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Draft MBSE Methodology Summary: 

Pattern-Based Systems Engineering (PBSE), Based On S*MBSE Models 

 

Document Purpose: 

This document is a review draft of the methodology summary for Pattern-Based Systems Engineering 

using S*MBSE models.  The material below, after  Patterns Challenge Team review and related updates 

as needed, is for contribution to the INCOSE-maintained on-line directory “MBSE Methodology: List of 

Methodologies and Methods”.   

The current content of that on-line directory may be found at     

http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology#mbse_benchmarking_survey               

The sectional structure of the following sections conforms to the standard summary outline template 

used by the referenced methodology directory.  The typical methodology descriptions in that directory 

are currently summaries, not detailed “how to” manuals, for each methodology. 
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1 Title: Pattern-Based Systems Engineering (PBSE), Based On S*MBSE Models  

 

2 Overview: 

Methodologies for systems engineering are concerned with both (1) the engineering process and (2) the 

information that is consumed and produced by that process.   In comparison to a strong historical 

systems engineering emphasis on process, this methodology increases the relative emphasis on the 

information passing through that process. That information is in the form of explicit MBSE system 

models of value, requirements, design, risk, and other aspects, comparable in many aspects to other 

MBSE methodologies, but strengthened in certain areas.  The emphasis on that information is on 

description of the engineered system, not the system of engineering. 

 

 

 

 

Figure 1: The Engineering Process Consumes and Produces Information, Iteratively 

2.1 Introduction to the S*Metamodel 

Engineering disciplines such as ME, EE, ChE, CE, etc., are based upon underlying models of phenomena 

(mechanical, electrical, chemical, etc.) that are the fruits of physical sciences and mathematics. 

Newton’s laws of motion, Maxwell’s equations, and other underlying models describe aspects of the 

nature of subject systems, not engineering procedures for those systems, while opening up many 

procedural avenues that operate within the constraints of those underlying models of nature.  In a 

similar fashion, the S*Metamodel describes the underlying “systemic” aspects of those systems, based 

upon the fruits of science and mathematics. In the tradition of those same physical sciences, these 

underlying models (whether specific to one discipline or systems in general) always seek the “smallest 

model” capable of describing or explaining the phenomena of interest.   

The rise of a number of MBSE methodologies has provided many of the needed elements of that 

underlying “smallest model” framework, and the S*Metamodel builds on those, while adding some 

important missing and compressing other redundant aspects. Throughout, this is in the spirit of seeking 

out the smallest model necessary to describe systems for purposes of engineering and science.   

A simplified summary of some of the key portions of the S*Metamodel is shown in Figure 2. This 

diagram is not the sort that is produced in an engineering project, but instead is an entity-relationship 

representation of the underlying classes of information upon which those project-specific models are 

based.  Those project-specific models may be in any modeling language (including but not limited to 

SysML, IDEF, or otherwise) and supported by any engineering tool or information system. A limited 

discussion of some aspects of the S*Metamodel follows; additional references are shown later below. 
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Figure 2: Summary of Some of the Key Portions of S*Metamodel 

2.1.1 Interactions, Requirements, and States 

An example of the type of strengthening discussed above is the S*Metamodel use of Interactions, the 

related way that Requirements formally enter into the model, and the States of the system. The 

following conceptual framework leads to the insight that all System Technical Requirements are 

manifest as behavior occurring during physical interaction of a subject system with its external 

environment: 

 A system is a collection of interacting components. (A component can itself be a system.) 

 

 

 

 

 

 

 By interact, we mean that one component exchanges energy, forces, mass flow, or information 

with another component, resulting in component changes of state. 

 By state of a component, we mean the condition of the component that determines its input-

output behavior. 
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 The behavior of an interacting component during an interaction, visible only externally to the 

other component(s) with which it is interacting, is referred to as the functional role of the 

component in the (functional) interaction. 

 The only behavior that a functional role can exhibit is its input-output behavior.   

 For linear systems, external behavior is entirely characterized by mathematical transfer 

functions, relating inputs to outputs in a particular mathematical form. Systems in general are 

not linear, so that mathematical form is in general not available.  However, for all systems we 

can still retain the idea that requirements can only describe relationships between inputs and 

outputs (quantitative, temporal, probabilistic, or other behavior, and often expressed as prose 

Requirements Statements, which can now be recognized as describing nothing more or less than 

that input-output relationship.)  (Schindel, 2005b) 

 The totality of the externally visible behavior of a system, added up over all its interactions with 

its environment, is the set of Requirements that describe the input-output relationships of that 

system during interactions.  

 The problem of finding all the requirements for a system can thus be shifted to finding all the 

interactions of the system. (Schindel, 2013b) 

Interactions provide a powerful way to analyze systems using MBSE models. This includes 

manufacturing process, equipment, and material transformations (Schindel, 2012), and “soft” 

psychological and emotion-laden human interactions (Schindel, 2006) important in human-system 

interaction analysis and integration. 

2.1.2 Selectable System Features, and Stakeholder Value 

The S*Feature model subset of the overall S*Metamodel illustrates aspects of the integrative and 

compressive impacts of the S*Metamodel, through the different parts played by Features in these 

models, as follows.  

For human-engineered systems, and for systems in nature for which selection processes occur, 

selectable system Features are described by the S*Metamodel. These describe the value landscape of 

stakeholders for the subject system. (In the case of natural systems not in the setting of human-

engineered and used systems, it is frequently found that there are nevertheless selection processes at 

work, so that the framework is still applied based on the selectable Features that are “valued” by that 

selection process (Schindel, 2013a).) 

S*Models seek to identify all the classes of Stakeholder for systems of interest, not just direct users or 

customers, and to establish modeled Feature  sets for all those Stakeholders.  This portion of an 

S*Pattern is then used to configure the pattern for individual applications, product configurations, or 

other instances. It turns out that the variation of configuration across a product line is always for 

reasons of one stakeholder value or another, so Feature selection becomes a proxy for configuring the 

rest of an S*Pattern into a specifically configured instance model. 

Because S*Features and their Feature Attributes (parameters) characterize the value space of system 

stakeholders, the resulting S*Feature Configuration Space becomes the formal expression of the trade 
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space for the system. It is therefore used as the basis of analysis and defense of all decision-making, 

including optimizations and trade-offs. The S*Feature Space also becomes the basis of top-level 

dashboard model views that can be used to track the technical status of a project or product.  All “gaps” 

in detailed technical requirements or technologies are projected into the S*Feature Space to understand 

their relative impact.  

Because the S*Stakeholder and Feature model subset is intentionally comprehensive across stakeholder 

issues, Features play a direct role in modeling failure mode Effects, as discussed in the next section.  

2.1.3 Failure Modes and Effects 

Models based on the S*Metamodel leverage Failure Impacts (negating aspects of Features), Counter-

Requirements (negating aspects of Requirements behavior), Failure Modes (off-nominal behavior 

states), and modeled relationships between them to generate high-quality FMECA table drafts with 

reduced effort and increased coverage. This approach deeply integrates the information and processes 

of other parts of the engineering cycle with the risk analysis process, as illustrated in (Schindel, 2010).   

2.1.4 Attributes and Attribute Couplings 

Several classes of the S*Metamodel include modeled attributes, which are variables (parameters, 

characteristics) that further parameterize S*Models—these may be numerically valued, or discrete 

valued, or enumerated list valued, or of other type. In principle any S*Metaclass can have attributes, but 

three are particularly emphasized: attributes of Features, Roles, and Physical Components.  

Feature Attributes parameterize the value space of stakeholders, in the language and conceptual 

framework of those stakeholders; as such, they often describe subjective stakeholder variables, such as 

Comfort, Risk, or Responsiveness. They include all stakeholder Measures of Effectiveness (MOEs). Role 

Attributes parameterize the space of technical behavior specification, and exactly these same attributes 

are associated with the Requirements Statements. They parameterize objective, testable technical 

descriptions of behavior, such as Thermal Loss, Reliability, or Maximum Speed, and include all technical 

measures of performance. Physical Component Attributes describe nothing about behavior (which is 

focused on the two previous attribute types), but instead describe identity and existence, such as 

Product Model, Part Number, Serial Number, Material of Composition, Department, or Employee ID. 

Attribute Couplings are part of S*Models, describing how the values of these different attribute types 

vary with respect to each other. For example, A-Couplings describe how the stakeholder values of 

Feature Attributes vary with respect to change in the values of technical Role Attributes. B-Couplings 

describe how technical behavior-parameterizing Role Attributes values vary as the values of Physical 

Component Attributes vary. In S*Models and S*Patterns, these modeled Attribute Couplings integrate 

into the model what has been learned quantitatively by physical sciences, experiment, stakeholder 

observation, experience, and first principles. They include formulae, graphical curves, data tables, or 

other representations of parametric interdependencies. 
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2.2 S*Models and S*Patterns 

S*Models are MBSE models conforming to the S*Metamodel (Figure 2). (That is, they contain Features, 

Interactions, Roles, States, Design Components, Interfaces, Requirements, Attributes thereof, couplings 

between them, etc.).  S*Patterns are S*Models (with all their parts) that have been constructed to cover 

a system configuration space bigger than single system instances, and are sufficiently parameterized and 

abstracted to be configurable to more specific S*Models, and thereby reusable, as in Figure 4 (Schindel 

and Smith, 2002), (Schindel, 2005a), (Bradley, et al, 2010), (Schindel, Peterson, 2013): 

 

 

 

 

 

 

 

Figure 4: S*Patterns are S*Models of System Families, 

Configurable/Reusable to be Models of Individual System Types 

 

Like S*Models, S*Patterns may be expressed in any system modeling language (e.g., SysML, IDEF, etc.) 

and managed in any COTS system modeling tool or repository.  

2.2.1 Heritage of Patterns in Engineering   

“Patterns” in a general sense have a lengthy history in engineering. Although what is described here are 

S*Patterns, traceable to that history, there are significant differences, so that some awareness of the 

heritage of earlier types of engineering patterns is of value. This would include: 

 Patterns in Civil Architecture: Christopher Alexander pioneered a body of thought concerning 

recurring patterns in buildings, towns, and other civil architecture. (Alexander, 1977) 

Alexandrian patterns are not model-based in the MBSE sense, but are prose descriptions in a 

basic template developed by Alexander. These patterns frequently describe recurring individual 

problems and solutions, usually of scope smaller than an entire system—hence thought of as 

describing reusable components of various scales. Alexander’s patterns served as an inspiration 

to those in other domains, including the following.  

 Software Design Patterns: The software community advanced the use of “design patterns” for 

software, based on the Alexandrian pattern prose template approach (Gamma et al, 1995). Like 

its civil predecessors, these prose patterns were not model-based in the sense of MBSE, and 

typically described re-usable component design ideas of scope smaller than a whole system. 
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 Systems Engineering Patterns other than S*Patterns: The SE community has contributed to 

patterns at the Systems level of representation.  This includes the work of Robert Cloutier 

(Cloutier, 2008), Cecilia Haskins (Haskins, 2008), and others. Some of these have been strongly 

aligned with the Alexandrian prose descriptive framework, not in MBSE form. Frequently they 

have described reusable solutions to recurring problems in particular contexts, accumulated as 

re-usable libraries.  

While recognizing and building on these ancestors, S*Patterns are distinguished them by the following: 

 S*Patterns are expressed as formal MBSE models. 

 S*Patterns conform to the S*Metamodel, describing the “smallest model necessary for the 

purposes of engineering and science”—therefore larger in scope (Features, Interactions, etc.). 

 S*Patterns are typically models of “whole systems”, and are aimed at expressing recurring 

patterns at this higher level, not just patterns of system components. (There is nothing to 

prevent the development of smaller-scale S*Patterns, and indeed the larger S*Patterns 

frequently invoke subsystem S*Patterns.) See also Section 2.2.4. 

 S*Pattern are formally configurable, through configuration rules driven from selectable, 

configurable Features, so not intended as only suggestive of general form. 

 Configured S*Patterns are S*Models (formal MBSE models) of particular system types. 

 

2.2.2 Heritage of Patterns in Physical Sciences; System Science Goal 

Patterns have a longer history (at least 300 years) in the physical sciences, even if not always called 

“patterns” in that context. Since the time of at least Galileo and Newton (and arguably longer), the focus 

of physical sciences have been to create “smallest possible” descriptive and explanatory models of 

repeating regularities observed in nature, compressing behavior into models. Since Newton, these have 

most often been expressed as formal mathematical (e.g., Newton’s laws) and structural (e.g., Chemical 

Periodic Table) models that are closer to the model-based approach of S*Patterns than the prose-based 

approach of Alexandrian patterns.  

One goal of S*Patterns is to more strongly ground Systems Engineering in the “phenomena” of systems, 

just as Electrical Engineering is grounded in electromagnetic phenomena. Although it is not immediately 

obvious what “system phenomena” might mean here, this turns out to be answerable.  It is the reason 

for the definition of Section 2.1.1: “A System is a set of interacting components.”  

When the behaviors of isolated individual components are integrated (and constrained) by an overall 

Interaction, the emergent behavior of the resulting System may be quite different than simply listing all 

the behaviors of the individual components in isolation. This well-known fact is the “phenomenon” of 

systems, and is the basis of both (1) the power and value of engineered systems, but also (2) many of 

the challenges of engineered systems.  It is described by the Principle of Least Action, expressed in 

models through the Calculus of Variations by the minimization of the Action Integral, the Euler-Lagrange 

Equations, and Hamiltonian and Lagrangian mathematical models (Levi, 2011). It is one traditional path 

for textbook derivation of the equations of motion or other forms of physical laws of the more specific 
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“fundamental” physical phenomena of mechanics and the rest of physics, electromagnetics, and other 

discipline-specific phenomena.  

Specialists in the individual disciplines are frequently heard to argue that their fields have “real” physical 

phenomena, physical laws, and first principles, claiming that generalized systems do not. However, the 

above reasoning can be used to demonstrate that the opposite is true. For each of the specialized 

disciplines, the emergent models and laws of their physical phenomena have been found to be derivable 

through the above approach, applied to Interactions of System Components from one level lower. Thus, 

the laws and phenomena of Chemistry can be seen to emerge from those of underlying Physics, 

beginning at and just below the interaction of element atoms and molecules, behavior of bonds, etc.  No 

one would argue that chemical laws are not relatively fundamental, valuable, and powerful, but it is also 

understood that they emerge from lower level phenomena component interactions of physics that are 

even more fundamental.  

Thus it can be seen that the System Phenomenon is the basis for the “fundamental” laws of each of the 

specialized disciplines, and that in a sense those phenomena are less fundamental than the (recurring) 

System Phenomenon. The importance of this perspective is not just philosophical or a rivalry between 

disciplines. Rather, it reminds us that there are ever-higher levels of systems that have their own 

emergent “phenomena”, “first principles”, and “physical laws”.   At one time, those of interest were 

whole vehicles, aircraft, or marine vessels, now better understood. Among those of critical future 

interest to systems engineers and system scientists are biological systems (whose behavior emerges 

from underlying chemistry and physics) as well as market systems and economies, health care delivery 

or other societal service systems, military conflict systems, Internet-mediated systems, and other social 

systems.  

Systems Engineering requires a strong enough underlying Metamodel and Systems Science to equip it 

for the challenges and opportunities of these higher level systems. 

2.2.3 Architectural Frameworks, Ontologies, Reference Models, Platforms, Families, Product Lines 

S*Patterns are concerned with “whole systems”, as described above. As such, they are fundamental to 

supporting the life cycles of Platform Products, Product Families, and Product Lines.  They may also be 

compared to whole-system level descriptions provided by Architectural Frameworks, Ontologies, and 

Reference Models.  

A Platform is a system family abstraction that can be configured to serve the needs of different 

applications, market segments, customers, regulations, or other specialized requirements that apply in 

some cases but not others (Meyer and Lehnerd, 2011). Platforms leverage the economic value of 

systems.  S*Patterns specify, at both high and detail levels, the requirements, designs, failure modes and 

risks, verifications, applicabilities, configuration rules, and other aspects of platforms. So, S*Patterns can 

be used to implement Platform Life Cycle Management (Schindel, 2014). Because they are S*Metamodel 

compliant, they include the minimum set of model elements necessary for product life cycle 

management. 
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Product Lines and Families are terms variably used to describe either the different system configurations 

of the above Platform families, or else the component subsystems that are variously configured and 

combined to make up those larger systems. All of these may be described by S*Patterns.  

Product Line Engineering (PLE) refers to the engineering processes and support approach used to 

engineer product line families and the component systems from which they are formed.  Emerging 

approaches such as Product Line Engineering (ISO 26550, 2013) describe approaches to certain aspects 

of PLE.  S*Patterns support the implementation of PLE approaches and practices. 

Architectural Frameworks are model-based descriptions of repeat-use information frameworks for 

descriptions of certain aspects of systems, for a given enterprise, domain, or other setting.  (ISO 42010, 

2011)  As such, an Architectural Framework may target less than all the classes of information necessary 

to describe a system over its life cycle, but could (and in some cases may be intended to) cover all those 

information classes. S*Patterns cover all the classes for the whole life cycle. Therefore, one could say 

that an S*Pattern is an Architectural Framework that has been built out sufficiently to cover the 

S*Metamodel scope, and for which no additional (redundant) information is included. 

An Ontology, in information science, is a formal model naming and defining the types, properties, and 

inter-relationships of the entities that are fundamental for a particular domain. (Genesereth and 

Nilsson, 1987).  How are Ontologies related to S*Patterns?  A specific ontology could in principle include 

all the classes and relationships of a specific S*Pattern (e.g., a Vehicle Manufacturing System Pattern), 

but most ontologies do not try to cover that much. Such an Ontology might roughly be said to describe 

the name space of an S*Pattern, but the relationships that practitioners typically include in Ontologies 

are less parsimonious than those of the S*Metamodel, so that Ontologies can become relationally more 

complex—looking, even if not as informative. The S*Metamodel itself is certainly an Ontology, for 

S*Models.  One approach to improving the utility of Ontologies for systems can be to start with an 

S*Pattern and identify certain subset views of it as Ontological Views. In that approach, the Ontology is a 

byproduct of the S*Pattern, automatically synchronized with it because it is a viewable subset of the 

S*Pattern. 

2.2.4  Patterns, Configurations, Compression, Specialization 

As illustrated by the “down stroke” in Figure 4, a generic S*Pattern of a family of systems is specialized 

or “configured” to produce an S*Model of a more specific system, or at least a narrower family of 

systems. Since the S*Pattern is itself already built out of S*Metamodel components, for a mature 

pattern the process of producing a “configured model” is limited to the following two operations:  

1. Population: Individual classes, relationships, and attributes found in the S*Pattern are 

populated (instantiated) in the configured S*Model. This can include instances of Features, 

Interactions, Requirements, Design Components, or any other elements of the S*Pattern. These 

elements are selectively populated, as not all necessarily apply. In many cases, more than one 

instance of a given element may be populated (e.g., four different seats in a vehicle, five 

different types of safety hazard, etc.). Population of the S*Model is driven by what is found in 

the S*Pattern, and what Features are selected from the S*Pattern, based on Stakeholder needs 

and configuration rules of the pattern.  
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2. Adjust Values of Attributes:  The values of populated Attributes of Features, Functional 

Roles/Technical Requirements, and Physical Components are established or adjusted. 

This brings into sharp focus what are the fixed and variable aspects of S*Patterns (sometimes also 

referred to as “hard points and soft points”). The variable data is called “configuration data”. It is 

typically small in comparison to the fixed S*Pattern data.  Since users of a given S*Pattern become more 

familiar over time with its (“hard points”) fixed content (e.g., definitions, prose requirements, etc.), this 

larger part is typically consulted less and less by veterans, who tend to do most of their work in the 

configuration data (soft points). That data is usually dominated by tables of attribute values, containing 

the key variables of a configuration. Since this is smaller than the fixed part of the pattern, in effect the 

users of the pattern experience a “data compression” benefit that can be very significant, allowing them 

to concentrate on what is changing. (Schindel, 2011). 

2.2.5 Distillation and Representation of Learning; Accessibility to Learning 

As also illustrated by the “up stroke” in Figure 4, discoveries are encountered during projects involving 

configured S*Models, and some of these cause improvements to be fed back to the S*Pattern, which 

thereby becomes a point of accumulation of all learning about what is known about the family of 

systems that pattern represents.  This reduces the amount of “searching” required of future project 

users to take advantage of what is already known, and in particular reduces the likelihood of re-learning 

the same lessons by mistake and re-work. Notice that this “distillation and abstraction” process is quite 

different than simply accumulating a lot of separate “lessons learned” in a large searchable space—it is 

instead translating them into their foundational implications at the pattern level, for future users of the 

pattern, as a single point of learning well-known and accessible to distributed users. This is a model-

based analogy to use of prose standards. 

2.2.6 Specific Emergent Patterns; The Embedded Intelligence Pattern 

Over time, the “upstroke” learning process shown in Figure 4 leads to the emergence of various abstract 

S*Pattern content, some of which can be distilled and used in connection with other S*Patterns. For 

example, the Embedded Intelligence Pattern (also known as the Management Pattern) predicts the 

underlying framework of any system of embedded controls, whether in the form of humans, embedded 

automated controllers, or enterprise information systems. This becomes a power general pattern that 

can be used in any system requiring embedded control, intelligence, or human 

operators/managers/pilots.  These patterns extend the content of S*Methodology with powerful 

pattern level content for specifying automated and human controls (Peterson and Schindel, 2014). 

2.3 Impact on System Life Cycle Processes 

Sections 2.2 through 2.2.6 are entirely about the information flowing through the processes of Figure 1, 

and not about what those processes are.  However, the nature of the information flowing through, 

described by the S*Metamodel, significantly improves the details of how those processes work—

specifically, their efficiency, productivity, and effectiveness.  
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The highest level summary of the impact on the processes is summarized by the left side of Figure 5, 

which shows the separation of business processes into a Pattern Management Process, typically 

performed by very few people, managing the S*Pattern, and the Pattern Configuration Process, typically 

performed by a larger number of people spread across multiple system delivery projects or life cycle 

activities. This larger group’s work is made more efficient, productive, or effective, while the smaller 

group’s work is made more impactful. These impacts are basic to the nature of PBSE, and are caused by: 

1. Expertise and work of a few expert Pattern Owners is leveraged across numerous Pattern 

Configuration users, making both more effective. 

2. Pattern users in the lower process “learn the model, not modeling”. For example, it is much 

more feasible for many automotive engineers to learn and effectively utilize their company’s 

Vehicle Pattern in individual projects than to expect them to learn how to model “from scratch” 

and perform modeling across numerous projects.  

3. Pattern content is typically much more complete than what would occur at first to an engineer 

on a project. For example, many S*Pattern requirements statements and failure modes and 

effects will not have occurred to project engineers, who will find them of immediate value. 

4. A configured pattern is only a “first draft” of specifications on a project—as if an expert assistant 

was available to write a first draft. Nothing prevents the project from improving that draft, like 

any other draft. PBSE is not intended to turn over human thinking to a pattern or computer. 

 

 

 

 

 

 

 

Figure 5: Separation of Pattern Management Process from Pattern Configuration Process 

 

Both of the two general processes on the left side of Figure 5 have their own PBSE forms of the 

ISO/IEC/IEEE 15288 standard Life Cycle Processes (ISO 15288, 2014), enhanced in each case by the PBSE 

nature of the approach.  This is summarized by Figure 6, which further details what Figure 1 

summarized.  (For additional detail, each of the Process Areas shown has in turn been detail modeled 

using MBSE models of the processes as a system in its own right, called the System of Innovation 

S*Pattern.)  

 

 

Metamodel for

Model-Based Systems 

Engineering (MBSE)

Pattern Hierarchy for 

Pattern-Based Systems 

Engineering (PBSE)

Pattern Class Hierarchy

Individual Product 

or System Configurations

Product Lines or

System Families

General 
System 
Pattern

State

Input/

Output

Interface

Functional 

Interaction 

(Interaction)

System

System of 

Access

attribute

Technical 

Requirement 

Statement

Stakeholder Feature

attribute

Design 

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix 

Couplings

“B” Matrix
Couplings

Stakeholder

World 

Language

High Level

Requirements

Technical

World

Language

 

attribute

Design 

Constraint 

Statement

attribute

Stakeholder

Requirement 

Statement

BB

WB
Detail Level

Requirements

High Level

Design

Pattern-Based Systems 

Engineering (PBSE) 

Processes

Pattern Management 

Process

Pattern Configuration  

Process

(Projects, 

Applications)

P
a

tte
rn

s

L
e

a
rn

in
g

s

Develops and Maintains

Core Patterns
Develops and Maintains

Individual Family Patterns

Configures and Specializes 

Models from Patterns

Configure,

Specialize

Pattern

Improve 

Pattern



 

PBSE Extension of MBSE--Methodology Summary     V1.3.2                                                             wds      11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The ISO 15288 Processes Apply, Enhanced by PBSE 

(Compare to Figure 1) 
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2.4 Applications to Date 

PBSE has been applied for about two decades, across a variety of domains in commercial, defense, and 

institutional environments.  Figure 7 lists some of these, and the references provide example content. 

Medical Devices 
Patterns 

Construction Equipment 
Patterns 

Commercial Vehicle 
Patterns 

Space Tourism Pattern 

Manufacturing Process 
Patterns 

Vision System Patterns Packaging Systems 
Patterns 

Lawnmower Product 
Line Pattern 

Embedded Intelligence 
Patterns 

Systems of Innovation 
(SOI) Pattern 

Consumer  
Packaged Goods Patterns 

(Multiple) 

Orbital Satellite 
Pattern 

Product Service System 
Patterns 

Product Distribution 
System Patterns 

Plant Operations & 
Maintenance System 

Patterns 

Oil Filter Pattern 

Life Cycle Management 
System Patterns 

Production Material 
Handling Patterns 

Engine Controls Patterns Military Radio Systems 
Pattern 

Agile Systems 
Engineering Life Cycle 

Pattern 

Transmission Systems 
Pattern 

Precision Parts 
Production, Sales, and 

Engineering Pattern 

Higher Education 
Experiential Pattern 

Figure 7: Examples of PBSE Applications to Date 

3 Tool Support: 

PBSE and its supporting S*Metamodel are tool-independent by intention. Any COTS modeling, 

engineering, or PLM tool can be made to support PBSE, by the use of an S*Metamodel Map for the 

specific COTS tool. Such mappings have already been created for a number of tools, including 

IBM/Rational DOORS™, Siemens Team Center™ Systems Engineering, Dassault Systemes ENOVIA™, 

Sparx Enterprise Architect™ for SysML®, IBM Rhapsody for SysML®, generic standard SysML, and others.  

Each such mapping is a detail specification of the formal mapping of S*Metamodel classes, relationships, 

and attributes into a specific schema native to the target tool or information system, along with 

supporting configuration information.  

4 Offering / Availability: 

The general PBSE approach to enhanced MBSE is being shared through and explored by the members of 

the Patterns Challenge Team of the INCOSE MBSE Initiative.  This cross-industries team has been and 

continues pursuing a number of PBSE applications and projects, which are shared through the INCOSE 

Patterns Challenge Team’s MBSE wiki / web site posted resources, reference, and information assets. 

Refer to the Resources and References below.  

Where commercial support may be requested, ICTT System Sciences and its partners provide related 

services, and the third party COTS tools above are supported by their COTS suppliers.   

5 Resources and References: 

1. (Alexander et al, 1977) Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., 

and Angel, S. A Pattern Language. Oxford University Press, New York, 1977.  
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2. (Bradley et al, 2010) J. Bradley, M. Hughes, and W. Schindel, “Optimizing Delivery of Global 

Pharmaceutical Packaging Solutions, Using Systems Engineering Patterns” Proceedings of the 

INCOSE 2010 International Symposium, 2010. 

3. (Cloutier, 2008) Cloutier, R., Applicability of Patterns to Architecting Complex Systems: Making 

Implicit Knowledge Explicit. VDM Verlag Dr. Müller. 2008. 

4. (Cook, Schindel, 2015) Cook, D., and Schindel, W., “Utilizing MBSE Patterns to Accelerate System 

Verification”, to appear in Proc. of the INCOSE 2015 International Symposium, Seattle, WA, July, 

2015. 

5. (Gamma et al, 1995) Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of 

Reusable Object-Oriented Software. Addison-Wesley Publishing Company, Reading, MA, 1995.  

6. (Genesereth and Nilsson, 1987) Genesereth, M. R., & Nilsson, N., Logical Foundations of 

Artificial Intelligence, San Mateo, CA: Morgan Kaufmann Publishers, 1987.  

7. (Haskins, 2008) Haskins, C., “Using patterns to transition systems engineering from a 

technological to social context”, Systems Engineering, Volume 11, Issue 2,  pages 147–155, 

Summer 2008 

8. (INCOSE PBSE Challenge Team, 2014) MBSE wiki / web site of Patterns Challenge Team: 

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns  

9. (ISO 42010, 2011) ISO/IEC/IEEE 42010:2011 –“Systems and software engineering - Architecture 

description". 2011 

10. (ISO 26550, 2013) ISO/IEC 26550:2013, “Software and systems engineering -- Reference model 

for product line engineering and management”, 2013. 

11. (ISO 15288, 2014) ISO/IEC 15288: “Systems Engineering—System Life Cycle Processes”. 

International Standards Organization (2014).   

12. (Levi, 2011) Levi, M., Classical Mechanics with Calculus of Variations and Optimal Control, 

American Mathematical Society, Providence, Rhode Island, 2014. 

13. (Meyer and Lehnerd, 2011), Meyer, M., Lehnerd, A., The Power of Product Platforms, Free Press, 

2011.  

14. (Peterson and Schindel, 2014)  Peterson, T., and Schindel, W., “Pattern-Based Systems 

Engineering: Leveraging Model-Based Systems Engineering for Cyber-Physical Systems”, Proc. of 

NDIA GVSETS Conference, 2014. 

15. (Schindel and Smith, 2002), Schindel, W., and Smith, V., “Results of applying a families-of-

systems approach to systems engineering of product line families”, SAE International, Technical 

Report 2002-01-3086, 2002. 

16. (Schindel, 2005a) W. Schindel, “Pattern-Based Systems Engineering: An Extension of Model-

Based SE”, INCOSE IS2005 Tutorial TIES 4, 2005. 

17. (Schindel, 2005b) W. Schindel, “Requirements statements are transfer functions: An insight from 

model-based systems engineering”, Proceedings of INCOSE 2005 International Symposium, 

2005.  

18. (Schindel, 2006), “Feelings and Physics: Emotional, Psychological, and Other Soft Human 

Requirements, by Model-Based Systems Engineering”, Proc. of INCOSE International 

Symposium, 2006.  
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19. (Schindel, 2010), Schindel, W., “Failure Analysis: Insights from Model-Based Systems 

Engineering”, Proc. of INCOSE International Symposium, 2010. 

20. (Schindel, 2011), Schindel, W., “What Is the Smallest Model of a System?”, Proc. of the INCOSE 

2011 International Symposium, International Council on Systems Engineering (2011).   

21. (Schindel, 2012) Schindel, W., “Integrating Materials, Process & Product Portfolios: Lessons from 

Pattern-Based Systems Engineering”, Proc. of Society for the Advancement of Material and 

Process Engineering, 2012. 

22. (Schindel, Peterson, 2013) Bill Schindel, Troy Peterson, “Introduction to Pattern-Based Systems 

Engineering (PBSE): Leveraging MBSE Techniques”, in Proc. of INCOSE 2013 International 

Symposium, Tutorial, June, 2013. 

23. (Schindel, 2013a), W. Schindel, “Systems of Innovation II: The Emergence of Purpose”, 

Proceedings of INCOSE 2013 International Symposium, 2013. 

24. (Schindel, 2013b) “System Interactions: Making The Heart of Systems More Visible”, Proc. of 

INCOSE Great Lakes Regional Conference, 2013. 

25. (Schindel, 2014) Schindel, W. “The Difference Between Whole-System Patterns and Component 

Patterns: Managing Platforms and Domain Systems Using PBSE”, INCOSE Great Lakes Regional 

Conference on Systems Engineering, Schaumburg, IL, October, 2014 

26. (Schindel, Lewis, Sherey, Sanyal, 2015) Schindel, W., Lewis, S., Sherey, J., Sanyal, S., 

“Accelerating MBSE Impacts Across the Enterprise: Model-Based S*Patterns”, to appear in Proc. 

of INCOSE 2015 International Symposium, July, 2015. 

 


