
Electronic Notes in Theoretical Computer Science �� ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Formal Methods in Practice

Wolfgang Polak

Consultant

Sunnyvale� USA

wp�pocs�com

Abstract

Technology transfer from academic research to industrial practice is hampered by

social� political and economic problems more that by technical issues� This paper

describes one instance of successful technology transfer based on a special�purpose

language and associated translation tool tailored to the customer�s needs� The

key lesson to be learned from this example is that mathematical formalisms must

be transparent to the user� Formalisms can be e�ectively employed if they are

represented by tools that �t into existing work processes�

It is suggested that the model of special�purpose� domain�speci�c languages and

their translators are an important vehicle to transition advanced technology to

practice� This approach enables domain experts to solve problems using familiar

terminology� It enables engineers of all disciplines to utilize computers without

becoming software engineers� In doing so we not only mitigate the chronic shortage

of quali�ed software personnel but also simplify the problem of requirements analysis

and speci�cation�

� The Problem

The ultimate purpose of software engineering and computer science is to pro�

duce better� cheaper software� In this context software refers to a running

system� The production of high�level source code is a possible but not nec�

essary intermediate step� Better encompasses all qualitative aspects such as

correctness� e�ciency and so on� Cheaper refers to the overall cost of a software

system including production� deployment� and maintenance�

Theoretical problems such as models for component composition� better

theorem proving technology� formalized requirements analysis and the like�

are important elements of a solution� The question is how best to make them

practical�

Software engineers� desperate for automation� often create ad�hoc solutions

without any formal basis� For example� the need to structure and organize

complex software systems has lead to the creation and success of UML� Putting

c����� Published by Elsevier Science B� V�



Polak

such tools on a rigorous formal basis is an important �rst step�

There is an impressive list of projects that use formal methods ���� Yet most

of the examples required extensive hand�holding by researchers and do not

represent successful theory in wide�spread use� Examples of formal methods

in common use are more modest and include grammars� supported by parser

generators� and �nite state machines ����

Why does computer science not have a larger impact on software engineer�

ing practices	 First� there is a big communication gap between theoreticians

and practitioners� For the theoretician programs are mathematical objects

that never fail if we can just get their speci�cation right and verify the code�

For the practitioner formal methods use obscure notation� deal with toys ex�

amples� and will never scale� Software engineers are faced with daunting man�

agement� version control� and similar problems and must constantly make

engineering tradeo
s to meet tight deadlines and market windows � computer

scientists know little of that� Computer scientists create wonderful theories�

concepts and abstractions � software engineers understand little of that� Tran�

sitioning science to engineering is not just a technical problem but is mainly

an educational� social� managerial problem�

Educational� Software engineers could make use of many theoretical results

if they knew how to do so� But we don�t speak the same language� The

presentation of research results is geared toward peer review not towards

technology transition�

Social� Software engineers are reluctant to take outside advice� After all they

manage to build complex systems� Who likes to be told that some of his

expertise can be replaced by a program	

Managerial� Processes and procedures for software construction have evolved

over many years and are �rmly entrenched in organizations� Any change

will be perceived as risky and is likely rejected�

This paper describes an example of successful technology transfer based

on an intelligent translator for a domain�speci�c speci�cation language and

lessons learned in the process� The formal systems used in this project are

rather modest� The point here is that translators for very high�level languages

provide an e
ective vehicle for making complex� formally�based tools accessi�

ble to the engineering community� Indeed� special�purpose languages suggest

a new paradigm of software development by empowering engineers in other

disciplines to describe aka program� solutions to their computational and

control problems�

�



Polak

� An Example Of Technology Transfer

��� The Problems of Technology Transfer

For several years the author was involved in a research project at a major

aerospace corporation� The project studied techniques for program synthesis�

automatic code generation� very high�level languages� graphical design tools

and similar topics� The goal was to simplify speci�cation of software systems

and to make code synthesis practical by working in a restricted domain�

As in most industrial research laboratories there was the pressure to show

practical relevance of the work� To that end� the project developed a num�

ber of prototype tools that were considered practical and useful by academic

standards e�g��������������

But academic standards are not good enough to be accepted by those

responsible for real products� Several attempts to transition some of the lab�s

technology to product divisions were met with universal rejection� There were

several reasons for this rejection� most of them non�technical in nature�

� Academics tend to develop tools in the abstract� i�e�� they solve an intel�

lectually interesting problem without regard to actual applications� When

scientists talk about concepts such as �completeness of decision procedures�

of �expressiveness of languages�� their value will not be apparent to deci�

sion makers� Technology must be sold by describing the concrete problems

being solved� how much time is saved� and how quality is improved� The

technology is irrelevant� it is its impact that matters�

� People in charge of software projects are extremely concerned about sched�

ule risk� Even if a new tool promises great time savings� it will be rejected

if there is even minimal risk that it might negatively impact the schedule�

Large potential time savings are often not realistic due to a steep learning

curve�

� Researchers tend to build tools in isolation without consideration of the en�

vironment and the work process of software production� Tools that require

changes in an established software development process are di�cult to sell�

� An important reason for rejection is the perceived and often real lack of

maintenance and support for systems that come out of research labs�

� One frequent objection to the use of machine generated code was readabil�

ity� From the academic point of view� machine generated Ada code is no

di
erent than compiler generated assembly code� But the programmer in

the �eld will be skeptical of the new technology and will want to inspect

and understand the code� As a consequence signi�cant e
ort was spent on

generating human readable� commented code�

�



Polak

��� A Breakthrough

In early ����� the company was preparing a proposal for a new NASA satellite

program� To justify a low project cost an experiment was proposed that would

demonstrate and measure the cost reduction possible through automatic code

generation�

We were given an existing satellite software system that was operational

in a simulator environment� The task was to generate from speci�cations one

key module to achieve a di
erent functionality� The generated code was to be

tested and validated in the existing simulation�

After many failed attempts to introduce our technology into the product

divisions we had �nally generated some visibility and interest� There were a

few major problems though� None of the lab�s researchers had any experience

with the satellite domain� we did not even understand the new requirements�

We had no domain�speci�c speci�cation language and no idea what one should

look like� And we were only given four weeks to complete the experiment� The

task was close to impossible� A cynic might think that we were deliberately

setup for failure� More likely� the problem was of our own making since we

had created misconceptions and wrong expectations in our earlier attempts to

�sell� our technology�

After some �ght� we convinced management to allocate a full�time aerospace

engineer to the project� He was our domain expert and brought the speci��

cation language� As it turned out� aerospace engineers specify and test their

control laws in MatLab � � These MatLab speci�cations with some additional

information became the input to our new tool�

Using extensive parsing� pretty printing� and tree manipulation tools that

the project had developed over the years� we managed to build a prototype

system that generated usable code � at least for one example� The experiment

was successful and the data gathered was used in the proposal� Ironically�

the proposal was not successful� its cost did not �t within the parameters

considered reasonable by NASA and it was rejected as unrealistically cheap�

� Successful Automatic Code Generation

Even though the satellite proposal was not successful� the experiment was and

it demonstrated the utility of our approach and gave the lab some credibility�

The aerospace engineer that participated in the experiment became a very

strong advocate for the technology� By necessity e�g�� lack of time�� we had

created a solution that was simple and �t into the existing development process

with minimal impact� As a result the initial crude prototype was further

developed into a usable system� the Flight Code Generator FCG�� that is now

actively used on several programs� The current version of the system employs

� MatLab and all other product and company names mentioned in this document are used

for identi�cation purposes only� and may be trademarks of their respective owners�

�



Polak

tt t t t

t t t t

�

�

�

�

�

�

�

�

�

�

�

�

Momentum
Wheels

Thrusters Solar
Arrays

Realtime Executive

Commands
Telemetry

Device Device
Driver Driver

Fig� �� Satellite software architecture with multiple functional modules that are

connected to the realtime executive through standard interfaces�

data�ow analysis� various code optimization techniques� type inference� and

analysis of �nite state machines�

FCG is successful because it i� is specialized to a narrow domain� ii�

generates code that �ts into an existing architecture� and iii� �ts into an

established development process� The following is a brief description of these

technical aspects of FCG�

��� Building Satellite Control Systems

Figure � shows a reusable software architecture for satellite control systems�

The realtime executive provides an infrastructure that is independent of the

particular system requirements and can be reused across multiple spacecraft�

It connects spacecraft speci�c device drivers and functional modules� These

modules perform such functions as rotating solar arrays� moving momentum

wheels� determine position based on various sensors and so on� The code of

each module is executed sequentially at an appropriate clock rate� For each

clock cycle the module performs the appropriate computation which includes

reading ground commands and sending telemetry information� Modules com�

municate by shared variables which require no synchronization if the reader

and writer modules run at the same clock rate�

During the design process aerospace engineers AE� develop the control

laws for each functional module� Typically a single engineer works on a mod�

ule� The control laws are coded and evaluated in MatLab to determine proper

behavior� The result of these tests are plots that show various responses to

control inputs�

�



Polak

�
�

�

�

�

�
�

�
�
�

�
�

�
���

�

�

�
�

�
�

�
��

Q
Q
Q
Q
Q
Qs

Requirements

Control Laws
MatLab

Simulation

Design Document

Ada Code
Component

Test
Ground

System
Integration

Software
Documentation

AE

AE

AE

SE

SE

SESE

Info

Fig� �� Aerospace �AE	 and software �SE	 engineers cooperate to develop functional

modules

Figure � show the development process for an individual module� A soft�

ware engineer SE� takes the design document produced by the aerospace en�

gineer and develops appropriate Ada code� This code is unit�tested and later

integrated into the system� Separate software documentation is produced for

the hand�written Ada code� The design document is also used as a basis for

developing ground software that needs to interpret telemetry information and

generate commands�

��� Tool Support

It is apparent that the process of Figure � is ine�cient and error prone� But it

leaves plenty of room for automation and the experiment described in section

��� would not have possibly succeeded without the reusable architecture and

the process being in place�

First� the process suggests a natural speci�cation language� MatLab� While

the MatLab source contains all necessary equations and formulas as well as

test code to produce various plots� it does not contain information about the

kind of telemetry to send� the commands and their parameters that are to be

received� and how to respond to a particular command� Thus the speci�cation

language was de�ned as an extension to MatLab that includes the following

additions�

� Optional type information can be added to determine precision of data and

�



Polak

to select speci�c Ada types e�g� the support infrastructure contains a ��

element �oat vector type as well as a quaternion type which are structurally

equal but have di
erent associated operations��

� Telemetry is speci�ed by listing those variables whose values are to be in�

cluded in the telemetry stream�

� Commands are de�ned by a name and possible parameters�

� A hierarchical �nite state machine essentially a textual version of state

charts ���� speci�es the actions to be taken in response to a clock tick or a

command�

� Special comments were added that can be included in generated Ada code

and documentation�

In addition� it was necessary to mark certain inputs e�g�� test code that

generates plots� so that it can be excluded from processing by FCG� All ex�

tensions were added to MatLab using special comment characters such that a

source �le of the extended language can still be processed by MatLab� The re�

sulting language is ugly by any measure� But that problem was far outweighed

by the bene�ts of having a single representation of the design� Engineers found

surprising ways to make their speci�cations readable�

FCG is a batch tool written in Common Lisp that takes speci�cations

written in the extended MatLab language and generates the following outputs

controlled by command line options�

i� Database records that describe telemetry and command information nec�

essary for building ground software�

ii� An Ada package that conforms to interfaces and conventions of the reusable

architecture� While the code is commented and human readable it is

ready for system integration and does not require human modi�cations�

iii� A test environment that allows interactive or scripted unit testing of

the generated Ada code� The test environment contains an interpreter

that allows inspection and modi�cation of all variables� calls to de�ned

procedure� and the simulation of clock ticks and the arrival of commands�

It also allows the generation of plots that can be compared with those

generated by MatLab�

iv� Documentation of both the design and implementation of the module�

This information is based on the speci�cations� embedded comments�

and decisions made by the Ada code generator

The new tool substantially simpli�es the development process with only

minimal additional work see Figure ��� The aerospace engineer has to provide

additional speci�cations in the MatLab source and is now performing unit

tests of the generated Ada code� Any necessary code change is made in the

MatLab source� Even with this additional work� the AE�s job is simpli�ed since

the documentation requirements are reduced and the communication with

�



Polak

� �
�

�
�
�

�
���

�
�
�
�I

�
�
�

�
�

�
�
�

���

�

�

�

�

�

��R�

Requirements

Control Laws
MatLab

Simulation

Ada CodeGround

System
Integration

AE

AE

SE

Component
Test

Software
Documentation

AE

Info

FCG

Design and

Fig� 
� FCG �ts into the existing development process and eliminated virtually all

manual handling of the Ada code for functional components�

the software engineer is eliminated� The SEs are left focus on infrastructure

development and system integration�

��� A Recipe For Success

FCG is now used on three satellite systems� On one program FCG is being

used both for the control and the payload software and almost half of the

software is automatically generated� While this is signi�cant� the system is

not universally accepted throughout the corporation� Two problems dominate�

The system lacks user support and maintenance� Many software designers

refuse to work within the con�nes of a reusable architecture and insist on

starting with a clean slate�

Why was FCG successful when much more elaborate earlier prototypes

failed	 Luck was an important part� The challenge experiment created the

necessary visibility and convinced management and engineers of the value of

the technology� Without the strong support of advocates from within the

product division� insertion of new technology would not have been possible�

Input from the user community is important� An internal advocate is ideal�

Users that feel in control are very supportive� Interestingly� all support came

from aerospace engineers whose jobs become more di�cult with FCG� All

resistance came from software engineers whose jobs were simpli�ed by the

tool�

�



Polak

Documentation is as important as code� Using a single source to generate

code as well as documentation and other artifacts ensures consistency and

simpli�es maintenance� Being able to generate custom database records and

documentation was a major selling point�

A critical reason for success is minimizing risk� In the FCG approach it

is always possible to revert to the old ways if problems should arise� Several

features of the system helped to minimize risk�

i� The learning curve for the tool was very shallow� Initial use e�g� unit

testing� is possible using straight MatLab code�

ii� The generated code is human�readable� If necessary� the code can be

maintained by hand�

iii� The tool �ts into an existing development process� I�e�� while some of

the steps of the existing process are automated� none of the manual steps

need to change in a signi�cant way�

iv� The system adapts to an existing architecture and its interfaces� No

software changes are needed to accommodate machine generated code�

��� Commercial Tools

There are several commercial systems that generate code� But business rea�

sons dictate that these systems are rather general purpose� Developing sys�

tems that generate custom code for a narrow domain is not commercially

viable unless we can greatly simplify the construction and con�guration of

such system�

Integrated Systems o
ers MatrixX� a system for graphically specifying con�

trol systems and for generating code from such speci�cations� The product

is much more mature and feature�rich than FCG but su
ers from the lack of

customization of the target code� The generated code cannot easily be inte�

grated into a given satellite architecture� MatrixX was actively considered but

was perceived as much higher risk and more disruptive than FCG�

National Instruments� LabVIEW and BridgeVIEW are products for graph�

ically designing data acquisition and signal processing applications�

Other examples of successful automatic code generators include parser

generators and attribute grammar systems as well as numerous generators

for graphic user interfaces�

� Final Thoughts

Formal methods are a means� not an end� To become useful and accepted�

computer science theory must be packaged and become invisible� Tool builders

need to understand both the formalism and their end�users� Domain�speci�c

tools provide a promising vehicle to deliver theory to practitioners�

Ever higher levels of speci�cation provide increased opportunities for for�

�



Polak

mal methods� Speci�cations based on constraints can use theorem provers to

generate suitable code� Most domains tend to have design rules that can be

checked using deductive or model�checking techniques� Domain�speci�c lan�

guages appear to be an e
ective delivery vehicle for formal methods� This� in

turn� should reduce the cost and improve the quality of software�

While the FCG experience provides only one data point� the existence

of commercial tools e�g� those cited above� is evidence that suggests that

automatic code generation is accepted by practitioners� Domain engineers

like to be in control rather than having to depend on software engineers�

Today software engineers are expected to play experts in all areas from

human�computer interfaces to �uid dynamics to �y�by�wire systems� Soft�

ware engineers cannot play all these roles and if they do� poor software is

a necessity� Instead� software engineers should be tool builders� They are

uniquely quali�ed to make computers accessible to other disciplines and to

empower engineers in other �elds to express their designs�

Maybe domain�speci�c tools will eventually lead to a new software de�

velopment paradigm� one where software technology empowers everyone to

become a programmer in her �eld�

We have already seen how spreadsheet programs have made almost every

computer user into a programmer� Obviously� not everyone is successful in

programming their spreadsheets� But for disciplines where spreadsheets are

in common use� their programming has already become part of the standard

curriculum� In the long term� engineers in many disciplines will become pro�

grammers� domain speci�c programming will become part of the curriculum

and standard practice in their discipline� Given the increasing proliferation of

software� this development seems inevitable�

There is a good chance that such a development will also alleviate some

of the problems of requirements analysis and capture� Requirements are often

the interface between practitioners is di
erent disciplines that speak di
erent

languages use di
erent defaults and di
erent common assumptions� If the

requirements analyst and the programmer are experts in the same discipline

there is much less change of miscommunication�

Acknowledgement

Eleanor Rie
el and James Baker provided valuable comments on earlier drafts

of this paper� Discussions at the Monterey Workshop were very helpful and

a
ected my thoughts on technology transition�

References

��� Edmund M� Clarke� Jeanette M� Wing� and et� al� Formal methods State
of the art and future directions� ACM Computing Surveys� ����es	������
�

��



Polak

December �����

��� Henson Graves� Interactive design in LEAP� In Proc� �� AAAI workshop on

Automating Software Design� �����

�
� Henson Graves� Lockheed environment for automatic programming� IEEE

Expert� ���	������ December �����

��� Henson Graves� Joe Louie� and Tracy Mullen� A code synthesis experiment�

In �th Knowledge�Based Software Engineering Conference �KBSE���	� IEEE

Computer Society Press� September �����

��� Henson Graves and Wolfgang Polak� Common intermediate design language�

In Hawaii International Conference on System Sciences� January �����

��� D� Harel� Statecharts a visual approach to complex systems� Science of

Computer Programming� ��
	�
������ �����

��� D� Harel� H� Lachover� A� Naamad� A� Pnueli� M� Politi� R� Sherman� and

A� Shtul�Trauring� STATEMATE� a working environment for the development

of complex reactive systems� In Proceedings of the �
th International

Conference on Software Engineering� pages 
������� Singapore� April �����

IEEE Computer Society Press�

��� J� Williamson� P� Jensen� L� Ogata� and H Graves� Automatic programming

technologies for avionics software �APTAS	� In Proceedings of the �th Digital

Avionics Systems Conference� pages �������� IEEE� �����

��


