harel. Statecharts: a visual approach to complex systems. Science of
Computer Programming, 8(3):231-274, 1987.

[7] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and
A. Shtul-Trauring. STATEMATE; a working environment for the development
of complex reactive systems. In Proceedings of the 10th International
Conference on Software Engineering, pages 396-406, Singapore, April 1988.
IEEE Computer Society Press.

[8] J. Williamson, P. Jensen, L. Ogata, and H Graves. Automatic programming
technologies for avionics software (APTAS). In Proceedings of the 9th Digital
Avionics Systems Conference, pages 101-106. TEEE, 1990.

11



