

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds

Draft MBSE Methodology Summary:

Pattern-Based Systems Engineering (PBSE), Based On S*MBSE Models

Document Purpose:

This document is a review draft of the methodology summary for Pattern-Based Systems Engineering

using S*MBSE models. The material below, after Patterns Challenge Team review and related updates

as needed, is for contribution to the INCOSE-maintained on-line directory “MBSE Methodology: List of

Methodologies and Methods”.

The current content of that on-line directory may be found at

http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology#mbse_benchmarking_survey

The sectional structure of the following sections conforms to the standard summary outline template

used by the referenced methodology directory. The typical methodology descriptions in that directory

are currently summaries, not detailed “how to” manuals, for each methodology.

http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology#mbse_benchmarking_survey

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 1

1 Title: Pattern-Based Systems Engineering (PBSE), Based On S*MBSE Models

2 Overview:

Methodologies for systems engineering are concerned with both (1) the engineering process and (2) the

information that is consumed and produced by that process. In comparison to a strong historical

systems engineering emphasis on process, this methodology increases the relative emphasis on the

information passing through that process. That information is in the form of explicit MBSE system

models of value, requirements, design, risk, and other aspects, comparable in many aspects to other

MBSE methodologies, but strengthened in certain areas. The emphasis on that information is on

description of the engineered system, not the system of engineering.

Figure 1: The Engineering Process Consumes and Produces Information, Iteratively

2.1 Introduction to the S*Metamodel

Engineering disciplines such as ME, EE, ChE, CE, etc., are based upon underlying models of phenomena

(mechanical, electrical, chemical, etc.) that are the fruits of physical sciences and mathematics.

Newton’s laws of motion, Maxwell’s equations, and other underlying models describe aspects of the

nature of subject systems, not engineering procedures for those systems, while opening up many

procedural avenues that operate within the constraints of those underlying models of nature. In a

similar fashion, the S*Metamodel describes the underlying “systemic” aspects of those systems, based

upon the fruits of science and mathematics. In the tradition of those same physical sciences, these

underlying models (whether specific to one discipline or systems in general) always seek the “smallest

model” capable of describing or explaining the phenomena of interest.

The rise of a number of MBSE methodologies has provided many of the needed elements of that

underlying “smallest model” framework, and the S*Metamodel builds on those, while adding some

important missing and compressing other redundant aspects. Throughout, this is in the spirit of seeking

out the smallest model necessary to describe systems for purposes of engineering and science.

A simplified summary of some of the key portions of the S*Metamodel is shown in Figure 2. This

diagram is not the sort that is produced in an engineering project, but instead is an entity-relationship

representation of the underlying classes of information upon which those project-specific models are

based. Those project-specific models may be in any modeling language (including but not limited to

SysML, IDEF, or otherwise) and supported by any engineering tool or information system. A limited

discussion of some aspects of the S*Metamodel follows; additional references are shown later below.

Engineering

Process

(Iterative)

Information Passing

Through Engineering

Process

Information

Consumed

Information

Produced

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 2

Figure 2: Summary of Some of the Key Portions of S*Metamodel

2.1.1 Interactions, Requirements, and States

An example of the type of strengthening discussed above is the S*Metamodel use of Interactions, the

related way that Requirements formally enter into the model, and the States of the system. The

following conceptual framework leads to the insight that all System Technical Requirements are

manifest as behavior occurring during physical interaction of a subject system with its external

environment:

 A system is a collection of interacting components. (A component can itself be a system.)

 By interact, we mean that one component exchanges energy, forces, mass flow, or information

with another component, resulting in component changes of state.

 By state of a component, we mean the condition of the component that determines its input-

output behavior.

State

Input/

Output

Interface

Functional

Interaction

(Interaction)

System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix
Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

BB

WB

Class

Every S*Metaclass shown is

embedded in both a

containment hierarchy and an

abstraction (class) hierarchy.

System 1

System

Component

External

“Actors”

System 2

Figure 3: System Perspective

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 3

 The behavior of an interacting component during an interaction, visible only externally to the

other component(s) with which it is interacting, is referred to as the functional role of the

component in the (functional) interaction.

 The only behavior that a functional role can exhibit is its input-output behavior.

 For linear systems, external behavior is entirely characterized by mathematical transfer

functions, relating inputs to outputs in a particular mathematical form. Systems in general are

not linear, so that mathematical form is in general not available. However, for all systems we

can still retain the idea that requirements can only describe relationships between inputs and

outputs (quantitative, temporal, probabilistic, or other behavior, and often expressed as prose

Requirements Statements, which can now be recognized as describing nothing more or less than

that input-output relationship.) (Schindel, 2005b)

 The totality of the externally visible behavior of a system, added up over all its interactions with

its environment, is the set of Requirements that describe the input-output relationships of that

system during interactions.

 The problem of finding all the requirements for a system can thus be shifted to finding all the

interactions of the system. (Schindel, 2013b)

Interactions provide a powerful way to analyze systems using MBSE models. This includes

manufacturing process, equipment, and material transformations (Schindel, 2012), and “soft”

psychological and emotion-laden human interactions (Schindel, 2006) important in human-system

interaction analysis and integration.

2.1.2 Selectable System Features, and Stakeholder Value

The S*Feature model subset of the overall S*Metamodel illustrates aspects of the integrative and

compressive impacts of the S*Metamodel, through the different parts played by Features in these

models, as follows.

For human-engineered systems, and for systems in nature for which selection processes occur,

selectable system Features are described by the S*Metamodel. These describe the value landscape of

stakeholders for the subject system. (In the case of natural systems not in the setting of human-

engineered and used systems, it is frequently found that there are nevertheless selection processes at

work, so that the framework is still applied based on the selectable Features that are “valued” by that

selection process (Schindel, 2013a).)

S*Models seek to identify all the classes of Stakeholder for systems of interest, not just direct users or

customers, and to establish modeled Feature sets for all those Stakeholders. This portion of an

S*Pattern is then used to configure the pattern for individual applications, product configurations, or

other instances. It turns out that the variation of configuration across a product line is always for

reasons of one stakeholder value or another, so Feature selection becomes a proxy for configuring the

rest of an S*Pattern into a specifically configured instance model.

Because S*Features and their Feature Attributes (parameters) characterize the value space of system

stakeholders, the resulting S*Feature Configuration Space becomes the formal expression of the trade

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 4

space for the system. It is therefore used as the basis of analysis and defense of all decision-making,

including optimizations and trade-offs. The S*Feature Space also becomes the basis of top-level

dashboard model views that can be used to track the technical status of a project or product. All “gaps”

in detailed technical requirements or technologies are projected into the S*Feature Space to understand

their relative impact.

Because the S*Stakeholder and Feature model subset is intentionally comprehensive across stakeholder

issues, Features play a direct role in modeling failure mode Effects, as discussed in the next section.

2.1.3 Failure Modes and Effects

Models based on the S*Metamodel leverage Failure Impacts (negating aspects of Features), Counter-

Requirements (negating aspects of Requirements behavior), Failure Modes (off-nominal behavior

states), and modeled relationships between them to generate high-quality FMECA table drafts with

reduced effort and increased coverage. This approach deeply integrates the information and processes

of other parts of the engineering cycle with the risk analysis process, as illustrated in (Schindel, 2010).

2.1.4 Attributes and Attribute Couplings

Several classes of the S*Metamodel include modeled attributes, which are variables (parameters,

characteristics) that further parameterize S*Models—these may be numerically valued, or discrete

valued, or enumerated list valued, or of other type. In principle any S*Metaclass can have attributes, but

three are particularly emphasized: attributes of Features, Roles, and Physical Components.

Feature Attributes parameterize the value space of stakeholders, in the language and conceptual

framework of those stakeholders; as such, they often describe subjective stakeholder variables, such as

Comfort, Risk, or Responsiveness. They include all stakeholder Measures of Effectiveness (MOEs). Role

Attributes parameterize the space of technical behavior specification, and exactly these same attributes

are associated with the Requirements Statements. They parameterize objective, testable technical

descriptions of behavior, such as Thermal Loss, Reliability, or Maximum Speed, and include all technical

measures of performance. Physical Component Attributes describe nothing about behavior (which is

focused on the two previous attribute types), but instead describe identity and existence, such as

Product Model, Part Number, Serial Number, Material of Composition, Department, or Employee ID.

Attribute Couplings are part of S*Models, describing how the values of these different attribute types

vary with respect to each other. For example, A-Couplings describe how the stakeholder values of

Feature Attributes vary with respect to change in the values of technical Role Attributes. B-Couplings

describe how technical behavior-parameterizing Role Attributes values vary as the values of Physical

Component Attributes vary. In S*Models and S*Patterns, these modeled Attribute Couplings integrate

into the model what has been learned quantitatively by physical sciences, experiment, stakeholder

observation, experience, and first principles. They include formulae, graphical curves, data tables, or

other representations of parametric interdependencies.

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 5

2.2 S*Models and S*Patterns

S*Models are MBSE models conforming to the S*Metamodel (Figure 2). (That is, they contain Features,

Interactions, Roles, States, Design Components, Interfaces, Requirements, Attributes thereof, couplings

between them, etc.). S*Patterns are S*Models (with all their parts) that have been constructed to cover

a system configuration space bigger than single system instances, and are sufficiently parameterized and

abstracted to be configurable to more specific S*Models, and thereby reusable, as in Figure 4 (Schindel

and Smith, 2002), (Schindel, 2005a), (Bradley, et al, 2010), (Schindel, Peterson, 2013):

Figure 4: S*Patterns are S*Models of System Families,

Configurable/Reusable to be Models of Individual System Types

Like S*Models, S*Patterns may be expressed in any system modeling language (e.g., SysML, IDEF, etc.)

and managed in any COTS system modeling tool or repository.

2.2.1 Heritage of Patterns in Engineering

“Patterns” in a general sense have a lengthy history in engineering. Although what is described here are

S*Patterns, traceable to that history, there are significant differences, so that some awareness of the

heritage of earlier types of engineering patterns is of value. This would include:

 Patterns in Civil Architecture: Christopher Alexander pioneered a body of thought concerning

recurring patterns in buildings, towns, and other civil architecture. (Alexander, 1977)

Alexandrian patterns are not model-based in the MBSE sense, but are prose descriptions in a

basic template developed by Alexander. These patterns frequently describe recurring individual

problems and solutions, usually of scope smaller than an entire system—hence thought of as

describing reusable components of various scales. Alexander’s patterns served as an inspiration

to those in other domains, including the following.

 Software Design Patterns: The software community advanced the use of “design patterns” for

software, based on the Alexandrian pattern prose template approach (Gamma et al, 1995). Like

its civil predecessors, these prose patterns were not model-based in the sense of MBSE, and

typically described re-usable component design ideas of scope smaller than a whole system.

S*Metamodel for

Model-Based Systems

Engineering (MBSE)

S*Pattern Hierarchy for

Pattern-Based Systems

Engineering (PBSE)

System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Configure,

Specialize

Pattern

Improve

Pattern

General
System
Pattern

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix
Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

BB

WB

Class

Every S*Metaclass shown is

embedded in both a

containment hierarchy and an

abstraction (class) hierarchy.

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 6

 Systems Engineering Patterns other than S*Patterns: The SE community has contributed to

patterns at the Systems level of representation. This includes the work of Robert Cloutier

(Cloutier, 2008), Cecilia Haskins (Haskins, 2008), and others. Some of these have been strongly

aligned with the Alexandrian prose descriptive framework, not in MBSE form. Frequently they

have described reusable solutions to recurring problems in particular contexts, accumulated as

re-usable libraries.

While recognizing and building on these ancestors, S*Patterns are distinguished them by the following:

 S*Patterns are expressed as formal MBSE models.

 S*Patterns conform to the S*Metamodel, describing the “smallest model necessary for the

purposes of engineering and science”—therefore larger in scope (Features, Interactions, etc.).

 S*Patterns are typically models of “whole systems”, and are aimed at expressing recurring

patterns at this higher level, not just patterns of system components. (There is nothing to

prevent the development of smaller-scale S*Patterns, and indeed the larger S*Patterns

frequently invoke subsystem S*Patterns.) See also Section 2.2.4.

 S*Pattern are formally configurable, through configuration rules driven from selectable,

configurable Features, so not intended as only suggestive of general form.

 Configured S*Patterns are S*Models (formal MBSE models) of particular system types.

2.2.2 Heritage of Patterns in Physical Sciences; System Science Goal

Patterns have a longer history (at least 300 years) in the physical sciences, even if not always called

“patterns” in that context. Since the time of at least Galileo and Newton (and arguably longer), the focus

of physical sciences have been to create “smallest possible” descriptive and explanatory models of

repeating regularities observed in nature, compressing behavior into models. Since Newton, these have

most often been expressed as formal mathematical (e.g., Newton’s laws) and structural (e.g., Chemical

Periodic Table) models that are closer to the model-based approach of S*Patterns than the prose-based

approach of Alexandrian patterns.

One goal of S*Patterns is to more strongly ground Systems Engineering in the “phenomena” of systems,

just as Electrical Engineering is grounded in electromagnetic phenomena. Although it is not immediately

obvious what “system phenomena” might mean here, this turns out to be answerable. It is the reason

for the definition of Section 2.1.1: “A System is a set of interacting components.”

When the behaviors of isolated individual components are integrated (and constrained) by an overall

Interaction, the emergent behavior of the resulting System may be quite different than simply listing all

the behaviors of the individual components in isolation. This well-known fact is the “phenomenon” of

systems, and is the basis of both (1) the power and value of engineered systems, but also (2) many of

the challenges of engineered systems. It is described by the Principle of Least Action, expressed in

models through the Calculus of Variations by the minimization of the Action Integral, the Euler-Lagrange

Equations, and Hamiltonian and Lagrangian mathematical models (Levi, 2011). It is one traditional path

for textbook derivation of the equations of motion or other forms of physical laws of the more specific

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 7

“fundamental” physical phenomena of mechanics and the rest of physics, electromagnetics, and other

discipline-specific phenomena.

Specialists in the individual disciplines are frequently heard to argue that their fields have “real” physical

phenomena, physical laws, and first principles, claiming that generalized systems do not. However, the

above reasoning can be used to demonstrate that the opposite is true. For each of the specialized

disciplines, the emergent models and laws of their physical phenomena have been found to be derivable

through the above approach, applied to Interactions of System Components from one level lower. Thus,

the laws and phenomena of Chemistry can be seen to emerge from those of underlying Physics,

beginning at and just below the interaction of element atoms and molecules, behavior of bonds, etc. No

one would argue that chemical laws are not relatively fundamental, valuable, and powerful, but it is also

understood that they emerge from lower level phenomena component interactions of physics that are

even more fundamental.

Thus it can be seen that the System Phenomenon is the basis for the “fundamental” laws of each of the

specialized disciplines, and that in a sense those phenomena are less fundamental than the (recurring)

System Phenomenon. The importance of this perspective is not just philosophical or a rivalry between

disciplines. Rather, it reminds us that there are ever-higher levels of systems that have their own

emergent “phenomena”, “first principles”, and “physical laws”. At one time, those of interest were

whole vehicles, aircraft, or marine vessels, now better understood. Among those of critical future

interest to systems engineers and system scientists are biological systems (whose behavior emerges

from underlying chemistry and physics) as well as market systems and economies, health care delivery

or other societal service systems, military conflict systems, Internet-mediated systems, and other social

systems.

Systems Engineering requires a strong enough underlying Metamodel and Systems Science to equip it

for the challenges and opportunities of these higher level systems.

2.2.3 Architectural Frameworks, Ontologies, Reference Models, Platforms, Families, Product Lines

S*Patterns are concerned with “whole systems”, as described above. As such, they are fundamental to

supporting the life cycles of Platform Products, Product Families, and Product Lines. They may also be

compared to whole-system level descriptions provided by Architectural Frameworks, Ontologies, and

Reference Models.

A Platform is a system family abstraction that can be configured to serve the needs of different

applications, market segments, customers, regulations, or other specialized requirements that apply in

some cases but not others (Meyer and Lehnerd, 2011). Platforms leverage the economic value of

systems. S*Patterns specify, at both high and detail levels, the requirements, designs, failure modes and

risks, verifications, applicabilities, configuration rules, and other aspects of platforms. So, S*Patterns can

be used to implement Platform Life Cycle Management (Schindel, 2014). Because they are S*Metamodel

compliant, they include the minimum set of model elements necessary for product life cycle

management.

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 8

Product Lines and Families are terms variably used to describe either the different system configurations

of the above Platform families, or else the component subsystems that are variously configured and

combined to make up those larger systems. All of these may be described by S*Patterns.

Product Line Engineering (PLE) refers to the engineering processes and support approach used to

engineer product line families and the component systems from which they are formed. Emerging

approaches such as Product Line Engineering (ISO 26550, 2013) describe approaches to certain aspects

of PLE. S*Patterns support the implementation of PLE approaches and practices.

Architectural Frameworks are model-based descriptions of repeat-use information frameworks for

descriptions of certain aspects of systems, for a given enterprise, domain, or other setting. (ISO 42010,

2011) As such, an Architectural Framework may target less than all the classes of information necessary

to describe a system over its life cycle, but could (and in some cases may be intended to) cover all those

information classes. S*Patterns cover all the classes for the whole life cycle. Therefore, one could say

that an S*Pattern is an Architectural Framework that has been built out sufficiently to cover the

S*Metamodel scope, and for which no additional (redundant) information is included.

An Ontology, in information science, is a formal model naming and defining the types, properties, and

inter-relationships of the entities that are fundamental for a particular domain. (Genesereth and

Nilsson, 1987). How are Ontologies related to S*Patterns? A specific ontology could in principle include

all the classes and relationships of a specific S*Pattern (e.g., a Vehicle Manufacturing System Pattern),

but most ontologies do not try to cover that much. Such an Ontology might roughly be said to describe

the name space of an S*Pattern, but the relationships that practitioners typically include in Ontologies

are less parsimonious than those of the S*Metamodel, so that Ontologies can become relationally more

complex—looking, even if not as informative. The S*Metamodel itself is certainly an Ontology, for

S*Models. One approach to improving the utility of Ontologies for systems can be to start with an

S*Pattern and identify certain subset views of it as Ontological Views. In that approach, the Ontology is a

byproduct of the S*Pattern, automatically synchronized with it because it is a viewable subset of the

S*Pattern.

2.2.4 Patterns, Configurations, Compression, Specialization

As illustrated by the “down stroke” in Figure 4, a generic S*Pattern of a family of systems is specialized

or “configured” to produce an S*Model of a more specific system, or at least a narrower family of

systems. Since the S*Pattern is itself already built out of S*Metamodel components, for a mature

pattern the process of producing a “configured model” is limited to the following two operations:

1. Population: Individual classes, relationships, and attributes found in the S*Pattern are

populated (instantiated) in the configured S*Model. This can include instances of Features,

Interactions, Requirements, Design Components, or any other elements of the S*Pattern. These

elements are selectively populated, as not all necessarily apply. In many cases, more than one

instance of a given element may be populated (e.g., four different seats in a vehicle, five

different types of safety hazard, etc.). Population of the S*Model is driven by what is found in

the S*Pattern, and what Features are selected from the S*Pattern, based on Stakeholder needs

and configuration rules of the pattern.

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 9

2. Adjust Values of Attributes: The values of populated Attributes of Features, Functional

Roles/Technical Requirements, and Physical Components are established or adjusted.

This brings into sharp focus what are the fixed and variable aspects of S*Patterns (sometimes also

referred to as “hard points and soft points”). The variable data is called “configuration data”. It is

typically small in comparison to the fixed S*Pattern data. Since users of a given S*Pattern become more

familiar over time with its (“hard points”) fixed content (e.g., definitions, prose requirements, etc.), this

larger part is typically consulted less and less by veterans, who tend to do most of their work in the

configuration data (soft points). That data is usually dominated by tables of attribute values, containing

the key variables of a configuration. Since this is smaller than the fixed part of the pattern, in effect the

users of the pattern experience a “data compression” benefit that can be very significant, allowing them

to concentrate on what is changing. (Schindel, 2011).

2.2.5 Distillation and Representation of Learning; Accessibility to Learning

As also illustrated by the “up stroke” in Figure 4, discoveries are encountered during projects involving

configured S*Models, and some of these cause improvements to be fed back to the S*Pattern, which

thereby becomes a point of accumulation of all learning about what is known about the family of

systems that pattern represents. This reduces the amount of “searching” required of future project

users to take advantage of what is already known, and in particular reduces the likelihood of re-learning

the same lessons by mistake and re-work. Notice that this “distillation and abstraction” process is quite

different than simply accumulating a lot of separate “lessons learned” in a large searchable space—it is

instead translating them into their foundational implications at the pattern level, for future users of the

pattern, as a single point of learning well-known and accessible to distributed users. This is a model-

based analogy to use of prose standards.

2.2.6 Specific Emergent Patterns; The Embedded Intelligence Pattern

Over time, the “upstroke” learning process shown in Figure 4 leads to the emergence of various abstract

S*Pattern content, some of which can be distilled and used in connection with other S*Patterns. For

example, the Embedded Intelligence Pattern (also known as the Management Pattern) predicts the

underlying framework of any system of embedded controls, whether in the form of humans, embedded

automated controllers, or enterprise information systems. This becomes a power general pattern that

can be used in any system requiring embedded control, intelligence, or human

operators/managers/pilots. These patterns extend the content of S*Methodology with powerful

pattern level content for specifying automated and human controls (Peterson and Schindel, 2014).

2.3 Impact on System Life Cycle Processes

Sections 2.2 through 2.2.6 are entirely about the information flowing through the processes of Figure 1,

and not about what those processes are. However, the nature of the information flowing through,

described by the S*Metamodel, significantly improves the details of how those processes work—

specifically, their efficiency, productivity, and effectiveness.

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 10

The highest level summary of the impact on the processes is summarized by the left side of Figure 5,

which shows the separation of business processes into a Pattern Management Process, typically

performed by very few people, managing the S*Pattern, and the Pattern Configuration Process, typically

performed by a larger number of people spread across multiple system delivery projects or life cycle

activities. This larger group’s work is made more efficient, productive, or effective, while the smaller

group’s work is made more impactful. These impacts are basic to the nature of PBSE, and are caused by:

1. Expertise and work of a few expert Pattern Owners is leveraged across numerous Pattern

Configuration users, making both more effective.

2. Pattern users in the lower process “learn the model, not modeling”. For example, it is much

more feasible for many automotive engineers to learn and effectively utilize their company’s

Vehicle Pattern in individual projects than to expect them to learn how to model “from scratch”

and perform modeling across numerous projects.

3. Pattern content is typically much more complete than what would occur at first to an engineer

on a project. For example, many S*Pattern requirements statements and failure modes and

effects will not have occurred to project engineers, who will find them of immediate value.

4. A configured pattern is only a “first draft” of specifications on a project—as if an expert assistant

was available to write a first draft. Nothing prevents the project from improving that draft, like

any other draft. PBSE is not intended to turn over human thinking to a pattern or computer.

Figure 5: Separation of Pattern Management Process from Pattern Configuration Process

Both of the two general processes on the left side of Figure 5 have their own PBSE forms of the

ISO/IEC/IEEE 15288 standard Life Cycle Processes (ISO 15288, 2014), enhanced in each case by the PBSE

nature of the approach. This is summarized by Figure 6, which further details what Figure 1

summarized. (For additional detail, each of the Process Areas shown has in turn been detail modeled

using MBSE models of the processes as a system in its own right, called the System of Innovation

S*Pattern.)

Metamodel for

Model-Based Systems

Engineering (MBSE)

Pattern Hierarchy for

Pattern-Based Systems

Engineering (PBSE)

Pattern Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

General
System
Pattern

State

Input/

Output

Interface

Functional

Interaction

(Interaction)

System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix
Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

Pattern-Based Systems

Engineering (PBSE)

Processes

Pattern Management

Process

Pattern Configuration

Process

(Projects,

Applications)

P
a

tte
rn

s

L
e

a
rn

in
g

s

Develops and Maintains

Core Patterns
Develops and Maintains

Individual Family Patterns

Configures and Specializes

Models from Patterns

Configure,

Specialize

Pattern

Improve

Pattern

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 11

Figure 6: The ISO 15288 Processes Apply, Enhanced by PBSE

(Compare to Figure 1)

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 12

2.4 Applications to Date

PBSE has been applied for about two decades, across a variety of domains in commercial, defense, and

institutional environments. Figure 7 lists some of these, and the references provide example content.

Medical Devices
Patterns

Construction Equipment
Patterns

Commercial Vehicle
Patterns

Space Tourism Pattern

Manufacturing Process
Patterns

Vision System Patterns Packaging Systems
Patterns

Lawnmower Product
Line Pattern

Embedded Intelligence
Patterns

Systems of Innovation
(SOI) Pattern

Consumer
Packaged Goods Patterns

(Multiple)

Orbital Satellite
Pattern

Product Service System
Patterns

Product Distribution
System Patterns

Plant Operations &
Maintenance System

Patterns

Oil Filter Pattern

Life Cycle Management
System Patterns

Production Material
Handling Patterns

Engine Controls Patterns Military Radio Systems
Pattern

Agile Systems
Engineering Life Cycle

Pattern

Transmission Systems
Pattern

Precision Parts
Production, Sales, and

Engineering Pattern

Higher Education
Experiential Pattern

Figure 7: Examples of PBSE Applications to Date

3 Tool Support:

PBSE and its supporting S*Metamodel are tool-independent by intention. Any COTS modeling,

engineering, or PLM tool can be made to support PBSE, by the use of an S*Metamodel Map for the

specific COTS tool. Such mappings have already been created for a number of tools, including

IBM/Rational DOORS™, Siemens Team Center™ Systems Engineering, Dassault Systemes ENOVIA™,

Sparx Enterprise Architect™ for SysML®, IBM Rhapsody for SysML®, generic standard SysML, and others.

Each such mapping is a detail specification of the formal mapping of S*Metamodel classes, relationships,

and attributes into a specific schema native to the target tool or information system, along with

supporting configuration information.

4 Offering / Availability:

The general PBSE approach to enhanced MBSE is being shared through and explored by the members of

the Patterns Challenge Team of the INCOSE MBSE Initiative. This cross-industries team has been and

continues pursuing a number of PBSE applications and projects, which are shared through the INCOSE

Patterns Challenge Team’s MBSE wiki / web site posted resources, reference, and information assets.

Refer to the Resources and References below.

Where commercial support may be requested, ICTT System Sciences and its partners provide related

services, and the third party COTS tools above are supported by their COTS suppliers.

5 Resources and References:

1. (Alexander et al, 1977) Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

and Angel, S. A Pattern Language. Oxford University Press, New York, 1977.

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 13

2. (Bradley et al, 2010) J. Bradley, M. Hughes, and W. Schindel, “Optimizing Delivery of Global

Pharmaceutical Packaging Solutions, Using Systems Engineering Patterns” Proceedings of the

INCOSE 2010 International Symposium, 2010.

3. (Cloutier, 2008) Cloutier, R., Applicability of Patterns to Architecting Complex Systems: Making

Implicit Knowledge Explicit. VDM Verlag Dr. Müller. 2008.

4. (Cook, Schindel, 2015) Cook, D., and Schindel, W., “Utilizing MBSE Patterns to Accelerate System

Verification”, to appear in Proc. of the INCOSE 2015 International Symposium, Seattle, WA, July,

2015.

5. (Gamma et al, 1995) Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Publishing Company, Reading, MA, 1995.

6. (Genesereth and Nilsson, 1987) Genesereth, M. R., & Nilsson, N., Logical Foundations of

Artificial Intelligence, San Mateo, CA: Morgan Kaufmann Publishers, 1987.

7. (Haskins, 2008) Haskins, C., “Using patterns to transition systems engineering from a

technological to social context”, Systems Engineering, Volume 11, Issue 2, pages 147–155,

Summer 2008

8. (INCOSE PBSE Challenge Team, 2014) MBSE wiki / web site of Patterns Challenge Team:

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

9. (ISO 42010, 2011) ISO/IEC/IEEE 42010:2011 –“Systems and software engineering - Architecture

description". 2011

10. (ISO 26550, 2013) ISO/IEC 26550:2013, “Software and systems engineering -- Reference model

for product line engineering and management”, 2013.

11. (ISO 15288, 2014) ISO/IEC 15288: “Systems Engineering—System Life Cycle Processes”.

International Standards Organization (2014).

12. (Levi, 2011) Levi, M., Classical Mechanics with Calculus of Variations and Optimal Control,

American Mathematical Society, Providence, Rhode Island, 2014.

13. (Meyer and Lehnerd, 2011), Meyer, M., Lehnerd, A., The Power of Product Platforms, Free Press,

2011.

14. (Peterson and Schindel, 2014) Peterson, T., and Schindel, W., “Pattern-Based Systems

Engineering: Leveraging Model-Based Systems Engineering for Cyber-Physical Systems”, Proc. of

NDIA GVSETS Conference, 2014.

15. (Schindel and Smith, 2002), Schindel, W., and Smith, V., “Results of applying a families-of-

systems approach to systems engineering of product line families”, SAE International, Technical

Report 2002-01-3086, 2002.

16. (Schindel, 2005a) W. Schindel, “Pattern-Based Systems Engineering: An Extension of Model-

Based SE”, INCOSE IS2005 Tutorial TIES 4, 2005.

17. (Schindel, 2005b) W. Schindel, “Requirements statements are transfer functions: An insight from

model-based systems engineering”, Proceedings of INCOSE 2005 International Symposium,

2005.

18. (Schindel, 2006), “Feelings and Physics: Emotional, Psychological, and Other Soft Human

Requirements, by Model-Based Systems Engineering”, Proc. of INCOSE International

Symposium, 2006.

PBSE Extension of MBSE--Methodology Summary V1.3.2 wds 14

19. (Schindel, 2010), Schindel, W., “Failure Analysis: Insights from Model-Based Systems

Engineering”, Proc. of INCOSE International Symposium, 2010.

20. (Schindel, 2011), Schindel, W., “What Is the Smallest Model of a System?”, Proc. of the INCOSE

2011 International Symposium, International Council on Systems Engineering (2011).

21. (Schindel, 2012) Schindel, W., “Integrating Materials, Process & Product Portfolios: Lessons from

Pattern-Based Systems Engineering”, Proc. of Society for the Advancement of Material and

Process Engineering, 2012.

22. (Schindel, Peterson, 2013) Bill Schindel, Troy Peterson, “Introduction to Pattern-Based Systems

Engineering (PBSE): Leveraging MBSE Techniques”, in Proc. of INCOSE 2013 International

Symposium, Tutorial, June, 2013.

23. (Schindel, 2013a), W. Schindel, “Systems of Innovation II: The Emergence of Purpose”,

Proceedings of INCOSE 2013 International Symposium, 2013.

24. (Schindel, 2013b) “System Interactions: Making The Heart of Systems More Visible”, Proc. of

INCOSE Great Lakes Regional Conference, 2013.

25. (Schindel, 2014) Schindel, W. “The Difference Between Whole-System Patterns and Component

Patterns: Managing Platforms and Domain Systems Using PBSE”, INCOSE Great Lakes Regional

Conference on Systems Engineering, Schaumburg, IL, October, 2014

26. (Schindel, Lewis, Sherey, Sanyal, 2015) Schindel, W., Lewis, S., Sherey, J., Sanyal, S.,

“Accelerating MBSE Impacts Across the Enterprise: Model-Based S*Patterns”, to appear in Proc.

of INCOSE 2015 International Symposium, July, 2015.

