

Casey Medina \& Kristina Fuerst

TERUMORCT

Casey Medina, CSEP

Casey currently practices systems engineering in the medical device industry. He has developed products in the areas of automated stem cell growth, patient monitoring, pulseoximetry, blood collections and therapeutics. Casey holds multiple patents in the medical device sector. Professionally, he is focused on developing the art of systems engineering in a manner that fosters adoption and acceptance by organizations resistant to change. He currently applies systems engineering practices and principles to enable rapid medical device development and process design and is working to enhance the use of MBSE as an enabler for usability and human factors analyses.

Kristina Fuerst, ASEP

Kristina has been working in the medical device industry as a systems engineer since 2012 and is responsible for the requirements engineering and system architecture development for her team. Kristina developed and implemented an intensive, two-day requirements training course with Casey. Kristina graduated from the University of Colorado at Boulder with a B.S. in Chemical and Biological Engineering and is pursuing her Master's degree in Biomedical Engineering with Rutgers University. She received her ASEP in 2013.

TEAMS creAte. iMagine. Succeed.

Terumo BCT

Established:	1964 as COBE Laboratories
President and CEO:	David Perez
Number of Associates:	$5,300+$
Global Headquarters:	Lakewood, Colorado
Regional Headquarters:	Brussels, Buenos Aires, Hong Kong, Tokyo
Manufacturing Facilities:	United States, Belgium, Japan, Northern Ireland, India, Vietnam
Main Business:	A global leader in blood component, therapeutic apheresis and cellular technologies, and the only company with the unique combination of apheresis collections, manual and automated whole blood processing, and pathogen reduction. We believe in the potential of blood to do even more for patients than it does today. This belief inspires our innovation and strengthens our collaboration with customers.
Parent Company:	Terumo Corporation; Tokyo Stock Exchange (4543)

Terumo BCT

SysML Elements and Diagrams Created with MagicDraw by No Magic

Proceedings of the 25th Annual International Symposium

"From Asking Forgiveness to Saying You're Welcome, Introducing Requirements Engineering to Medical Device Development" Casey Medina, Kristina Fuerst
"The "V" Model Reloaded"
Casey Medina

33\%

Where We Started

- No understanding of system architecture outside of limited, localized, software practices
- No process for developing system architecture
- Design information largely captured as "tribal knowledge"

MBSE Coordinates Development Processes

Our Challenge

- "This is telling me how to do my job!"
- "We know this already."
- "This isn't possible to know."
- "This is too much information."
- Perception that schedule pressure won't
allow this work to happen
1 - Demonstrate ability to generate at least 2 levels of hierarchy
2 - Understand what is meant by system behavior and how it is different from system performance
3 - Understand hierarchy and flow of system behaviors
4 - Differentiate black and white box behaviors 5 - Demonstrate ability to create FFBD and context diagrams for system behavior from intended use
6 - Understand how to use the syntax to document the models
7 - Understand these models are the backbone of the project. Dictates Req's, V\&V risk, all parts of design

Models Answer Questions

Answers are expensive. Good answers cost the same. - Rick Griffith

Teams are more comfortable solving problems than defining them.

Asking the questions right is as important as asking the right questions.

- Ask questions in a personal, engaging manner
- Listen intently - be present
- Create a safe environment
- Help your team capitalize on opportunities to increase their knowledge of their system

How well does this need to perform?

How much should it weigh?

How does the system respond if that happens?

Do I understand all the interfaces?

What do the users think of this design?

Did I capture the requirements accurately?

How much coverage do I have on my V\&V activities?

What do I need/hope to learn?

What type of model will best help me learn?

How much information do I need to represent?

How many levels of hierarchy are necessary?

How will I verify and validate my model?

How will I share the results of my modeling activities?

Structure Implements Function

- Duty cycle
- "rise and fall" times dictated by
centrifuge speed
- Necessary life of LED
- Camera sensitivity
- Acceptable light levels for camera

- Centrifuge position
- LED expected life

anm system \downarrow

Casey's Oversimplified-but-Really-Useful Interface Model

Before MBSE approach, one product family contained ~ 30 "requirements" scattered about its documentation

After MBSE approach, that same product family contained ~ 350 requirements, ordered hierarchically.

The team identified V\&V gaps and worked hard to fill them.

The team has a great baseline from which to make future enhancements or to deal with obselescence.

Making a "Quantum" Leap

$$
\frac{x=}{\frac{1}{2=1}=}
$$

Inputs

- Initial population of cells in solution (isolated or mixed population)
- Cell growth nutrients/fluids
- Cell growth system
- Unique identification of expansion cycle
- Oxygen supply (gas supply)
- Unique identification for cell expansion
- User interaction data

Controls

- Regulatory
-GMP requirements (closed system, traceability, etc.)
-Medical device standards and guidelines
- Hollow fiber technology constraint - adherence of cells
- Society's familiarity with flask culture
- Physiological needs to cells
-pH
-temperature
- Contamination risks
-nonmutagenic (leachables, extractables)
-efficacy of cells
- Ability to isolate desired cell types from mixed populations
- Targeted cell types
- Ability of operator to create customized protocols/parameters
- Automation constraints
- Customer locations (APAC, Europe, US, etc.)
-Differences in interface types (gas, power, etc.)
-Acquisition needs (CE marking, etc.)
- Ability of system to detect anomalous conditions

Enablers

- Skilled personnel (operators, maintainers, trainers)
- System maintenance
- Sterile culture environment (single use set)
- Closed culture environment
- Trained operator
- Cell metabolic rate monitoring method
- Automated protocols
- Data information storage system
- User instructions (service, installation, operation)
- Power supply
- Gas control mechanism
- Cellular respiration byproduct waste management method

Outputs

- Final population of cells

Cell number
Viability
Potency
Cellular products (proteins, vectors, etc.)

- Waste materials
-Fluid waste
-Cell respiratory waste (CO2, lactate, etc.)
-Spent single-use set
-Dead/unviable cells
- Exhausted cell growth system
- Reports
-User Interaction and system state linked to unique procedure identification
-Troubleshooting information (servicing purposes)
- Alerts of anomalous conditions


```
bdd [Block] Gas Management Subsystem[ Gas Management Subsystem ]
```


Risk Management 2.0

Guiding Thoughts

- Keep it simple to give teams confidence and practice in applying fundamentals. Don't overwhelm them!
- Modeling techniques and methodologies may not always be applied "by the book."
- Help teams understand why they're building the model to help them focus and drive for results.
- Teams need to feel that the model helps them get to the finish line more efficiently.
- Keep the end in mind.

Please Remember:

- What is obvious to an SE is not necessarily obvious to others
- Empower your teams to embrace the process
- Allow your teams time to digest and understand the material

We're only successful if we enable our teams to be successful!

