
Guide to Tool-Specific S* Patterns
Support in

Dassault Cameo Systems Modeler

V1.3.44

By: S* Patterns Community © 2024, System Sciences, LLC.

Licensed under a Creative Commons

Attribution Share Alike-License CC BY SA International 4.0

License Link: https://creativecommons.org/licenses/by-sa/4.0/legalcode

Uses are permitted under this license without further permission from the copyright owner, provided
each use (1) is clearly marked to attribute the underlying work to “S*Patterns Community”, (2) provides
a link to the CC BY SA license, (3) indicates if changes were made, (4) does not suggest the licensor
endorses the user or use, (5) does not apply legal terms or technological measures that legally restrict
others from doing anything the license permits, and (6) if you remix, transform, or build upon the
material, you must distribute your contributions under the same license as the original.

Corporate Officer
ICTT System Sciences
378 South Airport Street
Terre Haute, IN 47803
812-232-2208

Systematica is a registered trademark of System Sciences, LLC.
Cameo Systems Modeler is a trademark of Dassault Systemes

2

https://creativecommons.org/licenses/by-sa/4.0/legalcode
tel:812-232-2208

Contents

3

Section Pages

1. Introduction 7-11

2. Installation of Companion Assets
1. Systematica Profile
2. Systematica Project Template
3. Systematica Images
4. Systematica Diagram Styles
5. Pattern Export Tables Definition
6. CSV Import Mapping Definition

12-26

3. Creating S* Pattern Classes
1. Feature Framework
2. Domain Analysis
3. Interaction Framework
4. State Machine
5. Detail Level Requirements
6. High Level Design
7. Interface Context
8. Attribute Couplings
9. Failure Analysis

27-75

Contents

4

Section Pages

4. Creating S* Pattern Relationships 76-93

5. Creating S* Pattern Configuration Rules 94-109

6. Exporting and Importing Pattern and Model Data During S*
Pattern Configuration

110-114

Change History

5

Version # Date Who Description

1.3.28 10.19.2023 Stephen Lewis Inserted updated diagram on slide 7

1.3.29 10.20.2023 Stephen Lewis Added Change History Slide, Slides 32, 98-99

1.3.30 10.23.2023 Stephen Lewis Table of Contents and Section descriptions,
Slides 35, 71

1.3.31 10.24.2023 Stephen Lewis Matrix Guidance Slides 69-71

1.3.32 10.25.2023 Stephen Lewis Slide 6 Diagram legend

1.3.33 10.26.2023 Stephen Lewis Companion Assets details, Slide 38, 75

1.3.34 10.27.2023 Stephen Lewis Slides 8, 17, 19-20, additional Section
descriptions

1.3.35 10.31.2023 Stephen Lewis Slides 2-3, 5-9, 17, 23

1.3.36 11.1.2023 Stephen Lewis Slides 3-4, 9, 24-28,

1.3.37 11.2.2023 Stephen Lewis Slides 70-2, 74-7, 94-5, 97, 99, 100

1.3.38 11.3.2023 Stephen Lewis Import/Export Installation Slides

1.3.39 11.6.2023 Stephen Lewis Import/Export Execution Slides, Role Overview
Table

Change History

6

Version # Date Who Description

1.3.40 11.7-8.2023 Stephen Lewis Updated screenshots for tables with new
column headings

1.3.41 11.9.2023 Stephen Lewis Figure Page Number Reference

1.3.42 3.6.2024 Stephen Lewis CSV Import Literal String Replacement Slide 26

1.3.43 3.20.2024 Stephen Lewis Export Tables report details, companion asset
versions

1.3.44 4.17.2024 Stephen Lewis CSV Import Path Variable, Slides 25-26

Purpose, scope, companion references,
other companion assets

• The purpose of this document is limited to providing detailed
directions for (1)installation and use of the S* Profile and S* Project
Template, and, (2)with examples, for entry of S*Pattern data into, and
specific to, Dassault Cameo Systems Modeler (CSM), and (3)tool-
specific aspects of pattern and model data export and import between
CSM and the Configuration Wizard.

• See the References for other information:
– To understand the overall significance of that S*Pattern data, refer to the

generic S*Patterns class/tutorial reference media.
– To understand the details of the generic S*Metamodel, refer to the

generic S*Metamodel reference.
– To understand the details of the mapping of the generic S*Metamodel

into the CSM-specific SysML schema, refer to the S*Mapping Document
specific to CSM.

– To understand the use of the S*Pattern Configuration Wizard with CSM,
refer to the User’s Guide to the S*Pattern Configuration Wizard.

7

8

Legend

Configured
Model CSM

Import Tables

Configurable
Pattern CSM
Export Tables

Cameo Systems
Modeler

(CSM)

S*Pattern
Configuration

Wizard

Configurable S*Pattern

Configured S*Model

CSM SysML
Schema

S*Mapping

Model
Configuration

Process

S*Metamodel
Document

S*Mapping
Doc for CSM

User’s Guide to S*Pattern
Configuration Wizard

S*Patterns Tutorial/Class: Units 1-6

Configured
S*Model

Configurable
S*Pattern

OMG and Supplier
Schema Specifications

Pattern
Author

Pattern
User

S*Styles

Tooling
Admin

Guide to
S*Patterns in CSM

S*Icons
Pattern
Building
Process

Reference

Installable
Asset

CSM Import
Mapping

Defn

CSM Export
Tables Defn

Model

Pattern

Defines

Maps

Assets
Installation

Process

S*Profile
for CSM

S*Project
Template

Implements

Organizes

DefinesDefines Defines

S*Metamodel

Guides

Guides

Guide to
S*Patterns in CSM

Guides

TeachesTeaches

9

Who Tool Task When

Pattern Author Cameo Systems
Modeler

Pattern Building
Process

Pattern creation and
updating

Pattern User Cameo Systems
Modeler,
Configuration Wizard

Model Configuration
Process

For each
configuration

Tooling Admin Cameo Systems
Modeler

Assets Installation
Process

One-time initial setup

Roles Overview

Companion References

1. Tutorial/Class: Advancing the Practice, Units 1-6. Introduction to
S*Models, S*Metamodel, S*Patterns, Mappings to Languages &
Tools, S*Configuration Wizard". Contact ICTT System Sciences.

2. “Systematica Metamodel”, Metamodel Version 8.0, 04/07/2022.

3. “S*Metamodel Mapping for MagicDraw/Cameo Systems Modeler
Version 19”, Version 1.11.4, 2/13/2023.

4. “Guide to the S*Pattern Configuration Wizard”, V1.2.10,
1/18/2023.

10

*Refer to Figure 1, Page 6

Companion Assets

1. S* Project Template Version 12142023, Systematica.mdzip.

2. S* Profile Version 05082023, Systematica Profile.mdzip.

3. S* Diagram Styles, Systematica.stl.

4. S* Images, Systematica.zip.

5. Pattern Export Tables Definition

6. CSV Import Mapping Definition

7. A general example Pattern or client-specific Pattern may be part
of the Companion Asset Package, if not starting a new Pattern
Project.

11

Refer to Figure 1, Page 8

2. Installation of Companion Assets

• This section of the guide details the steps for installation of the S* Profile and
S* Project Template.

• To prepare CSM for use with this guidance, load the CSM tool with the above
listed Companion Assets using the steps shown in the following slides.

• *This section assumes Cameo Systems Modeler has already been installed.*

12

Installing Systematica Profile

1. Use Options~Environment~
Path Variables to find
install.root folder

2. Navigate to the install.root
folder using Windows Explorer

13

3. Copy Systematica
Profile.mdzip to profiles
folder from the
Deliverables Folder

• Open Cameo Systems Modeler and
use the menu options and dialogs
described below.

1

3

2

Installing Systematica Project Template

1. Use Options~Environment~
Path Variables to find
install.root folder

2. Navigate to the install.root
folder using Windows Explorer

14

3. Copy Systematica folder
to templates folder from the
Deliverables Folder

• Open Cameo Systems Modeler and
use the menu options and dialogs
described below.

1

3

2

Installing Systematica Images

1. Use Options~Environment~
Path Variables to find
install.root folder

2. Navigate to the install.root
folder using Windows Explorer

15

3. Copy Systematica zip file to
data\imagelibraries\commonsymbols
folder from the Deliverables Folder

• Open Cameo Systems Modeler and
use the menu options and dialogs
described below.

1

3

2

Installing Systematica Diagram Styles
• Open a project in MagicDraw

• Select the menu option ~Options~Project

• Click on ‘Symbol styles’ in tree in left pane.

16

Installing Systematica Diagram Styles, cont’d

• Click the ‘Import’ button

• Navigate to the Deliverables Folder (see image)

• Select the Systematica.stl file (see image)

• Click the ‘Open’ button (see image)

17

Installing Systematica Diagram Styles, cont’d
• Expand the ‘Symbol styles’ node in tree in the

left pane.

18

Installing Diagram Systematica Styles, cont’d

• Select the ‘Systematica Styles’
node in tree in the left pane.

• Click the ‘Apply’ button

• Select which diagrams to apply
style to (i.e., Domain Diagram,
Pattern Feature Overview
Diagram, Interaction Overview
Diagram, State Machine,
Attribute Coupling, and Slice
Diagrams)

• Click the ‘OK’ button
19

Defining Pattern Export Tables Using the Report
Wizard

21

Defining Pattern Export Tables Using the Report
Wizard

Table Name Table Browser Location

Pattern Features File 01 Local Pattern>01 Feature Framework>04 Features

Pattern Feature Attributes File 01 Local Pattern>01 Feature Framework>04 Features

Pattern Feature Attribute Values File 01 Local Pattern>01 Feature Framework>04 Features

Pattern Role Attributes File 01 Local Pattern>02 Logical System Analysis

Pattern Interactions-States File 01 Local Pattern>02 Logical System Analysis

Pattern States-Transitions, Events File 01 Local Pattern>02 Logical System Analysis> State Machine

Pattern Interface Context File ICT1 01 Local Pattern>02 Logical System Analysis

Pattern Interface Context File ICT2 01 Local Pattern>02 Logical System Analysis

Pattern Interface Context File ICT4 01 Local Pattern>02 Logical System Analysis

Pattern Interface Context File ICT5 01 Local Pattern>02 Logical System Analysis

Pattern Interaction Roles 01 Local Pattern>03 Interaction Framework

Pattern Requirements 01 Local Pattern>03 Interaction Framework

Pattern Features-Interactions File 01 Local Pattern>03 Interaction Framework

Pattern Input-Output Attributes File 01 Local Pattern>03 Interaction Framework

22

Defining Pattern Export Tables Using the Report
Wizard

Table Name Table Browser Location

Pattern Functional Role Allocation 01 Local Pattern>04 Physical Architecture

Pattern Des Compons Attributes File 01 Local Pattern>04 Physical Architecture

Pattern Failure Impacts 01 Local Pattern>05 Risk Framework

Pattern Failure Modes 01 Local Pattern>05 Risk Framework

Pattern Counter Requirements 01 Local Pattern>05 Risk Framework

Pattern Failure Mode Context 01 Local Pattern>05 Risk Framework

Pattern Failure Modes-Counter
Requirements

01 Local Pattern>05 Risk Framework

Pattern Failure Impacts-Counter
Requirements

01 Local Pattern>05 Risk Framework

Pattern Attribute Couplings 01 Local Pattern

23

Defining Pattern Export Tables Using the Report
Wizard

Defining Pattern Export Tables Using the Report
Wizard

The output file must be named Export Tables. Choose
the repository location to write the Export Tables file. It
does not have to be the location shown here.

24

25

CSV Import Mapping Definition for Configured
Model Data

1. In Windows Explorer, create a
folder in an accessible location.
This is the same location as
specified using Button 5 in the
Configuration Wizard to store the
configured model output files. This
folder location and name can be of
your creation and choosing as long
as read/write privileges are
available.

2. In Cameo Systems Modeler, from
the Menu toolbar, select Options
→ Environment.

1

2

26

CSV Import Mapping Definition for Configured
Model Data

1. Select Path Variables from the list of Environment Options.
2. Select Add to open the Path Variable Dialog Window.
3. Enter “csvimport.path” as the Name and “Configured Model CSV Import Files Location”

as the Description.
4. Select the ellipses to open the location dialog and choose the accessible file location

discussed in the previous slide.

1

2

3

43

4

27

This section of the guide details the steps for creating formally modeled S* Pattern
Classes (metaclasses) as mapped and implemented in Cameo Systems Modeler.

3. Creating S* Pattern Classes

Creating a New S* Pattern Project

• Start CSM and
Select Create
New Project.

• Select the
Systematica
Project.

• Name the
Project and
Select a File
Location.

28

Systematica Project Template Packages
• S* Projects include 2 main

packages

– Local Pattern: An entire
configurable model from
which a Configured
Model is configured

– Configured Model: An
entire model that is a
specific configuration of
the Local Pattern

• All of a pattern’s classes
and relationships should
be located within the
Local Pattern package

• Package Numbers/Names
are pre-defined in the
Project Template and Pre-
Existing Pattern Files and
should not be changed.

29

Local Pattern

Configured Model

Pattern data entry methods and details

• MBSE tools provide multiple means of entering the
same information, in different modes.

• This document focuses on pattern data entry via tool
browser GUI and tabular entries.

• Additional methods of entry for the same pattern
data include diagram entry and bulk import, not
discussed in this document.

• Class Names should not include special characters
such as []/\-”;

• Use of tilde (~) symbol on following pages indicates
use of a mouse right-click or equivalent.

30

Feature Framework: Creating Stakeholders

• Pattern Stakeholders are created in
package 01 Local Pattern::01
Feature Framework::01
Stakeholders

• Use ~Create Element and choose
Logical System because Stakeholder
is a type of Logical System.

• Right-click on the newly created
Logical System, select Stereotype
and change the Stereotype to
Stakeholder and remove the Logical
System Stereotype.

31

Feature Framework: Creating Features

• Pattern Features are created in
package 01 Local Pattern::01
Feature Framework::04 Features

• Use ~Create Element and choose
Feature to create an S* Feature

32

Feature Framework: Creating Feature Attributes

• Features may have Feature
Attributes. A special type of Feature
Attribute is called a Feature Primary
Key, which is the Feature Attribute
that is used to differentiate
Configured Features originating
from the same parent Feature in
the Pattern.

• Select a Feature and use ~Create
Element and choose either Feature
Attribute or Feature Primary Key

• If adding a Feature Primary Key,
enter the name of the Feature
Primary Key into its Feature’s
Primary Key Name tag.

33

Feature Framework: Feature Attribute Possible Values

• Use the new Feature Attribute’s specification to define
Possible Value options in the Possible Values tag.

• Each option should:
– Be on its own line

– Be followed by a colon and a space

– May have a value meaning after the colon and space

34

Feature Framework: Feature Attribute Possible Values

• The list of colon separated Feature Attributes can also be entered directly
into the Possible Values column of the Pattern Feature Attributes Table.

35

Feature Framework: Feature Attribute Allowed Values

• An alternative method for creating Feature Attributes and
connecting them to Features for configuration includes the
use of allowed values.

• Enter the complete list of Feature Attribute Values in the
Allowed Values Table.

36

Feature Framework: Feature Attribute Allowed Values

• Create a Dependency relationship between the Feature Primary Key and
Feature Attribute Value.

• Set the Stereotype of the relationship to Can Have Value.

• View the result in the Pattern Feature Attribute Values Table.

37

Domain Analysis:
Creating Domains and Logical Systems

• Pattern Domains and Logical
Systems are created in package 01
Local Pattern::02 Logical System
Analysis

• Use ~Create Element and choose
Domain or Logical System

38

Domain Analysis: Creating Logical System Attributes

• Select a Logical System under the 01 Local Pattern::02 Logical System Analysis
package

• Use ~Create Element and choose Value Property

• Right click and refactor the new Value Property as a Logical System Attribute

39

Interaction Framework:
Creating Functional Interactions

• Pattern Functional Interactions are
created in package 01 Local
Pattern::03 Interaction Framework

• Use ~Create Element and choose
Functional Interaction

40

State Machine: Creating State Machine and States

• Pattern State Diagram and States
are created in package 01 Local
Pattern::02 Logical System Analysis

• Use ~Create Diagram and choose
SysML State Machine Diagram

41

State Machine: Creating State Machine and States

• Right-click the automatically
created Region under the State
Model and use ~Create Element
and choose State. Make sure the
menu is expanded to Expert.

• Right-click the newly created State,
select Stereotype, and change it to
State as shown below.

42

State Machine: Creating the Diagram

• Open the State Machine Diagram created in the earlier step.

• Populate the State Machine Diagram with States by dragging them from the
containment browser onto the diagram.

43

State Machine: Creating State-State Transitions, Events

44

• Select the
Transition item
from the State
Machine Diagram
Toolbar.

• Select the two
states on the
diagram.

• Right-click the new
transition and open
its specification.

• Select the Trigger
property and click
the + (Add) button.

State Machine: Creating State-State Transitions, Events

45

• In the new Trigger
Specification
window that opens
enter the name of
the event in the
Name property.

• Select the Applied
Stereotype
property and
choose the Event
stereotype option.

Detail Requirements:
Overview

• Requirement Statements and the Requirement Transfer Functions
they specify are created under their respective Functional
Interaction.

• There should be at least one Requirement Transfer Function for
each Interaction-Role pair.

46

Detail Requirements:
Creating Requirement Transfer Functions

• Use ~Create Element and choose
Activity

• Add the stereotype “Requirement
Transfer Function” to the new
Activity

• Create an Allocate dependency
from the new Requirement Transfer
Function to the Logical System will
perform it.

47

Detail Requirements:
Creating Requirement Statements

• Use ~Create Element and choose Requirement Statement

• Name the new Requirement Statement with its Requirement ID.

• Create a Satisfy dependency to the new Requirement Statement
from the Requirement Transfer Function it specifies.

• At this point, the Requirement row will appear in the Pattern
Requirements Table. The Requirement Statement can be
entered in the Text column.

• Alternatively, open the Specification for the new Requirement
Statement and enter the statement details in the Text property
field.

48

Detail Requirements:
Creating Requirement Statements

• Alternatively, open the Specification for the new Requirement
Statement and enter the statement details in the Text property
field.

49

High Level Design:
Creating Design Components (Physical Systems)

• Pattern Design Components are
created as Physical Systems in
package 01 Local Pattern::04
Physical Architecture

• Use ~Create Element and choose
Physical System

50

High Level Design: Creating Design Component (Physical System)
Attributes

• Use ~Create Element and choose Value Property

• Right click and refactor the new Value Property as a Physical System Attribute

51

52

Table

• Architectural Relationships are created in package 01 Local Pattern::02 Logical System
Analysis.

• Select and Open the Pattern Architectural Relationships Table and then Select Add New.

• The newly added Architectural Relationship will show up in the table and the Containment
Browser

Interface Context: Architectural Relationships

Interface Context: Architectural Relationships

1. Select the Logical System or Physical System that
conveys the Architectural Relationship > Create Relation
> Select Outgoing or Incoming > Select AR Item Flow.

2. Select the other Logical System or Physical System
involved in the Architectural Relationship.

3. Select the new AR Item Flow relation in the browser,
open its specification, select the Conveyed property and
choose the newly created Architectural Relationship.

53

Table

1

3

2

Interface Context: Populating Input-Outputs

• Input-Outputs are created in
package 01 Local Pattern::03
Interaction Framework.

• Use ~Create Element and
choose IO Definition

54

Interface Context: Populating Input-Outputs continued
1. Select the Logical System or Physical System that conveys the Input-

Output > Create Relation > Select Outgoing or Incoming > Select Item
Flow.

2. Select the other Logical System or Physical System involved in the Input-
Output.

3. Select the new Item Flow relation in the browser, open its specification,
select the Conveyed property and choose the newly created Input-
Output.

55

1

3

2

Interface Context: Populating Interfaces

56

• Interface Definitions are created in package 01
Local Pattern::02 Logical System Analysis under
the Logical System that owns them.

1. Use ~Create Element and choose Interface
Definition; give the new Interface a name.

2. Next, use ~Create Element and choose Proxy
Port; give it the Proxy Port the same name
as the Interface Definition created in the
above step.

3. Select the Proxy Port in the browser, select
the Stereotype option, then add ifc port
stereotype.

1

2

3

57

Interface Context: Populating Interfaces, continued

• Select the new ifc
port in the browser,
open its specification,
select the Type
property and choose
the associated
Interface Definition
with the same name.

Interface Context: Populating Systems of Access (SOAs)

58

• Systems of Access are created in package 01 Local
Pattern::02 Logical System Analysis

• Use ~Create Element and choose Logical System
(because System of Access is a type of Logical System).

• Right-click on the newly created Logical System, select
Stereotype and change the Stereotype to System of
Access and remove the Logical System Stereotype.

Interface Context: Populating Ports

59

• Ports are created in package 01 Local Pattern::02 Logical
System Analysis under the Interface Definition that owns
the Port:

1. Use ~Create Element and choose Property.
2. Select and right-click the property in the containment

browser, choose Stereotype, choose Input-Output
[Property].

3. Select the Port/IO Property in the browser, open its
specification, select the Type property and choose the
associated IO Definition.

1

2

3

Interface Context: Ports, Table ICT1

• Pattern Table ICT1 shows relationships
to Ports and also administers the related
configuration rules.

• To add a Port to the table, select Add
Existing and select the Port from its
browser location.

• The Role, Interface, and Input-Output
column will have content automatically
populated based on the steps on the
previous slide.

60

Interface Context: Ports, Table ICT1

• To create the relationship to
Systems of Access (SOAs), double-
click the cell, then the ellipses to
bring up the selection dialog
window.

• Choose the related SOA from the
containment browser.

61

Interface Context: Ports, Table ICT1

Example Pattern Interface Context File ICT1

62

Interface Context: Ports, Table ICT2
• Pattern Table ICT2 shows relationships

among Interactions, Roles, Input-Outputs,
and Architectural Relationships.

• Each row is an Interface Element. To add a
row, select Add New, double-click the new
row and give the Interface Element a
name.

• To create the relationships to other
elements, double-click the cell, then the
ellipses to bring up the selection dialog
window.

• Choose the related element from the
containment browser.

63

Add New

IE Name

Interface Context: Ports, Table ICT2

Example Pattern Interface Context File ICT2

64

Interface Context: Architectural Relationships, Table ICT4

• Pattern Table ICT4 shows details for
reified Architectural Relationships.

• Each row is a Has AR Role dependency.
To add a row, select Add Existing,
navigate to the Has AR Role and add it,
or drag the Has AR Role from the
browser onto the table.

65

Interface Context: Architectural Relationships, Table ICT4

Example Pattern Interface Context File ICT4

66

Interface Context: Architectural Relationships, Table ICT5
• Pattern Table ICT5 shows details for

simple Architectural Relationships.

• Each row is an AR Item Flow. To add a row,
select Add Existing, navigate to the AR
Item Flow and add it. Or drag the AR Item
Flow from the browser onto the table.

• To add the Conveyed property, click the
ellipses, and select the AR.

67

Interface Context: Architectural Relationships, Table ICT5

Example Pattern Interface Context File ICT5

68

Attribute Couplings

• Attribute Couplings are created under
the element that owns them in various
packages including Features, Roles,
Design Components, and Input-Outputs:

– A given Attribute Coupling involves
multiple Attributes, so which one
belongs to the Coupling’s owner?

– Each Coupling drives (in a causality
sense) only one Attribute—look
there for the Coupling’s ownership.

• Use ~Create Element and choose
Attribute Coupling.

• Right-click on the new Attribute
Coupling, use ~Create Element and
choose Constraint Parameter. Give it the
same name as the attribute it will be
connected to.

• Add the two or more constraint
parameters for the coupling(s).

69

70

Attribute Couplings

• Right-click on the element that owns the
new Attribute Coupling, use ~Create
Diagram and choose SysML Parametric
Diagram.

• Choose the associated display parameter
details as shown in the box to the right.

• View the resulting populated diagram as
shown below.

• Create binding connectors from the
constraint parameters to the associated
attributes as shown in the lower right.

Failure Analysis: Creating Failure Impacts

• Pattern Failure Impacts are created
in package 01 Local Pattern::05 Risk
Framework::03 Failure Impacts

• Use ~Create Element and choose
Failure Impact

71

Failure Analysis: Creating Counter Requirements

• Pattern Failure Counter
Requirements are created in
package 01 Local Pattern::05 Risk
Framework::02 Counter
Requirements

• Use ~Create Element and choose
Counter Requirement

72

Failure Analysis: Creating Failure Mode State Machine
and Failure Modes

• Pattern Failure Mode State Diagram
and Failure Modes are created 01
Local Pattern::05 Risk
Framework::01 Failure Modes

• Use ~Create Diagram and choose
SysML State Machine Diagram

• Name the Diagram “Failure Mode
State Machine”.

• Name the Region “Failure Mode
State Machine Region”.

73

Failure Analysis: Creating Failure Modes

• Right-click the automatically
created Region under the State
Model and use ~Create Element
and choose State. Make sure the
menu is expanded to Expert.

• Right-click the newly created State,
select Stereotype, and change it to
Failure Mode as shown below.

74

Failure Analysis: Creating Failure Mode Context
• Pattern Failure Mode Context

Elements are created in package 01
Local Pattern::05 Risk
Framework::04 Failure Mode
Context

• Use ~Create Element and choose
Block

• Right-Click on the new element,
and change stereotype to Failure
Mode Context Element

75

76

This section of the guide details the steps for creating formally modeled S* Pattern
Relationships (metarelationships) between S* Pattern Classes as mapped and
implemented in Cameo Systems Modeler.

4. Creating S* Pattern Relationships

Metarelationships: Creating Stakeholder-Feature Relationships

77

• The simplest way to
create relationships
is using a matrix.

• Create a
Dependency Matrix
with Row Type,
Row Scope, Column
Type, Column
Scope, and
Dependency
Criteria as shown.

• Right-click to create
a new Stakeholder-
Feature
relationship.

Metarelationships:
Creating Feature-Interaction Relationships

• Relationships between Features and Functional
Interactions are SysML aggregations.

• Create an Association in which the Feature aggregates the
Interaction.

• Add a “Uses Functional Interaction” stereotype to the new
Association

78

79

Metarelationships: Creating Feature-Interaction Relationships

1. Right-Click the Feature, ~Create Relation,
Select Outgoing, Choose Aggregation

2. Select the related Interaction(s)

3. Right-Click the new relationship, ~Stereotype,
Select “Uses Functional Interaction”

1
2

3

Metarelationships: Creating Feature-Interaction Relationships

• The simplest way to
create relationships
is using a matrix.

• Create a
Dependency Matrix
with Row Type,
Row Scope, Column
Type, Column
Scope, and
Dependency
Criteria as shown.

• Right-click to create
a new Feature-
Interaction
relationship.

80

*Note: In Cameo Systems Modeler V19, SysML Aggregation type relationships
cannot be entered via matrix, but they can be viewed there.

Other SysML relationship types can be entered and viewed via a matrix.

V2021x supports entering all relationship types via a matrix.

Metarelationships: Creating State-Interaction Relationships

81

• The simplest way to
create relationships
is using a matrix.

• Create a
Dependency Matrix
with Row Type,
Row Scope, Column
Type, Column
Scope, and
Dependency
Criteria as shown.

• Right-click to create
a new State-
Interaction
relationship.

*Note: In Cameo Systems Modeler V19, SysML Aggregation type relationships
cannot be entered via matrix, but they can be viewed there.

Other SysML relationship types can be entered and viewed via a matrix.

V2021x supports entering all relationship types via a matrix.

Metarelationships:
Creating Interaction-Role Relationships

• Relationships between Functional Interactions and Logical
Systems are SysML aggregations.

• Create an Association in which the Interaction aggregates
the Logical System.

• Add a “Has Role” stereotype to the new Association

82

Metarelationships: Creating Interaction-Role Relationships

83

• The simplest way to
create relationships
is using a matrix.

• Create a
Dependency Matrix
with Row Type,
Row Scope, Column
Type, Column
Scope, and
Dependency
Criteria as shown.

• Right-click to create
a new Interaction-
Role relationship.

*Note: In Cameo Systems Modeler V19, SysML Aggregation type relationships
cannot be entered via matrix, but they can be viewed there.

Other SysML relationship types can be entered and viewed via a matrix.

V2021x supports entering all relationship types via a matrix.

84

Metarelationships: Creating Interaction-Role Relationships

1. Right-Click the Interaction, ~Create Relation,
Select Outgoing, Choose Aggregation

2. Select the related Role(s)

3. Right-Click the new relationship, ~Stereotype,
Select “Has Role”

1 2

3

Metarelationships:
Creating Functional Role Allocations (Role-Design)

1. Relationships between Design Components
(Physical Systems) and Logical Systems are
SysML Associations.

2. Create an Association in which the Design
Components (Physical System) aggregates
the Logical System.

3. Add a “Functional Role Allocation”
stereotype to the new Association

851

2

3

Metarelationships:
Creating Functional Role Allocations (Role-Design)

86

*Note: In Cameo Systems Modeler V19, SysML Aggregation type relationships
cannot be entered via matrix, but they can be viewed there.

Other SysML relationship types can be entered and viewed via a matrix.

V2021x supports entering all relationship types via a matrix.

Metarelationships:
Creating Failure Analysis Relationships—Impacts

Feature

• Create a Dependency relationship with the Failure Impact
as the Source and the Feature as the Target.

• Add a “Impacts Feature” stereotype to the new
relationship

87

Example Pattern Failure Impacts Table

Metarelationships:
Creating Failure Analysis Relationships—Causes

Impact

• Create a Dependency relationship with the Counter
Requirement as the Source and the Failure Impact as the
Target.

• Add a “Causes Impact” stereotype to the new relationship

88

Example Pattern Failure Impacts-Counter Requirements Table

Metarelationships:
Creating Failure Analysis Relationships—

Replaces

• Create a Dependency relationship with the Counter
Requirement as the Source and the Requirement as the
Target.

• Add a “Replaces” stereotype to the new relationship.

89

Example Pattern Counter Requirements Table

Metarelationships:
Creating Failure Analysis Relationships—Causes

Behavior

• Create a Dependency relationship with the Failure Mode
as the Source and the Counter Requirement as the Target.

• Add a “Causes Behavior” stereotype to the new
relationship.

90

Example Pattern Failure Modes-Counter Requirements Table

Metarelationships:
Creating Failure Analysis Relationships—Abnormal

State Of

• Create a Dependency relationship with the Failure Mode
as the Source and the Design Component as the Target.

• Add a “Abnormal State Of” stereotype to the new
relationship.

91

Example Pattern Failure Modes Table

Metarelationships:
Creating Failure Analysis Relationships—Provides

Failure Mode Context

• Create a Dependency relationship with the Failure Mode
Context Element as the Source and the Failure Mode as
the Target.

• Add a “Provides Failure Mode Context” stereotype to the
new relationship.

92

Example Pattern Failure Mode Context Table

Metarelationships:
Creating Failure Analysis Relationships—Provides

Failure Context

• Create a Dependency relationship with the Failure Mode
Context Element as the Source and the Interaction as the
Target.

• Add a “Provides Failure Context” stereotype to the new
relationship.

93

Example Pattern Failure Mode Context Table

94

This section of the guide details the steps and rules that govern when and how
certain pattern metaclasses are to be automatically populated by the Configuration
Wizard during Pattern Configuration based on the population of another
metaclass(es), using the metarelationships and details described in this section.

5. Creating S* Pattern Configuration Rules

Population Rules: Editing Interaction Population Rules
• The “Pattern Feature Interactions” table under the Interaction Framework

package allows the user to edit the Interaction Population Rules

• The values in the FPK Value and IPK Rule columns govern when and how
Interactions are populated based on which Features have been populated.

• The FPK Value may be blank, *ANY*, or <constant> and helps decide if an
Interaction should be populated

• The IPK Rule may be blank, FPK, /<constant>/, or FPK+/<constant>/ and describes
how to generate the IPK Value of the Interaction to be populated.

• An IPK Rule of *ANY* will tell the Configuration Agent not to populate an
Interaction but to populate a relationship between the Feature and Interaction if
they are both populated from other population rules.

• A detailed list of Population Rules is in the Metamodel document reference.

95

96

Population Rules: Editing State Population Rules

• The “Pattern Interactions-States” table under the State Machine allows the user to
edit the State Population Rules

• The values in the IPK, RPK, and State PK Value Rule columns govern when and how
States are populated based on which Interactions and Roles have been populated

• A detailed list of Population Rules is in the Metamodel document reference.

97

Population Rules: Editing State Population Rules, Continued

• The “Pattern States-Transitions, Events” table under the State Machine allows the
user to edit the Transition, Event Population Rules

• The values in the From State PK Matching Rule, To State PK Matching Rule,
Interaction, Transition PK Value Rule, and Event PK Value Rule columns govern when
and how Transitions and Events are populated based on which Interactions and
States have been populated.

• A detailed list of Population Rules is in the Metamodel document reference.

Population Rules: Editing Role Population Rules
• The “Pattern Interaction Roles” table under the Interaction Framework package

allows the user to edit the Role Population Rules

• The values in the IPK Value and RPK Rule columns govern when and how Logical
Systems are populated based on which Interactions have been populated.

• The IPK Value may be blank, *ANY*, or <constant> and helps decide if a Logical
System should be populated.

• The RPK Rule may be blank, IPK, /<constant>/, or IPK+/<constant>/ and describes
how to generate the RPK Value of the Logical System to be populated.

• A detailed list of Population Rules is in the Metamodel document reference.

98

Population Rules:
Editing Requirement Population Rules

• The “Pattern Requirements” table under the Interaction Framework
package allows the user to edit the Requirement Population Rules

• The values in the IPK Value, RPK Value, and RSPK Rule columns govern
when and how Requirement Statements are populated based on
which Interactions and Logical Systems have been populated.

• The IPK Value may be blank, *ANY*, or <constant> and helps decide if
a Requirement Statement should be populated.

• The RPK Value may be blank, *ANY*, or <constant> and helps decide
if a Requirement Statement should be populated.

• The RSPK Rule may be blank, IPK, RPK, /<constant>/, or
IPK+/<constant>/, or RPK+/<constant>/ and describes how to
generate the RSPK Value of the Requirement Statement to be
populated.

• A detailed list of Population Rules is in the Metamodel document
reference.

99

Population Rules:
Editing Requirement Population Rules

100

Population Rules:
Editing Physical System (Design Component)

Population Rules
• The “Pattern Functional Role Allocations” table under the Physical Architecture package

allows the user to edit the Physical System (Design Component) Population Rules

• The values in the Configuration Rule and IPPK Value columns govern when and how Physical
Systems (Design Components) are populated based on which Logical Systems (Roles) have
been populated.

• The Configuration Rule may be blank, *ANY*, or <constant> and helps decide if a Physical
System (Design Component) should be populated.

• The IPPK Rule may be blank, RPK, /<constant>/, or RPK+/<constant>/ and describes how to
generate the IPPK Value of the Physical System (Design Component) to be populated.

• A detailed list of Population Rules is in the Metamodel document reference.

101

Population Rules: Table ICT1 Population Rules

102

• The “Interface Context Table ICT1” under the Local Pattern package allows the user to edit
the Interface Context Population Rules

• The values in the Interface PK Rule, IO PK Rule, SOA PK Rule and Port PK Rule columns
govern when and how those elements are populated based on which Interactions and
Roles have been populated.

• A detailed list of Population Rules is in the Metamodel document reference.

103

Population Rules: Editing Attribute Coupling Population Rules

• The “Pattern Attribute Couplings” table under the Local Pattern package allows the
user to edit the Attribute Coupling Population Rules

• The values in the PK column govern when and how Attribute Couplings are
populated based on which related driven Attributes have been populated.

• The value in the PK column may be APK<CPK, APK=CPK, CPK<APK, *ANY* or (empty)
and helps decide if an Attribute Coupling should be populated.

• A detailed list of Population Rules is in the Metamodel document reference.

104

Population Rules: Editing Failure Impact Population Rules

• The “Pattern Failure Impacts” table under the Local Pattern package allows the user
to edit the Failure Impact Population Rules

• The values in the PK column govern when and how Failure Impacts are populated
based on which related Features have been populated.

• The value in the Failure Impact PK Value Rule column may be FPK, *ANY* or (empty)
and helps decide if a Failure Impact should be populated.

• A detailed list of Population Rules is in the Metamodel document reference.

Example Pattern Failure Impacts Table

105

Population Rules: Editing Causes Impact Relationship Population Rules

• The “Pattern Failure Impacts-Counter Requirements” table under the Local Pattern
package allows the user to edit the Causes Impact Population Rules

• The table governs when and how Causes Impact relationships (associating Counter
Requirements with the Failure Impacts they cause) are populated based on which
related Failure Impacts and Counter Requirements have been populated.

• A detailed list of Population Rules is in the Metamodel document reference.

Example Pattern Failure Impacts-Counter Requirements Table

106

Population Rules: Editing Counter Requirements Population Rules

• The “Pattern Counter Requirements” table under the Local Pattern package allows
the user to edit the Counter Requirement Population Rules

• The values in the PK column govern when and how Counter Requirements are
populated based on which related Requirements have been populated.

• The value in the Counter Requirement PK Value Rule column may be RSPK, *ANY*,
or (empty) and helps decide if a Counter Requirement should be populated.

• A detailed list of Population Rules is in the Metamodel document reference.

Example Pattern Counter Requirements Table

107

Population Rules: Editing Causes Behavior Relationship Population Rules

• The “Pattern Failure Modes-Counter Requirements” table under the Local Pattern
package allows the user to edit the Causes Behavior Relationship Population Rules

• The table governs when and how Causes Behavior relationships (associating Failure
Modes with the Counter Requirements they cause) are populated based on which
related Failure Modes and Counter Requirements have been populated.

• A detailed list of Population Rules is in the Metamodel document reference.

Example Pattern Failure Modes-Counter Requirements Table

108

Population Rules: Editing Failure Mode Population Rules

• The “Pattern Failure Modes” table under the Local Pattern package allows the user
to edit the Failure Mode Population Rules

• The values in the PK column govern when and how Failure Modes are populated
based on which Design Components have been populated.

• The value in the FMPK Value Rule column may be CRPK, DCPK, or *ANY*, or (empty)
and helps decide if a Failure Mode should be populated.

• A detailed list of Population Rules is in the Metamodel document reference.

Example Pattern Failure Modes Table

109

Population Rules: Editing Failure Mode Context Element Population Rules

• The “Pattern Failure Mode Context” table under the Local Pattern package allows
the user to edit the Failure Mode Context Element Population Rules

• The table governs when and how Failure Mode Context Elements are populated
based on which related Failure Modes and Interactions have been populated.

• Failure Mode Context Elements relate Interactions to the Failure Modes that they
cause, mitigate, prevent, detect, or predict.

• The value in the IPK Rule column may be FMPK, IMPK, CRPK, *ANY*, or (empty) and
helps decide if a Failure Mode Context Element should be populated.

• A detailed list of Population Rules is in the Metamodel document reference.

Example Pattern Failure Mode Context Table

110

This section of the guide details the steps for (1) Exporting Pattern data from Cameo
Systems Modeler into single or multiple output files for consumption by the
Configuration Wizard and (2) Importing Configured Model data from the Pattern
Configuration Wizard into Cameo Systems Modeler from multiple CSV files. Refer to
the diagram on Slide 7 and the Configuration Wizard Guide.

6. Exporting and Importing Pattern and Model Data
During S* Pattern Configuration

Exporting Pattern Tables Using the Report
Wizard

111

Emptying the Configured Model
Packages Before the Import

112

• Prior to importing a configured model
into the repository, any previous model
content should be removed from there,
leaving the basic framework elements
in place. Once it is emptied of previous
model data, the empty 02 Configured
Model package of the Containment
Browser should look like the example
shown here. If it contains elements or
relations other than what is shown
here, those should be deleted, retaining
the package structure and tables
shown.

Importing the Configured Model Data
Choose the Import CSV option. If not
available, see the Plug-In Manager to
install it.

Select the Execute Map Group Option
and choose the Map Group depending
on your import needs.

113

-The Configured Model HLR DLR is the first one to select and imports a subset of the entire model including Features,
Interactions, Roles, Requirements, and Design Components.
-Configured States includes importing States, Forks/Joins, Events, and Transitions.
-Configured IFC Context includes importing Interfaces, Input-Outputs, Architectural Relationships, Systems of Access,
and Ports
-Configured Couplings includes Couplings, Constraint Parameters, and Connectors
-Configured Failure Analysis includes Counter Requirements, Failure Modes, and Failure Impacts
The Configuration Wizard control panel allows for similar configuration grouping choices. (See guide)

Importing the Configured Model Data

114

See the Notifications Window for the
CSV Import log details. The details are
only displayed after the entire import is
completed.

	Slide 1: Guide to Tool-Specific S* Patterns Support in Dassault Cameo Systems Modeler™
	Slide 2
	Slide 3: Contents
	Slide 4: Contents
	Slide 5: Change History
	Slide 6: Change History
	Slide 7: Purpose, scope, companion references, other companion assets
	Slide 8
	Slide 9
	Slide 10: Companion References
	Slide 11: Companion Assets
	Slide 12: 2. Installation of Companion Assets
	Slide 13: Installing Systematica Profile
	Slide 14: Installing Systematica Project Template
	Slide 15: Installing Systematica Images
	Slide 16: Installing Systematica Diagram Styles
	Slide 17: Installing Systematica Diagram Styles, cont’d
	Slide 18: Installing Systematica Diagram Styles, cont’d
	Slide 19: Installing Diagram Systematica Styles, cont’d
	Slide 20: Defining Pattern Export Tables Using the Report Wizard
	Slide 21
	Slide 22: Defining Pattern Export Tables Using the Report Wizard
	Slide 23: Defining Pattern Export Tables Using the Report Wizard
	Slide 24: Defining Pattern Export Tables Using the Report Wizard
	Slide 25: CSV Import Mapping Definition for Configured Model Data
	Slide 26: CSV Import Mapping Definition for Configured Model Data
	Slide 27
	Slide 28: Creating a New S* Pattern Project
	Slide 29: Systematica Project Template Packages
	Slide 30: Pattern data entry methods and details
	Slide 31: Feature Framework: Creating Stakeholders
	Slide 32: Feature Framework: Creating Features
	Slide 33: Feature Framework: Creating Feature Attributes
	Slide 34: Feature Framework: Feature Attribute Possible Values
	Slide 35: Feature Framework: Feature Attribute Possible Values
	Slide 36: Feature Framework: Feature Attribute Allowed Values
	Slide 37: Feature Framework: Feature Attribute Allowed Values
	Slide 38: Domain Analysis: Creating Domains and Logical Systems
	Slide 39: Domain Analysis: Creating Logical System Attributes
	Slide 40: Interaction Framework: Creating Functional Interactions
	Slide 41: State Machine: Creating State Machine and States
	Slide 42: State Machine: Creating State Machine and States
	Slide 43: State Machine: Creating the Diagram
	Slide 44: State Machine: Creating State-State Transitions, Events
	Slide 45: State Machine: Creating State-State Transitions, Events
	Slide 46: Detail Requirements: Overview
	Slide 47: Detail Requirements: Creating Requirement Transfer Functions
	Slide 48: Detail Requirements: Creating Requirement Statements
	Slide 49: Detail Requirements: Creating Requirement Statements
	Slide 50: High Level Design: Creating Design Components (Physical Systems)
	Slide 51: High Level Design: Creating Design Component (Physical System) Attributes
	Slide 52
	Slide 53: Interface Context: Architectural Relationships
	Slide 54: Interface Context: Populating Input-Outputs
	Slide 55: Interface Context: Populating Input-Outputs continued
	Slide 56: Interface Context: Populating Interfaces
	Slide 57
	Slide 58: Interface Context: Populating Systems of Access (SOAs)
	Slide 59: Interface Context: Populating Ports
	Slide 60: Interface Context: Ports, Table ICT1
	Slide 61: Interface Context: Ports, Table ICT1
	Slide 62: Interface Context: Ports, Table ICT1
	Slide 63: Interface Context: Ports, Table ICT2
	Slide 64: Interface Context: Ports, Table ICT2
	Slide 65: Interface Context: Architectural Relationships, Table ICT4
	Slide 66: Interface Context: Architectural Relationships, Table ICT4
	Slide 67: Interface Context: Architectural Relationships, Table ICT5
	Slide 68: Interface Context: Architectural Relationships, Table ICT5
	Slide 69: Attribute Couplings
	Slide 70
	Slide 71: Failure Analysis: Creating Failure Impacts
	Slide 72: Failure Analysis: Creating Counter Requirements
	Slide 73: Failure Analysis: Creating Failure Mode State Machine and Failure Modes
	Slide 74: Failure Analysis: Creating Failure Modes
	Slide 75: Failure Analysis: Creating Failure Mode Context
	Slide 76
	Slide 77: Metarelationships: Creating Stakeholder-Feature Relationships
	Slide 78: Metarelationships: Creating Feature-Interaction Relationships
	Slide 79
	Slide 80: Metarelationships: Creating Feature-Interaction Relationships
	Slide 81: Metarelationships: Creating State-Interaction Relationships
	Slide 82: Metarelationships: Creating Interaction-Role Relationships
	Slide 83: Metarelationships: Creating Interaction-Role Relationships
	Slide 84
	Slide 85: Metarelationships: Creating Functional Role Allocations (Role-Design)
	Slide 86: Metarelationships: Creating Functional Role Allocations (Role-Design)
	Slide 87: Metarelationships: Creating Failure Analysis Relationships—Impacts Feature
	Slide 88: Metarelationships: Creating Failure Analysis Relationships—Causes Impact
	Slide 89: Metarelationships: Creating Failure Analysis Relationships—Replaces
	Slide 90: Metarelationships: Creating Failure Analysis Relationships—Causes Behavior
	Slide 91: Metarelationships: Creating Failure Analysis Relationships—Abnormal State Of
	Slide 92: Metarelationships: Creating Failure Analysis Relationships—Provides Failure Mode Context
	Slide 93: Metarelationships: Creating Failure Analysis Relationships—Provides Failure Context
	Slide 94
	Slide 95: Population Rules: Editing Interaction Population Rules
	Slide 96
	Slide 97
	Slide 98: Population Rules: Editing Role Population Rules
	Slide 99: Population Rules: Editing Requirement Population Rules
	Slide 100: Population Rules: Editing Requirement Population Rules
	Slide 101: Population Rules: Editing Physical System (Design Component) Population Rules
	Slide 102: Population Rules: Table ICT1 Population Rules
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: Exporting Pattern Tables Using the Report Wizard
	Slide 112: Emptying the Configured Model Packages Before the Import
	Slide 113: Importing the Configured Model Data
	Slide 114: Importing the Configured Model Data

