
Aeronautics and Astronautics
MIT

A Paradigm Change for Safety and
for System Engineering

Prof. Nancy G. Leveson

1

Copyright © 2023 by Nancy Leveson. All rights reserved.

Bottom-Line Up Front (BLUF)

 Our methods and tools are being swamped by the complexity in the
systems we are trying to build.

 New causes of losses appearing (not just component failures).

 To make progress, we need a paradigm change in
– Engineering for safety

– MBSE models and tools

– General system engineering approaches (FUSE)

General Definition of “Safety”

Accident = Mishap = Loss: Any undesired and
unplanned event that results in a loss
– Loss of human life or injury
– Property damage,
– Environmental pollution,
– Mission loss,
– Loss of protected information,
– Negative business impact (damage to reputation, etc.),
– etc.

 Includes inadvertent and intentional losses (security)

3

What is the Problem?

The first step in solving any
problem is understanding it.

“It’s never what we don’t know that stops us.
It’s what we do know that just ain’t so.”

Our current safety tools are all 50-75 years old
but our technology is very different today

1940 20101980 202019901950 1960 1970 2000

FMEA FTA
HAZOP

ETA

 Introduction of computer control
 Exponential increases in complexity
 New technology
 Changes in human roles

Assume accidents
caused by component

failures

© Copyright Nancy Leveson, June 2011
5

STPA

Warsaw A320 Accident

• Software protects against activating
thrust reversers when airborne

• Hydroplaning and other factors made the software think the
plane had not landed

• Pilots could not activate the thrust reversers and ran off end of
runway into a small hill.

6

Boeing 787 Lithium Battery Fires

7
© Copyright John Thomas 2016

Models predicted 787 battery
thermal problems would occur
once in 10 million flight
hours…but two batteries
overheated in just two weeks in
2013

• A module monitors for smoke
in the battery bay, controls
fans and ducts to exhaust
smoke overboard.

• Power unit monitors for low
battery voltage, shut down
various electronics, including
ventilation

• Smoke could not be
redirected outside cabin

• Shut down various electronics including
ventilation.

• Smoke could not be redirected outside cabin

Boeing 787 Lithium Battery Fires

8

All software requirements were satisfied!
The requirements were unsafe

© Copyright John Thomas 2016

Software engineering focuses on implementing the
requirements and validating it

• Ensure rigor placed on design and test

• Level of rigor in producing the software design or DAL (design
assurance level) has almost nothing to do with system safety.

Autopilot
Expert Requirements Software

Engineer
Design

of
Autopilot

  

SIL/LoR

9

The role of software in accidents almost always involves
flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

• Level of rigor in producing the software design or DAL (design
assurance level) has almost nothing to do with system safety.

• The problem is context

Autopilot
Expert Requirements Software

Engineer
Design

of
Autopilot

  

SIL/LoR

10

Software has Revolutionized Engineering (2)

3. The role of software in accidents almost always involves
flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

• Only trying to get the software “correct” or to make it reliable
will not make it safer under these conditions

Autopilot
Expert Requirements Software

Engineer
Design

of
Autopilot

  

SIL/LoR

Safe or Unsafe?

12

Safety Depends on Context

13

Example: Safety Always Depends on Context

Ariane 4 IRS (Inertial Reference Software)

Ariane 5 IRS (reused same software)

Two Types of Accidents

• Component Failure Accidents
– Single or multiple component failures
– Usually assume random failure

• Component Interaction Accidents
– Arise in interactions among components
– Related to complexity (coupling) in our system designs, which

leads to system design and system engineering errors
– No components may have “failed”
– Exacerbated by introduction of computers and software but the

problem is system design errors
• Software allows almost unlimited complexity in our designs

15

The picture can't be displayed.

It’s only a random
failure, sir! It will
never happen again.

It’s only a random
failure, sir! It will
never happen again.

Reliability and safety are different properties today

A BC

Unreliable but not unsafe
(FMEA)

Unsafe but not unreliable
(STPA)

Unreliable and unsafe
(FTA, HAZOP, FMECA, STPA …)

Confusing Safety and Reliability

Preventing Component or Functional
Failures is Not Enough

Scenarios
involving failures

Unsafe
scenarios

18

Human factors
concentrates on the
“screen out”

Hardware/Software
engineering
concentrates on the
“screen in”

19

Not enough attention on integrated
system as a whole

(e.g, mode confusion, situation
awareness errors, inconsistent
behavior, etc.

20

The Problem
• Traditional safety approaches do not work on today’s systems

– Don’t handle complex systems, software, new roles for humans,
management, social systems

– Start too late – need a design first

– Hardware, humans, software all treated separately

• No way to extend them as the underlying assumptions do not fit
today’s systems

• We need a paradigm change

We Need Something New
• New levels of complexity, software, human factors do not fit

into a reliability-oriented world.

• Two approaches being taken now:

Pretend there is no problem
Shoehorn new technology and new
levels of complexity into old methods

The Problem is Complexity

• We need:

– New theoretical foundation(s)

– New modeling languages and tools (based on that foundation)

23

1. New Theoretical Foundation

Three ways to cope with complexity:

1. Analytical Decomposition

2. Statistics

3. Systems Theory

Analytic Decomposition (“Divide and Conquer”)

Analyze/examine pieces separately and combine results

C1

C3
C4

C2
C5

E1 E2 E5E3 E4

 Assumes such separation does not distort phenomenon
 Each component or subsystem operates independently

 Components act the same when examined singly as when playing
their part in the whole

 Components/events not subject to feedback loops and non-linear
interactions

 Interactions can be examined pairwise

25

Typical Decomposition Approach (ARP 4761)

26

First, decompose top-down into components

Then combine individual component analyses bottom up
(omit software and humans)

27

Degree of
Randomness

Degree of Coupling/Complexity

Analytic
decomposition)

Statistical Analysis

Today’s systems

[Credit to Gerald Weinberg] 28

Prevent failures
or errors

Treat Safety as a
Control Problem

Treat Safety as a
Reliability Problem

Enforce constraints on
behavior:

– components
– interactions among

components

29

Here comes the paradigm change!

Systems Theory

• Developed for systems that are
– Too complex for complete analysis

• Separation into (interacting) subsystems distorts the results
• The most important properties are emergent

– Too organized for statistics
• Too much underlying structure that distorts the statistics
• New technology and designs have no historical information

• First used on ICBM systems of 1950s/1960s

System Theory was created to provide a more
powerful way to deal with complexity

Emergent properties
(arise from complex interactions)

Process

Process components interact in
direct and indirect ways

The whole is greater than
the sum of its parts

System Theory

31

Safety and security are emergent properties
(but not the only ones)

Controller
Controlling emergent properties
(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior
Component interactions

Process components interact in
direct and indirect ways

32

A Broad View of “Control”
Component failures and unsafe interactions may be “controlled”

through design
(e.g., redundancy, interlocks, fail-safe design, …)

or through process
– Manufacturing processes and procedures
– Maintenance processes
– Operational processes

or through social controls
– Governmental or regulatory
– Culture
– Insurance
– Law and the courts
– Individual self-interest (incentive structure)

33

Controls/Controllers Enforce Constraints

• Aircraft must maintain sufficient lift to remain airborne

• Aircraft, autos must maintain minimum separation

• Public health system must prevent exposure of public to
contaminated water, food products, and viruses

• Pressure in a offshore well must be controlled

• Integrity of hull must be maintained on a submarine

• Toxic chemicals/radiation must not be released from plant

• Workers must not be exposed to workplace hazards

34

These represent the system-level requirements
on the sociotechnical system

Controlled Process

Process
Model

Control Actions
(via actuators)

Feedback
(via sensors)

Treating Safety as a Control Problem

• Controllers use a process model to
determine control actions

• Software/human related accidents
usually occur when the process
model is incorrect (inconsistent with
real state of process)

• Captures software errors, human
errors, flawed requirements …

Controller (Human, Automation)

35

Control
Action

Generator

Warsaw (Reverse Thrusters)

36

Hazard: Inadequate aircraft
deceleration after landing

Aircraft

Pilot

Decision
Making

Process
Model

Software Controller

Control
Algorithm

Process
Model

Warsaw (Reverse Thrusters)

37

Hazard: Inadequate aircraft
deceleration after landing

Aircraft

Pilot

Decision
Making

Process
Model

Software Controller

Control
Algorithm

Process
Model

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

38

Hazard: Inadequate aircraft
deceleration after landing

Aircraft

Pilot

Decision
Making

Process
Model

Software Controller

Control
Algorithm

Process
Model

Plane has not
landed

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

39

Hazard: Inadequate aircraft
deceleration after landing

Aircraft

Pilot

Decision
Making

Process
Model

Software Controller

Control
Algorithm

Process
Model

Plane has
landed

Plane has not
landed

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

40

Hazard: Inadequate aircraft
deceleration after landing

Aircraft

Pilot

Decision
Making

Process
Model

Software Controller

Control
Algorithm

Process
Model

Plane has
landed

Turn on reverse
thrusters

Plane has not
landed

Feedback indicates
plane has not

landed

Warsaw (Reverse Thrusters)

41

Hazard: Inadequate aircraft
deceleration after landing

Aircraft

Pilot

Decision
Making

Process
Model

Software Controller

Control
Algorithm

Process
Model

Plane has
landed

Turn on reverse
thrusters

Ignore
command

Plane has not
landed

Feedback indicates
plane has not

landed

Models include Social Factors

Model of Vehicle

2. New modeling languages and tools

Models Filter Out “Irrelevant” Information
(for problem being solved)

Z X E

E
C

E

Y

R

E
B

E
E

C

A

C

C

Z

R

E

E

45

Physical Structure of a Spacecraft

Attitude Control System (ACS)

Star Tracker
(STT)Inertial Controller

Reaction
Wheels

Magnetic
Torquer

RCS
Thrusters

Star
Imaging

Coarse Sun
Aspect
Sensor
(CSAS)

Attitude Controller

Reaction
Controller

Inertial
Reference
Unit (IRU)

Inertial
Sensors

Ground Station

Accelerate,
decelerate

Coil #1-
3 on/off

Fire
thrusters

(#1-8)
Star locations
Stars not found

Bias rate
estimates

X,Y,Z
angular
acceleration
s

X,Y,Z
angular
velocities

Sun detected
Sun location

Acquire
Track
Etc?

On
Off X,Y,Z

angular
velocities

Desired X,Y,Z
acceleration,
RCS control
parameters

Success/fail
Fault
detected

Attitude correction
commands (X,Y,Z

rotational
acceleration)

Success/fail
Detected
faults

RCS control parameters
Manual attitude correction commands

All status information (when visible)

Functional Structure

©

Automated
Controllers

Physical processes

Attitude
Controller

Navigation
Controller

Thomas, 2018

C
on

tr
ol

The model used will impact the apparent complexity of the system

Does it Work? Extensive Industrial Use of STAMP

• Book came out about 10 years ago

• 2,000 - 3000 attendees (85 countries) at
yearly workshop

• Standards (SAE, ISO, IEEE)

• STPA Handbook
– 200,000+ downloads in last 3 years
– Translated into Japanese, Korean, two forms of Chinese

• Hundreds of controlled and empirical (industry)
experiments and studies

– All show more powerful than old techniques
– Some data to suggest orders of magnitude less expensive

49

Security Too: STPA applied to one DoD program before
SolarWinds attack

Michael Bear (BAE), John Thomas (MIT), Col. William Young (USAF)

• Program that used STPA was protected from SolarWinds

• Vulnerabilities found by STPA Later exploited by SolarWinds attackers
Not exploited by SolarWinds attackers

50

What this paradigm change can produce:

• Top-down design from concept development: create
requirements, architecture, and design using STPA analysis to
guide tradeoffs

– Build safety (other qualities) in vs. trying to assure it after the
fact

• Leading indicators of increasing risk

• Sophisticated teaming between humans and automation

• Any emergent property: mission assurance, security,
serviceability, quality

• Etc.

51

Envisioned Systems of the Future
• Complex interactions among humans and automation beyond

current modeling, analysis, design, and assurance methods

(Kopeikin)

• Lateral coordination
• Dynamic connectivity
• Transfer of authority

(dynamic authority)
• Shared authority

• Dynamic hierarchy
• Dynamic membership
• Mutually closing loops
• Cognitive alignment
• …

MUM-T (Manned-Unmanned Teaming)

Mission 1

Human/Automation

Human/Automation H/ACoord …

Human/AutomationCoord

Mission 2

H/A …

Complex Human−Machine Teaming
Lt. Col. Andrew Kopeikin, USAF

Bottom-Line Up Front (BLUF)

Our methods and tools are being swamped by the complexity
in the systems we are trying to build.

New causes of losses appearing (not just component failure).

To make progress, we need a paradigm change in
– Engineering for safety
– MBSE models and tools
– General system engineering approaches (FUSE)

	Aeronautics and Astronautics�MIT
	Bottom-Line Up Front (BLUF)
	General Definition of “Safety”
	What is the Problem?
	Our current safety tools are all 50-75 years old�but our technology is very different today
	Warsaw A320 Accident
	Boeing 787 Lithium Battery Fires
	Boeing 787 Lithium Battery Fires
	Software engineering focuses on implementing the requirements and validating it�
	The role of software in accidents almost always involves flawed requirements
	Software has Revolutionized Engineering (2)
	Slide Number 12
	Safety Depends on Context
	Example: Safety Always Depends on Context
	Two Types of Accidents
	Slide Number 16
	Slide Number 17
	Confusing Safety and Reliability
	Slide Number 19
	Slide Number 20
	The Problem
	We Need Something New
	The Problem is Complexity
	1. New Theoretical Foundation
	Slide Number 25
	Typical Decomposition Approach (ARP 4761)
	Then combine individual component analyses bottom up (omit software and humans)
	Slide Number 28
	Here comes the paradigm change!
	Systems Theory
	Slide Number 31
	Slide Number 32
	A Broad View of “Control”
	Controls/Controllers Enforce Constraints
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Models include Social Factors
	Model of Vehicle
	2. New modeling languages and tools
	Models Filter Out “Irrelevant” Information�(for problem being solved)
	Physical Structure of a Spacecraft
	Slide Number 47
	Functional Structure
	Does it Work? Extensive Industrial Use of STAMP
	Security Too: STPA applied to one DoD program before SolarWinds attack
	 What this paradigm change can produce:
	Envisioned Systems of the Future
	Complex Human−Machine Teaming�Lt. Col. Andrew Kopeikin, USAF
	Bottom-Line Up Front (BLUF)

