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Bottom-Line Up Front (BLUF)

 Our methods and tools are being swamped by the complexity in the 
systems we are trying to build.

 New causes of losses appearing (not just component failures).

 To make progress, we need a paradigm change in 
– Engineering for safety

– MBSE models and tools

– General system engineering approaches (FUSE)



General Definition of “Safety”

Accident = Mishap = Loss: Any undesired and 
unplanned event that results in a loss
– Loss of human life or injury
– Property damage, 
– Environmental pollution, 
– Mission loss, 
– Loss of protected information, 
– Negative business impact (damage to reputation, etc.), 
– etc. 

 Includes inadvertent and intentional losses (security)
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What is the Problem?

The first step in solving any 
problem is understanding it.

“It’s never what we don’t know that stops us. 
It’s what we do know that just ain’t so.”



Our current safety tools are all 50-75 years old
but our technology is very different today
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 Introduction of computer control
 Exponential increases in complexity
 New technology
 Changes in human roles

Assume accidents 
caused by component 

failures
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Warsaw A320 Accident

• Software protects against activating 
thrust reversers when airborne

• Hydroplaning and other factors made the software think the 
plane had not landed

• Pilots could not activate the thrust reversers and ran off end of 
runway into a small hill.
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Boeing 787 Lithium Battery Fires
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Models predicted 787 battery 
thermal problems would occur 
once in 10 million flight 
hours…but two batteries 
overheated in just two weeks in 
2013



• A module monitors for smoke 
in the battery bay, controls 
fans and ducts to exhaust 
smoke overboard.

• Power unit monitors for low 
battery voltage, shut down 
various electronics, including 
ventilation

• Smoke could not be 
redirected outside cabin

• Shut down various electronics including 
ventilation.

• Smoke could not be redirected outside cabin

Boeing 787 Lithium Battery Fires
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All software requirements were satisfied!
The requirements were unsafe
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Software engineering focuses on implementing the 
requirements and validating it

• Ensure rigor placed on design and test

• Level of rigor in producing the software design or DAL (design 
assurance level) has almost nothing to do with system safety.

Autopilot 
Expert Requirements Software

Engineer
Design    

of 
Autopilot

  

SIL/LoR
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The role of software in accidents almost always involves 
flawed requirements

– Incomplete or wrong assumptions about operation of controlled 
system or required operation of computer

– Unhandled controlled-system states and environmental 
conditions

• Level of rigor in producing the software design or DAL (design 
assurance level) has almost nothing to do with system safety.

• The problem is context

Autopilot 
Expert Requirements Software

Engineer
Design    

of 
Autopilot

  

SIL/LoR
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Software has Revolutionized Engineering (2)

3. The role of software in accidents almost always involves 
flawed requirements

– Incomplete or wrong assumptions about operation of controlled 
system or required operation of computer

– Unhandled controlled-system states and environmental 
conditions

• Only trying to get the software “correct” or to make it reliable 
will not make it safer under these conditions

Autopilot 
Expert Requirements Software

Engineer
Design    

of 
Autopilot

  

SIL/LoR



Safe or Unsafe?
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Safety Depends on Context
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Example: Safety Always Depends on Context

Ariane 4 IRS (Inertial Reference Software)

Ariane 5 IRS (reused same software)



Two Types of Accidents

• Component Failure Accidents
– Single or multiple component failures
– Usually assume random failure

• Component Interaction Accidents
– Arise in interactions among components
– Related to complexity (coupling) in our system designs, which 

leads to system design and system engineering errors
– No components may have “failed”
– Exacerbated by introduction of computers and software but the 

problem is system design errors
• Software allows almost unlimited complexity in our designs
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It’s only a random 
failure, sir! It will 
never happen again.



It’s only a random 
failure, sir! It will 
never happen again.

Reliability and safety are different properties today



A BC

Unreliable but not unsafe
(FMEA)

Unsafe but not unreliable
(STPA)

Unreliable and unsafe
(FTA, HAZOP, FMECA, STPA …)

Confusing Safety and Reliability

Preventing Component or Functional 
Failures is Not Enough

Scenarios 
involving failures

Unsafe
scenarios
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Human factors
concentrates on the 
“screen out”

Hardware/Software
engineering
concentrates on the 
“screen in”

19



Not enough attention on integrated 
system as a whole

(e.g, mode confusion, situation 
awareness errors, inconsistent 
behavior, etc.
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The Problem
• Traditional safety approaches do not work on today’s systems

– Don’t handle complex systems, software, new roles for humans, 
management, social systems

– Start too late – need a design first

– Hardware, humans, software all treated separately

• No way to extend them as the underlying assumptions do not fit 
today’s systems

• We need a paradigm change



We Need Something New
• New levels of complexity, software, human factors do not fit 

into a reliability-oriented world.

• Two approaches being taken now: 

Pretend there is no problem
Shoehorn new technology and new 
levels of complexity into old methods



The Problem is Complexity

• We need:

– New theoretical foundation(s)

– New modeling languages and tools (based on that foundation)
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1. New Theoretical Foundation

Three ways to cope with complexity:

1. Analytical Decomposition

2. Statistics

3. Systems Theory



Analytic Decomposition (“Divide and Conquer”)

Analyze/examine pieces separately and combine results

C1

C3
C4

C2
C5

E1 E2 E5E3 E4

 Assumes such separation does not distort phenomenon
 Each component or subsystem operates independently

 Components act the same when examined singly as when playing 
their part in the whole

 Components/events not subject to feedback loops and non-linear 
interactions

 Interactions can be examined pairwise
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Typical Decomposition Approach (ARP 4761)
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First, decompose top-down into components 



Then combine individual component analyses bottom up 
(omit software and humans)
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Degree of 
Randomness

Degree of Coupling/Complexity

Analytic
decomposition)

Statistical Analysis

Today’s systems

[Credit to Gerald Weinberg] 28



Prevent failures
or errors

Treat Safety as a
Control Problem

Treat Safety as a
Reliability Problem

Enforce constraints on 
behavior:

– components 
– interactions among

components
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Here comes the paradigm  change!



Systems Theory

• Developed for systems that are
– Too complex for complete analysis

• Separation into (interacting) subsystems distorts the results
• The most important properties are emergent

– Too organized for statistics
• Too much underlying structure that distorts the statistics
• New technology and designs have no historical information

• First used on ICBM systems of 1950s/1960s 

System Theory was created to provide a more 
powerful way to deal with complexity



Emergent properties
(arise from complex interactions)

Process

Process components interact in 
direct and indirect ways

The whole is greater than
the sum of its parts

System Theory
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Safety and security are emergent properties
(but not the only ones)



Controller
Controlling emergent properties
(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior
Component interactions

Process components interact in 
direct and indirect ways
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A Broad View of “Control”
Component failures and unsafe interactions may be “controlled” 

through design 
(e.g., redundancy, interlocks, fail-safe design, …)

or through process
– Manufacturing processes and procedures
– Maintenance processes
– Operational processes

or through social controls
– Governmental or regulatory
– Culture 
– Insurance
– Law and the courts
– Individual self-interest (incentive structure)
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Controls/Controllers Enforce Constraints

• Aircraft must maintain sufficient lift to remain airborne

• Aircraft, autos must maintain minimum separation

• Public health system must prevent exposure of public to 
contaminated water, food products, and viruses

• Pressure in a offshore well must be controlled

• Integrity of hull must be maintained on a submarine 

• Toxic chemicals/radiation must not be released from plant

• Workers must not be exposed to workplace hazards
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These represent the system-level requirements 
on the sociotechnical system



Controlled Process

Process
Model

Control Actions
(via actuators)

Feedback
(via sensors)

Treating Safety as a Control Problem

• Controllers use a process model to 
determine control actions

• Software/human related accidents 
usually occur when the process 
model is incorrect (inconsistent with 
real state of process)

• Captures software errors, human 
errors, flawed requirements …

Controller (Human, Automation)
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Warsaw (Reverse Thrusters) 
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Hazard: Inadequate aircraft
deceleration after landing

Aircraft

Pilot

Decision
Making

Process
Model

Software Controller

Control
Algorithm

Process
Model



Warsaw (Reverse Thrusters) 
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Feedback indicates 
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landed



Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Warsaw (Reverse Thrusters) 
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Hazard: Inadequate aircraft
deceleration after landing
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Turn on reverse
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Models include Social Factors



Model of Vehicle



2. New modeling languages and tools



Models Filter Out “Irrelevant” Information
(for problem being solved)
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Physical Structure of a Spacecraft



Attitude Control System (ACS)

Star Tracker 
(STT)Inertial Controller

Reaction 
Wheels

Magnetic 
Torquer

RCS 
Thrusters

Star 
Imaging

Coarse Sun 
Aspect 
Sensor 
(CSAS)

Attitude Controller

Reaction 
Controller

Inertial 
Reference 
Unit (IRU)

Inertial 
Sensors

Ground Station

Accelerate, 
decelerate

Coil #1-
3 on/off

Fire 
thrusters 

(#1-8)
Star locations
Stars not found

Bias rate 
estimates

X,Y,Z 
angular 
acceleration
s

X,Y,Z 
angular 
velocities

Sun detected
Sun location

Acquire
Track
Etc?

On
Off X,Y,Z 

angular 
velocities

Desired X,Y,Z 
acceleration,
RCS control 
parameters

Success/fail
Fault 
detected

Attitude correction 
commands (X,Y,Z 

rotational 
acceleration)

Success/fail
Detected 
faults

RCS control parameters
Manual attitude correction commands

All status information (when visible)



Functional Structure

©

Automated 
Controllers

Physical processes

Attitude 
Controller

Navigation 
Controller

Thomas, 2018 

C
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The model used will impact the apparent complexity of the system 



Does it Work? Extensive Industrial Use of STAMP

• Book came out about 10 years ago

• 2,000 - 3000 attendees (85 countries) at 
yearly workshop

• Standards (SAE, ISO, IEEE)

• STPA Handbook 
– 200,000+ downloads in last 3 years
– Translated into Japanese, Korean, two forms of Chinese

• Hundreds of controlled and empirical (industry) 
experiments and studies

– All show more powerful than old techniques
– Some data to suggest orders of magnitude less expensive
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Security Too: STPA applied to one DoD program before 
SolarWinds attack

Michael Bear (BAE), John Thomas (MIT), Col. William Young (USAF)

• Program that used STPA was protected from SolarWinds

• Vulnerabilities found by STPA Later exploited by SolarWinds attackers
Not exploited by SolarWinds attackers
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What this paradigm change can produce:

• Top-down design from concept development: create 
requirements, architecture, and design using STPA analysis to 
guide tradeoffs

– Build safety (other qualities) in vs. trying to assure it after the 
fact

• Leading indicators of increasing risk

• Sophisticated teaming between humans and automation

• Any emergent property: mission assurance, security, 
serviceability, quality

• Etc.
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Envisioned Systems of the Future
• Complex interactions among humans and automation beyond 

current modeling, analysis, design, and assurance methods

(Kopeikin)



• Lateral coordination
• Dynamic connectivity
• Transfer of authority

(dynamic authority)
• Shared authority

• Dynamic hierarchy
• Dynamic membership
• Mutually closing loops
• Cognitive alignment
• …

MUM-T (Manned-Unmanned Teaming)

Mission 1

Human/Automation

Human/Automation H/ACoord …

Human/AutomationCoord

Mission 2 

H/A …

Complex Human−Machine Teaming
Lt. Col. Andrew Kopeikin, USAF



Bottom-Line Up Front (BLUF)

Our methods and tools are being swamped by the complexity 
in the systems we are trying to build.

New causes of losses appearing (not just component failure).

To make progress, we need a paradigm change in 
– Engineering for safety
– MBSE models and tools
– General system engineering approaches (FUSE)
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