

Optimizing Delivery of Global Pharmaceutical Packaging Solutions, Using Systems Engineering Patterns

Jeffrey Lee Bradley, Mark Thomas Hughes Eli Lilly and Company

William Schindel ICTT System Sciences

Drivers for New Legislations & Regulations

- Drivers for New Legislation and Regulation-
 - Patient Risk
 - Compromise course of treatment.
 - In countries with reimbursement, fraud growing:
 - Requests for reimbursement for counterfeit or non-existent medication.
 - Counterfeit or Diverted medicines growing problem for patients:
 - WHO (World Health Organization) estimated of counterfeits in the legitimate global drug supply:
 - » <1% for developed markets,</p>
 - » But in many African countries, and in parts of Asia, Latin America, and countries in transition, a much higher percentage of the medicines on sale may be counterfeit
- > Additional legislation may effect Serialization
 - Tamper Evident requirements in the EU

- Current or proposed legislation calls for either:
 - "Track and Trace":
 - Uniquely serialized product units tracked through entire supply chain—from point to point;
 - Includes tracking unique serial numbers at each level of package hierarchy, including parent-child pairings.
 - "Authentication":
 - Only the unit item of sale is uniquely serialized and checked at the point of sale.

- ➤ The overall system:
 - Distributes critical products from production to consumption;
 - Manufacturing Sites, Regional Distribution Centers,
 Retail Distribution Center, Retail Pharmacies or Hospitals;
 - May involve re-packaging for market segments;
 - Wholesales and retailers also sell to each other;
 - Product moves from country to country;
 - May also involve contract manufacturing;
 - Chain configured differently by enterprise, country, product;
 - A complex, dynamically reconfigurable system!

- ➤ Information system issues of packaging:
 - Traditionally complex;
 - Additional complexity now being added by emergence of Pharma Product <u>Serialization</u>...
- Information systems coordinate allocation of <u>unique</u> <u>serialized label identifiers</u> for saleable <u>units</u> (bottles, etc.)—uniqueness coordinated across the global enterprise;
- Resulting serial number data stream history made available to downstream distribution points:
 - Parallels the downstream flow of physical packaged product.
 - Synchronized delivery of data with physical delivery of product.

- Variable configuration package hierarchy;
 - Unit (e.g., Vial, Blister, Bottle, Carton)
 - Bundle
 - Case
 - Pallet
 - Order
- Varies by product type
- Distribution system breaks down and re-builds packaging hierarchy at various points in the supply chain.

Packaging lines:

- Packages or re-packages products;
- Insertion of complex, regulated literature;
- Companies have multiple lines across globe;
- Lines at production sites, others at distribution sites;
- Lines configured for specific products;
- Regulatory approval for specific countries, products;
- Thousands of product variants at some sites;
- Differ by product, literature, inserts, labeling.

Value Proposition

 Uniquely serialized product may also support other business processes.

> Examples:

- Complaint investigations;
- Recalls;
- Marketing applications.

Customers dream dreams...

Engineers build them...

- "Hypothet Pharmaceuticals" has packaging operations in 10 countries, serving 160 markets;
- Different products and presentations (strengths, sizes, counts) result in 5,000 SKUs;
- There are 100 packaging lines—not all lines serve all products or markets;
- Hypothet also has agreements with 3 Contract Manufacturers, with locations in 6 countries serving 80 markets.
- Must deal with transition period (years) on both serialized and non-serialized products

Hypothet Pharmaceuticals

- Two challenges face the enterprise:
 - Understanding the requirements and design of end-to-end Packaging Serialization Systems well enough to develop or purchase a solution that can be applied within regulatory timelines;
 - Understanding the delivery process to implement the technical solution across the breadth of global lines and locations.
 - At the right time at the right price!

Domain Diagram

- > The requirements and design variability challenge:
 - Accommodate unique local needs essential to specific legal and regulatory authorities and product lines, but . . .
 - Preserve as much common content as possible across the globe, to maximize leverage.
- "Variable sameness":
 - Similar to the challenges of product lines, platforms, and configurable enterprise systems;
 - For good business reasons, be both standard and unique at the same time.

- > The delivery system challenge:
 - Processes to deliver, install, and qualify changes to existing pharma packaging lines, which are themselves complex systems;
 - Individual sites include differences in business practices, local support contractors, equipment, and other related processes.
- Understanding the delivery process as a configurable system in its own right:
 - In this global program, we created systems engineering models of both the delivered system (what) and the delivery system (how).

Scientists dream them...

- Common <u>design solution</u> content begins with common system <u>requirements</u>:
 - Two different countries' solutions need to share at least some common <u>requirements</u> if they are to share some common <u>design</u>;
 - Pattern of common requirements, configurable to local needs:

- ➤ Configurable Model-Based Requirements, Designs:
 - Lilly developed configurable Patterns for packaging systems and their delivery process;
 - Using Pattern-Based Systems Engineering (PBSE);
 - Patterns are configurable "Models" of requirements and designs;
 - These configurable models include multiple structured information components . . .

> Components of the configurable SE models:

- Domain Model: system boundary, diagram, external interfaces, actors;
- Stakeholder Feature Model: stakeholders, features, attributes;
- State Model: states, transitions, events;
- Interactions Model: Functional interactions, roles, attributes;
- System Requirements Model: Statements, attributes;
- Physical Architecture: physical components, relationships, attributes;
- Additional model components: Verification methods, etc.

- > Pharma manufacturer's use of PBSE:
 - Lilly-specific patterns are considered a proprietary IP asset, but . .
 - The general methodology is more widely known, and illustrated by . . .
- Simplified examples:
 - Feature: Package Serialization—The feature of generating labelled packages with unique serial number label data and matching information system records, in support of fraud reduction and other applications.
 - State: Line Running—The operational state in which the packaging line is applying serialization data to packages.
 - Interaction: Apply Package Label Data—The interaction of the packaging line with packages, during which label data is applied to the packages.
 - Requirement: "The system shall apply package label data as indicated by the [Label Data Parameter and Format Table] to the package, at a line rate of up to [Max Packaging Line Rate]."

Constructing patterns:

- The investment of effort to construct this pattern was on the same order of magnitude as the effort projected to specify a single packaging line;
- But, we obtained a re-usable pattern asset;
- This also helped leverage a global procurement process that might otherwise be addressed one purchase order at a time, increasing ability to leverage suppliers.

- Validating and applying patterns:
 - We validated the Packaging Serialization Pattern by using it to describe the requirements and design of a reconfigurable captive test packaging line;
 - Reviewed results by company engineers as well as system suppliers;
 - Pattern used to generate requirements for the RFP against which bidders wrote proposals, as the basis of contracts, and to generate acceptance tests;
 - Requirements were found to be significantly more complete than would have typically been delivered for a complex new system without using these techniques.

> Additional work:

- Work still underway on the development and use of the configurable delivery process pattern.
- Incorporation of learning into the pattern we plan to use numerous times.

References

- 1. Global supply chain standards: www.gs1.org
- 2. Schindel, W. 2005a. "Requirements statements are transfer functions: an insight from model-based systems engineering", *Proceedings of INCOSE 2005 Symposium*, July, 2005.
- 3. ---. 2005b. "Pattern-Based Systems Engineering: An Extension of Model-Based SE", INCOSE IS2005 Tutorial TIES 4.
- 4. Schindel, W., and Smith, V. 2002. "Results of applying a families-of-systems approach to systems engineering of product line families", SAE International, Technical Report 2002-01-3086, November, 2002.