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Abstract: The triumphs of the physical sciences, and their exploitation by engineering 

disciplines founded on them, have powered much of the acceleration of progress in 

human life during the last three centuries. Central to this progress has been the 

extraction of simplifying patterns from the bewildering complexity of Nature, yielding 

powerful laws that predict, explain, and permit synthesis of engineered systems. Today 

we are seeing a recapitulation of this history, as information technology enables both 

Big Data and its projection onto System Patterns that compress and extract meaning. 

In this talk, the take-aways we will summarize are how S*Patterns from the world of 

Model-Based Systems Engineering (MBSE) are used (1) to accelerate the federation 

of the Digital Thread using existing enterprise databases, engineering tools, telemetry 

and information systems, and the data they already contain, (2) to harvest MBSE 

product line engineering (PLE) patterns from existing legacy product information, and 

(3) to enhance effective life cycle collaboration between different organizations and 

specialists. Targeted audiences include practicing systems engineers, business and IT 

strategists, process owners, and organizational leaders.
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Compression: Sense-making in an increasingly complex 
world

• Human-engineered and human-impacted systems are increasing in complexity:
• Global information networks
• Systems for distribution of goods and services

• Agriculture to feed a growing population from fixed lands
• Economic systems—regional, national, global

• Urban infrastructure systems 
• Health care delivery and epidemiology 

• Proliferation of cyber-physical systems and the Internet of Things

• Local, regional, global transportation systems
• Systems of innovation, engineering, advanced manufacturing, and sustainment

• Government, other sociotechnical systems 
• Defense systems 

• How to make sense, manage, and succeed, across system life cycles, in the 
face of exploding complexity?  
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Patterns compress and order complexity 
• The triumphs of the physical sciences, and their exploitation by 

engineering disciplines founded on them, have powered much of the 
acceleration of progress in human life during the last three centuries. 

• Central to this progress has been the extraction of simplifying patterns 
from the bewildering complexity of Nature, yielding powerful laws that 
predict, explain, and permit synthesis of engineered systems: 

• Today we are seeing a recapitulation of this history, as information 
technology enables both Big Data and its projection onto System Patterns 
that compress and extract meaning for the pragmatic uses of society. 

Seemingly 
Complex
Behavior

Predictive or 
explanatory pattern
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Historical Example: Chemistry

• The transition from rhetoric and mystery of alchemy to the impactful success 

of chemistry was driven by finding models that compressed the bewildering 

complexity of nature and behavior of chemically interacting matter into an 

understandable modeled explanatory and predictive framework:

• A view that emerged from the scientific discovery and verification of laws of Chemistry.

• Chemical Elements and their Chemical Properties, organized by the discovered patterns 
of the Periodic Table.

• Chemical Bonds, Chemical Reactions, Reaction Rates, Chemical Energy, Conservation 
of Mass and Energy.

• Chemical Compounds and their Properties.

Pauling: Chemical Bond
Mendeleev: Periodic TablePriestley : Oxygen

Modern Chemist Periodic Table of the Elements
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Historical Example: The 
Gas Laws

• The discovered and verified laws of gases and of compressible and 

incompressible fluid flow by Boyle, Avogadro, Charles, Gay-Lussac, 

Bernoulli, and others are rightly viewed as fundamental to science and 

engineering disciplines:

• Pressure, Temperature, Flow

• Laws of Thermodynamics

• As in the case of Chemistry, the underlying models discovered were based upon 

characterizing interactions of components entities, and the emergent character of 

the larger observed systems.

BoltzmannBoyle Daniel Bernoulli
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Patterns compress and organize apparent complexity 

But, this does not mean that everything our community has been calling 
“System Models” are credible and capable of that compression.  

Seemingly 
Complex
Behavior

Predictive or 
explanatory 
pattern
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Patterns compress and organize complexity 
• Patterns are recurrences, across time, space, or other indices.

• Most patterns have a fixed (recurring) part and a varying (different in 
various instances) part, e.g.:

• the Gas Laws apply to multiple gaseous measurements, with 
repeating quantitative relationships (the formulae), but varying 
instance values for the state variables (pressure, volume, 
temperature, flow rate, density).

• Database models apply to each record and its relationship to other 
records, over and over, but the values of data within the records 
varies.

• We will see that Patterns provide compression, in the form of the  
variable part, with the fixed part receding as background. 

• Example: The Ethernet 802.xx specification describes a 
general pattern for local area network use:

• It can be configured for different bandwidth and other network 
parameters.

• This allows us to say (in compressed domain specific language) 
that we have a “100 MB Ethernet network”.

• This is much more compressed than repeating the whole Ethernet 
specification!

Fixed Part

Variable 
(Configurable) 

Part

Configurable 
Pattern

9



Patterns compress and organize complexity 

Fixed Part

Variable 
(Configurable) 

Part

Configurable 
Pattern
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Big Data, Small Data, and Metadata

• Typically, we say that “Big Data” is . . . 
• Very large information system data sets, beyond what previous generation 

information technologies (e.g., relational databases) can effectively handle;

• Relatively less uniformly structured data, such as messages, social media 
data, web pages, dissimilar records;

• Challenging to visualize using earlier generation data views and viewers;

• Data sets that might be processed by “predictive analytics” algorithms to 
extract (“learn”) underlying patterns. 



Big Data, Small Data, and Metadata
• Typically, we say that “Metadata” is “data about other data”, as in:

• Database models that describe other data

• In messages (e.g., phone calls or email message), separated from the “payload” of 
the message, describing other facts about it, such as origin, destination, time, priority

• Information about related data ownership, type, time, or other aspects of related data

• Reference to the relevant S*Pattern elements describing some aspects of an 
S*Model or other data described by an S*Model. 

• The Metadata may be dispersed into and stored or transported with the 
data it describes, or may be elsewhere but referenced by the data it 
describes

Database

E-R Data Model

Describes
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• The S*Metamodel:
• is a model of other models, but language and tool independent (maps to any)

• describes the smallest amount of information necessary for purposes of 
engineering or science or life cycle management. 

• is Metadata with respect to any system model it describes.

• An S*Model is any model that corresponds to the S*Metamodel
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Big Data, Small Data, and Metadata

• An S*Pattern is a general, configurable, re-usable 

S*Model that describes a family of systems, and 

which can be configured as  specific S*Models for 

different members of the family.

• Each of them provides a compression of the type, 

consisting of the variable (configurable) values.
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Big Data, Small Data, and Metadata

• An S*Pattern is metadata with respect to any specific S*Model 
configured from the S*Pattern.

• The S*Metamodel is itself an S*Pattern.

• So, the S*Metamodel, S*Models, and S*Patterns are all Metadata with 
respect to the more specific models they each describe.

• Each describes a Domain Specific Language (DSL) for its own abstract 
or specific domain, so that “sentences” (models) can be expressed in 
that DSL . . . 
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The Digital Twin vs. diverse life cycle 
systems data

What is a Digital Twin?
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The Digital Twin vs. diverse life cycle 
systems data

• By “digital twin”, we mean:
• A (digital) data representation of a system of interest

• Capturing all the aspects of interest over the system’s life cycle

• Including time-based dynamic behavioral as well as static aspects

• For use in the life cycle management of the system

Real 
System

Digital 
Twin



The Digital Twin vs. diverse life cycle 
systems data

• For all the interest in it, the term “digital twin” is relatively new.

• There are many examples of engineering tools and life cycle management systems 

that cover partial “slices” of information:
• Requirements tools

• CAD tools and tool chains

• Production recipes and databases

• Maintenance and trouble recording systems

• PDM and PLM systems

• Performance data recording and analysis systems 

• Configuration management systems

• Etc.

• It is arguable as to whether there are (so far) real industry examples of digital twins 

that cover the full range of dynamic and static historical data of all types covering life 

cycle management, in any single system.
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The Digital Twin vs. diverse life cycle 
systems data

• A perceived obstacle to such a fully integrated Digital Twin is 
that the existing available data is spread across many dissimilar 
information systems:

• The perceived challenge is not just that the systems are separate . . . 

• But that their information models (semantics) are also completely 
different.

• So that a user wanting to navigate the life cycle data in an integrated 
way is frustrated by these apparent barriers.

• What to do?
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The Digital Twin vs. diverse life cycle 
systems data

Solution: S*Metadata provides virtual integration of a Digital Twin 
across existing “incompatible” data systems:
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Harvesting product line simplicity from 
legacy complexity, through compression

• Legacy product lines grow up over years of efforts by multiple 
teams and acquisitions 

• These become difficult to manage as effectively as a platform-based 
product line that has been developed from the beginning using Product 
Line Engineering (PLE) methods

• But, we don’t always have the option of starting from scratch to create 
a new product line

• How to harvest a pattern-based product line from a set of legacy 
products?

• The answer is to extract a common S*Pattern from a set of 
legacy products, by the Method of Projections . . .
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Harvesting product line simplicity from 
legacy complexity, through compression

Projections, the INCOSE PLE WG – Patterns WG joint project:



Knocking down organizational and 
marketplace walls, integrating stovepipes, and 
improving collaboration

• The following is the human equivalent problem of the previous IT 
systems problem . . . 

• It is a well-known challenge that different organizations within an 
enterprise can become “silos” that don’t interact effectively, from 
the perspective of a customer or other stakeholder.

• Likewise, different segments of a market or domain can become silo’ed in 
a ways that are disadvantageous to the global outcome. 

• One reason for this is the silo’ing of the languages and frameworks of 
communication and interaction of these segments.

• How to extract of common sheet of music when there are different 
frameworks in use by the different players?
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Knocking down organizational and marketplace walls, 
integrating stovepipes, and improving collaboration

“Uncover the Pattern” is a S*Pattern-facilitated process for group 
discovery of the underlying common portion of a unifying pattern, as well 
as the legitimate differences that should be retained through the 
configurable part of the pattern.
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Knocking down organizational and 
marketplace walls, integrating stovepipes, and 
improving collaboration

• Note especially that credibility of (trust in) the models/patterns is 
of particular importance:

• Model credibility has become a key issue as models become more 
prominent.

• V4I: the Virtual Verification, Validation, and Visualization Institute

• See also the session in this conference on collaboration across 
professional societies and regulators, facilitated by uncovered 
patterns 
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What you can do

• Join the activities of the INCOSE Patterns Working Group—
bring a project of your own if you’d like.

• Participate in the S*Patterns Community and learn about the 
S*IP Landscape

• Conduct an Uncover the Pattern (UTP) project.  

• Assess the credibility of your model with the V4I Institute.
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Discussion, Questions

•

•

•

•

•
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